

An Adaptive Service Selection Approach to Service Composition *

Lijun Mei
The University of Hong Kong

Pokfulam, Hong Kong
ljmei@cs.hku.hk

W.K. Chan †
City University of Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

T.H. Tse
The University of Hong Kong

Pokfulam, Hong Kong
thtse@cs.hku.hk

Abstract

In service computing, the behavior of a service may
evolve. When an organization develops a service-oriented
application in which certain services are provided by
external partners, the organization should address the
problem of uninformed behavior evolution of external
services. This paper proposes an adaptive framework that
bars problematic external services to be used in the
service-oriented application of an organization. We use
dynamic WSDL information in public service registries to
approximate a snapshot of a network of services, and
apply link analysis on the snapshot to identify services that
are popularly used by different service consumers at the
moment. As such, service composition can be strategically
formed using the highly referenced services. We evaluate
our proposal through a simulation study. The results show
that, in terms of the number of failures experienced by
service consumers, our proposal significantly outperforms
the random approach in selecting reliable services to form
service compositions.

Keywords: service selection, service composition,
quality, link analysis, adaptive framework

1. Introduction

A service is business functionality with well-defined
interface. Software applications using service-orientation
are increasingly popular. In this paradigm, individual
services publish their functionality interface in registries
(such as UDDI registries). Based on the content of a
registry, a service consumer discovers a potential service
provider and then loosely enacts with the selected service.
A resultant application is called a service composition.

On one hand, the quality of individual services [6][7]
[11] should play an important role in offering useful
service composition [1][12][13] for service-oriented (SO)
applications. On the other hand, not all services can be
under the control of a single organization. In the cross-

organizational environment, an SO application may use a
service provided by another organization. For instance,
when an e-shop needs to charge customers certain fees via
their credit cards, the de facto approach is to use the
services provided by, say, Visa or MasterCard directly
rather than having to develop an in-house service. (Indeed,
some customers of the e-shop may be concerned about
privacy and are skeptical to use any in-house credit card
billing service.) Fault handling in the local organization’s
business process cannot turn a failed credit card service
into a successful one. A failure of such an external service
will thus be directly observable by a customer of the SO
application.

Unlike in-house services, the number of external
services suitable for a particular business purpose can be
large. For example, there are numerous financial news
providers worldwide (such as cnn.com and mpinews.com).
Hence, if an SO application wants to use an external
service as one of its business workflow steps, an important
challenge is to be able to select one with the highest
quality. Objective service ranking would be attractive.

The service ranking problem is not totally new. For
instance, Gekas and Fasli [14] proposed to apply a network
analysis mechanism for the semantic web. They firstly
captured the link between any two services based on the
semantic conformance of input/output data types for these
two services, and then used all the links to form a graph to
apply link analysis. Nevertheless, defining the link
according to interface parameters may not necessarily be
the usual criterion for ranking services that represent
business functionality. Let us take the credit card service
again as an illustration: The standard parameters for VISA
card services from different banks are likely to be the same.
However, the qualities of credit services provided by banks
vary more at the business reputation level than at the
technical interface level.

We however observe that a service provided by a large
and reputable bank (or the service of PayPal) is more likely
to be used by a potential customer. For an SO application
to invoke these reputable services, it can specify the
service address in the WSDL documents. Based on the
above observation, this paper proposes an adaptive
framework to identify reliable external services for
service-oriented applications in the cross-organizational
environment. In this framework, a consumer P using a
service Q can count locally the number of times that Q

* This research is supported in part by the General Research Fund of the
Research Grant Council of Hong Kong (project nos. 111107, 716507,
and 717506).

† Corresponding author.

2008 IEEE International Conference on Web Services

978-0-7695-3310-0/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWS.2008.22

70

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:48 from IEEE Xplore. Restrictions apply.

successfully serves P, and the number of failure cases alike.
We then use the local snapshot of the public service
registries to model the network of services N that are
visible to P. Based on the counts, the network N will be
dynamically updated, such as by the removal of a link due
to a recent experience of a failure when using Q.

Through the application of a link analysis algorithm on
N, the changes in individual service selections are
propagated to the entire snapshot of the network. We thus
compute the new popularity measures of various services
in the global picture, and only present the highly
referenced services to the SO application for selection.

The main contributions of this paper are three-fold:
(i) We propose a framework to select and compose
services adaptively. (ii) We utilize the framework to
present an algorithm to rank services using social network
analysis. (iii) We present the first set of experiments to
evaluate an adaptive approach to selecting services in an
SOA environment. The experimental results show that our
approach is promising.

The rest of the paper is organized as follows: Section 2
gives a motivating example to illustrate the challenges of
service selection. Section 3 presents the preliminaries that
lay the foundations of our framework. Section 4 introduces
our framework to facilitate adaptive service composition,
and details our framework by proposing an algorithm to
rank services adaptively. Section 5 reports on the
experiment that evaluates our approach. It is followed by a
literature review and the conclusion in Sections 6 and 7,
respectively.

2. Motivating Example
In this section, we present an example adapted from the

TripHandling application [21] to motivate our work.

Receive Request

Hotel 1 Hotel 2 Hotel 3Hotel
Services RoomQuery

PriceQuery

Reservation

RoomQuery

PriceQuery

Reservation

RoomQuery

PriceQuery

Reservation

TripHandling
Process

Invoke FlightBooking
Service

Reply BookResult

Visa Card
CreditCheck

Card Services

Invoke HotelBooking
Service

Invoke
Credit
Service

BillPayment

BookFailure Service

Flight Agent1

FlightQuery

Flight Services

FlightBooking

FlightQuery

FlightBooking

Flight Agent2 Visa Card
CreditCheck

BillPayment

Figure 1. TripHandling application.

The TripHandling application handles requests from
service customers by scheduling trips. It includes the
following workflow steps: (i) FlightBooking to book
flights for a trip, (ii) HotelBooking to book hotels for a trip,
and (iii) BillPayment to bill the corresponding customers
via an online credit card service for successful flight and/or
hotel booking. If both FlightBooking and HotelBooking are

successfully completed, the booking results will be sent to
the customer. On the other hand, if either FlightBooking or
HotelBooking encounters an error, the TripHandling
application will terminate and display an error message.
The structure of the TripHandling application is shown in
Figure 1, in which the solid undirected lines separate the
regions for different categories of services, the solid
arrows links up the sequence of the workflow steps, and a
dashed arrow means a potential service invocation.

In the following, we present a number of scenarios to
illustrate the challenges in service composition.

Scenario 1: Inadequacy of Pre-Deployment
Information. Suppose that Hotel 1 is initially evaluated by
TripHandling to be the preferred choice for providing hotel
room availability query service, and TripHandling indeed
binds to Hotel 1 in its service composition as specified in
the WSDL document. Usually, in such a situation, neither
the potential (test) evaluations of Hotel 2 and Hotel 3 nor
their potentials to bind with TripHandling will be
presented in the WSDL documents. Suppose also that,
after the service deployment, for some reason, the hotel
room availability query service provided by Hotel 1
becomes inaccessible. The TripHandling application will
then be unable to provide useful HotelBooking services to
customers. What if Hotel 2 is available to provide such a
query service? If TripHandling switches to use Hotel 2 for
HotelBooking, it may offer its services as usual. From this
scenario, we know that selecting a service based purely on
pre-deployment information is generally inadequate to
avail a sustained service composition to customers.

Although a dynamic service discovery approach may
obviously complement a static approach, our scenarios
below show that there are other challenges in dynamic
approaches.

Scenario 2: To Switch or Not To Switch, That is the
Question. Suppose the chances of encountering a failure
during service invocation (dubbed failure rates) for
Hotel 1 and Hotel 2 are 2% and 5%, respectively. When
the services of Hotel 1 are inaccessible, Hotel 2 can be
used as the “backup” to replace Hotel 1 as the provider of
hotel room availability query service. However, because
the failure rate of Hotel 2 is much higher than that of Hotel
1, when the latter resumes its services, the system had
better switch back to Hotel 1 as the service provider. A
simple strategy is to switch back to Hotel 1 whenever it is
available. On the other hand, Hotel 1 may shut down again
shortly afterwards. If TripHandling uses the simple
strategy to compose its services, its customers may
immediately experience a failure. An alternative is to wait
for a sufficiently long period before switching back to
Hotel 1. However, the longer the waiting period, the poorer
will be the overall service quality, because the services
from Hotel 2 has a higher failure rate than those from
Hotel 1 (assuming all other factors to be equal). The proper
strategy to switch back from Hotel 2 to Hotel 1 after the
latter has resumed its services should be thoroughly
considered.

Scenario 3: Evolving Quality. Services like Google
search may upgrade themselves frequently. The failure

71

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:48 from IEEE Xplore. Restrictions apply.

rates of Hotel 1 and Hotel 2 may evolve over time as well.
In Scenario 2, we have hypothesized that Hotel 1 has a
lower failure rate than Hotel 2. Suppose that, as time goes
on, the failure rates of Hotel 1 and Hotel 2 change to 2%
and 1%, respectively. In Scenario 1, the pre-deployment
information has shown that Hotel 1 is the best provider of
hotel room availability query service. Since Hotel 2 has
upgraded its service, it should be the preferred choice for
hotel query service.

Suppose TripHandling uses Hotel 1 without problem
throughout its history. A challenging question is: How can
a technique guarantee that it will eventually switch to
Hotel 2 for the dynamic quality improvement despite the
successful experience with Hotel 1?

In summary, proper switching among individual
services with evolving qualities is a challenging task in
service composition. In this paper, we shall present our
proposal to address these challenges.

3. Preliminaries
This section reviews the preliminaries that lay the

foundations of our framework.

3.1. Link Analysis
The link analysis of a graph is a process to find the

graph properties according to the link distributions among
the nodes of the graph. The technique has been applied to
the ranking of webpages in Internet search. There are
various link analysis ranking algorithms [3], such as
PageRank, InDegree, Hits, and Salsa. Since PageRank is
the most representative technique in webpage ranking, we
shall use it to illustrate how link analysis is conducted.

PageRank [19] computes the ranking of searchable
pages based on a graph of the Web and is an integral part
of Google search [20]. Intuitively, a document is ranked
high by PageRank if it is linked to many other highly
ranked documents. PageRank assumes that a Web user will
eventually stop clicking any link. The probability, at any
step, that the user will continue is known as a damping
factor d ∈ [0, 1], which is typically set to about 0.85 (see
[5]). PageRank with the damping factor is defined as
follows: Suppose a webpage u points to a set F(u) of other
pages, and u is also pointed to by a set of pages B(u). Let
us denote the size of F(u) by C(u). The page rank PR(u) of
the page u is given by

∑
∈

×+−=
)()(

)()1()(
UBv vC

vPRdduPR (1)

Page A

Page B Page C

Figure 2. Example to illustrate web link analysis.

Figure 2 shows a graph of three webpages A, B, and C
linked among one another. Based on equation (1), we can

establish a set of recurring equations for these three pages
with d = 0.85. By initially setting each of PR(A), PR(B),
and PR(C) to 1, we can iteratively re-compute the results
until they converge.

PR(A) = 0.15 + 0.85 × PR(C)
PR(B) = 0.15 + 0.85 × (PR(A) / 2)
PR(C) = 0.15 + 0.85 × (PR(A) / 2 + PR(B))

Solving the set of equations through 20 iterations, we
obtain PR(A) ≈ 1.163, PR(B) ≈ 0.6444, and PR(C) ≈ 1.192.
It is known that the initial PageRank values will make the
actual final scores of the pages different, but the ranks are
generally believed to largely reflect the relative importance
of the pages in the graph. PageRank is not optimal, and its
improvement is still an active research area.

Since applying the link analysis algorithm can be
expensive, the depth can be constrained to reduce the cost
of computation. The solution, however, will be less precise.

3.2. Model of Service-Orientation
There are three distinct activities in a typical model of

service-orientation, namely service registration, discovery,
and binding. A service provider registers itself in a service
registry. When the consumer wants to use the service, it
must firstly discover the service from the registry, and then
bind to the service. The service provider, service registry,
and service consumer are elements in an SO network.

Service RegistryService

Register Service
to Registry

Discover Service
from a registry

Bind Service Associate Service

Figure 3. A network of SO elements.

When there are multiple registries in a model, one
registry may also associate its registered services to other
registries (which is similar to websites sharing the contents
in these days). Similarly, a service may register itself to
more than one registry. Figure 3 shows an example SO
network.

Definition 1 (SO Network) An SO Network is a 3-tuple
〈S, R, L〉, where S is a set of services; R is a set of service
registries; and L is a set of directed edges, each of which is
a tuple 〈e1, e2〉 linking e1 to e2 (e1, e2∈ R∪S).

Based on the SO network, we further define the concept
of a binding repository for an SO application. A binding
repository is a local repository capturing the information
from public service registries. It represents an SO network
visible to the application. The definition is as follows:

72

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:48 from IEEE Xplore. Restrictions apply.

Definition 2 (Binding Repository) For an SO network
〈S, R, L〉, a binding repository BR is a collection of binding
entities. Each binding entity b is a 4-tuple 〈e, I, O, PR〉,
where e (∈ R ∪ S) uniquely identifies b, written as b =
BR(e); I (⊆ R ∪ S) is the set of inbound inks of e; O (⊆ R
∪ S) is the set of outbound links of e; and PR is the
probability of e (computed by some link analysis
algorithm).

4. A Framework of Service Composition
In this section, we present our adaptive framework,

which not only selects the most highly linked services
when new services are needed, but also retains as much as
possible the initial pre-deployed selection of services. To
avoid being trapped at a local maximal, our framework
also has a feature that selects services among those within
the same tier.

In addition, when an execution of a selected service
produces a failure in a service composition, the framework
will remove the service from the registry. After a
previously failed service is recovered, the framework
computes the link analysis score of the public service
registries to check how the service is being used by other
consumers. Intuitively, in the long run, only “good”
services will be kept in different tiers and available for
selection by the consumer, and our experiment in Section 5
supports this intuition. Our framework is realized by the
algorithm COMPUTE_N_TCSM.

Initially, information from public service registries is
captured and recorded locally in the binding repository,
and the potential services by the consumer are kept in an
N-Tier Candidate Service Module (N-TCSM). Formally, an
N-TCSM is a list of N elements, denoting N tiers. Each
element is a set of candidate services (of the same or
different service types). To ease our presentation, we
denote the i-th tier of an N-TCSM by N-TCSM[i].

To handle a user request, the Service Selection
component selects a set of candidate services from the N-
TCSM so that the service consumer can form its service
composition. For a service consumer who requests m
services of the same kind from the N-TCSM, the algorithm
will do the following: Starting from i = 1, if k (≥ m) such
services are available in N-TCSM[i], then select m services
randomly from these k services; otherwise, select the k
services from N-TCSM[i], and continue to select the
remaining m − k services from the subsequent N-
TCSM[i+1], N-TCSM[i+2], ... until a total of m services
have been selected.

After executing a selected service e from N-TCSM[i] in
a service composition, if a failure results, e will be
removed from N-TCSM[i]. Such handling is done by the
Consumer Evaluation component. Furthermore, the
corresponding binding entity of e will also be removed
from the binding repository. Whenever a service e has
been removed from a tier, a new service x with the highest
estimated ranking (see the Ranking Criteria module below)
but not in the N-TCSM will be placed initially into the
lowest tier of the N-TCSM (that is, N-TCSM[N] is updated

to N-TCSM[N] ∪{x}). The actual tier of the newly added
service will be determined by the Ranking Criteria.

The Ranking Criteria component provides the ranking
facility by applying the link analysis algorithm to the
binding repository. Candidate services in the N-TCSM will
change their belonging tiers according to the relative
scores of the services computed by the link analysis
algorithm. It should fully fill N-TCSM[i] with services with
the highest scores, followed by filling N-TCSM[i+1] with
the remaining services.

Algorithm COMPUTE_N_TCSM

Inputs Service consumer c, binding repository BR,
SO network 〈S, R, L〉, N-TCSM,
link analysis algorithm F

Outputs Binding repository BR, SO network 〈S, R, L〉,
 N-TCSM

// Service Selection
1 Randomly select service p from N-TCSM[i], i = 1..N.

// Consumer Evaluation
2 Collect the invocation result of p as r.
3 if r is correct, then return.

// if r is not correct, i.e., there is a failure when
executing p

// Update N-TCSM
4 padd ← {padd ∈ S | (∀p’ ∈ S, BR(padd).PR ≥ BR(p’).PR)

∧ (padd, p’ ∉ N-TCSM[i], i = 1..N)}.
5 N-TCSM [i] ← N-TCSM [i] \ {p}.
6 N-TCSM [N] ← N-TCSM [N] ∪ {padd}.

// Binding Repository: Update BR and SO Network
7 Let BR(c), the binding entity of c in BR, be 〈c, Ic, Oc,

PRc〉.
8 Oc ← Oc \ {p}. // Remove p
9 Oc ← Oc ∪ {padd}. // Add padd
10 Let BR(p), the binding entity of p in BR, be 〈p, Ip, Op,

PRp〉.
11 Ip ← Ip \ {c}.
12 Let BR(padd), the binding entity of padd in BR, be 〈padd,

Ipadd, Opadd, PRpadd〉.
13 Ipadd ← Ipadd ∪ {c}.
14 L ← L \ {〈c, p〉}.
15 L ← L ∪ {〈c, padd〉}.

// Ranking Criteria: Update PR of services in BR
16 Apply F to SO Network to calculate the PR of each

element e in the network, and update the PR of e in BR.
17 Sort services in N-TCSM[i] by their PR values, i = 1..N.

Our framework, formed by the five components above,
is depicted in Figure 4.

Let us use a scenario in the TripHandling application to
further illustrate the algorithm COMPUTE_N_TCSM. Sup-
pose n candidate hotel services are bound to the workflow
step HotelBooking, as shown in Figure 5(a). We can apply
the algorithm to compute their service ranking scores.
Based on the scores, the Ranking Criteria will rearrange
the services in different tiers in the N-Tier Candidate
Service accordingly.

73

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:48 from IEEE Xplore. Restrictions apply.

Tier - 1

Bind
Repository

Tier - 2

Tier - N

Service Consumer
Participation

N-Tier Candidate
Service Module

Consumer
Evaluation

Service
Selection

Service Ranking
Process

Execution
Result

Binding
Information

Ranking
Information

High
Ranking
Service

Add/Remove
Service

Ranking
Criteria

Figure 4. A framework for service selection.

Invoke Hotel
Booking Hotel H1

Hotel H2

Hotel H3
Hotel H0

Hotel Hn

Invoke Hotel
Booking Hotel H1

Hotel H2

Hotel H3
Hotel H0

Hotel Hn

Hotel H7

H1

Ry

Picture a Picture b

Picture c

H0

Hx H1

Ry
Picture d

H0

Hx

Figure 5. Example to illustrate the algorithm.

If no service in any tier is removed, the re-evaluation of
the ranking scores will only rearrange the order of the
services in different tiers. If some service is removed,
however, the algorithm will invoke the appropriate action.
Let H0 be the hotel booking service for the TripHandling
process, while in fact, H0 invokes external services to do
the actual booking. Suppose service H1 (among compatible
services H1, H2, …, Hn as shown in Figure 5(a)) is selected
and executed. Unfortunately, this particular execution of
H1 results in a failure, and hence H1 is removed from the
N-TCSM of H0. The link 〈H0, H1〉 shown in bold in the
figure is also removed from the SO network. Then, the
algorithm selects a new hotel booking service (say, H7)
with a high estimated ranking to replace H1, as shown in
Figure 5(b), and the link 〈H0, H7〉 is added into the SO
network. During this process, the binding information for
H1 is changed, as illustrated by the transition from Figure
5(c) to Figure 5(d).

5. Evaluation
This section reports on the experimentation of our

proposal.

5.1. Experiment Design
We use the TripHandling application [21] to evaluate

our work. We have implemented a tool to automate the
simulation for evaluation. It generates, in total, 200 hotel

service consumers, 1000 hotel service providers, and 100
service registries. The hotel service providers are evenly
distributed in four categories as shown in Table 1, in which
they are classified according to the order of their failure
rates. The number of service providers and the order of
their failure rates for each category are shown in columns 2
and 3. Each service has a uniform distribution of failure-
causing inputs, which means that any input to a service is
equally likely to cause a failure.

Table 1. Failure rate settings of service providers.

Category Count Order of Failure Rate
L1 250 0.01%
L2 250 0.1%
L3 250 1%
L4 250 10%

We use a 3-Tier Candidate Service Module (or 3-TCSM
for short) in the simulation, and label the three tiers as
reliable tier, available tier, and backup tier, respectively.
We randomly select 0.5%, 1%, and 2% of 1000 hotel
services and put them into the service pools of the reliable,
available, and backup tiers, respectively. The different
settings of failure rates reflect various implementations of
services.

After an invocation of a service, if it encounters a failure,
the service is removed from the 3-TCSM. If a service has
been removed from the 3-TCSM, a new service from the
remaining service provider pool will be selected and added
to the 3-TCSM according to our framework by applying
the algorithm COMPUTE_N_TCSM. Since their priorities
may be changed, the candidate services in the 3-TCSM are
re-divided into different tiers according to the new ranking
information.

Experiment A. Initially, each service consumer
randomly selects a set of services (irrespective of the
category) to compose its required service. This
experimental setting simulates a random sample of pre-
deployment information for initial service selection. The
initial settings of all service consumers are listed in Table 2,
in which columns L1 to L4 individually present the
number of services in each category used by all service
consumers. The maximum, average, and minimum failure
rates of all selected candidate services are 10%, 2.77%,
and 0.01%, respectively. Note that the total counts in
columns L1 to L4 of Table 2 are not the same as the counts
in the corresponding rows of Table 1, because multiple
consumers may use the same candidate service.

Table 2. Initial statistics of 3-TCSM (metric M-Q).

Tier L1 L2 L3 L4
Tier-1 (Reliable) 543 544 562 551

Tier-2 (Available) 602 609 601 588 Overall
Tier-3 (Backup) 625 580 592 603 Quality

Total Count 1770 1733 1755 1742 M-Q
Failure Rate 0.01% 0.1% 1% 10% 2.77%

We choose the following two metrics as the
effectiveness measures to evaluate our approach.

74

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:48 from IEEE Xplore. Restrictions apply.

• The overall quality of the 3-TCSM (denoted by M-Q) is
defined as the average failure rate of all candidate
services in the 3-TCSM.

• The average failure rate per service invocation (denoted
by M-FR) is defined as the average failure rate
experienced by a consumer over a sequence of user
requests for that service composition since the first
request. For instance, if 5 failures result from a service
composition when fulfilling a sequence of 100 user
requests, then M-FR is 0.05.

Since PageRank is highly representative, we choose it as
the link analysis algorithm F as input to our algorithm
COMPUTE_N_TCSM in the experiment. Referring to [5][20],
we terminate the execution of PageRank after 200
iterations. We invoke COMPUTE_N_TCSM 4096 (= 212)
times, and repeat the experiment 10 times to report the
average result.

Experiment B. We also evaluate our framework on
handling services whose quality has evolved. After
invoking COMPUTE_N_TCSM 512 (= 29) times, we
randomly choose 30% of the services in 3-TCSM and
change their failure rates to a randomly selected rate in
{0.01%, 0. 1%, 1%, 10%}. We then continue until the total
number of invocations of COMPUTE_N_TCSM is 4096, so
that we can compare the results with those obtained from
Experiment A.

This change of failure rate simulates a scenario of
evolving service quality. Thus, the experiment helps verify
the ability of our approach to handle the evolving quality
problem.

5.2. Data Analysis
We firstly report the result of Experiment A. After the

simulation, the statistics of services as kept in the 3-TCSM
is shown in Table 3. The overall quality M-Q after
adopting our approach is 1.92%. Compared with the M-Q
value of 2.77% for the initial setting in Table 2, the overall
quality of the 3-TCSM services has improved by 31%.

Table 3. Average statistics of 3-TCSM after
running simulation (metric M-Q).

Tier L1 L2 L3 L4
Tier-1 (Reliable) 1156 852 142 50

Tier-2 (Available) 614 617 629 541 Overall
Tier-3 (Backup) 625 584 596 594 Quality

Total 2395 2053 1367 1185 M-Q
Failure Rate 0.01% 0.1% 1% 10% 1.92%

We observe from Tables 2 and 3 that, using our
approach, the chance of selecting a high-quality candidate
service (say, from categories L1 and L2) has increased
significantly.

We sample the 4096 invocations of our algorithm at 2i
steps, where i ranges from 0 to 12. The sampling results of
our approach and the random approach are plotted as two
data series in Figure 6. The X-axis indicates the number of
service invocations, and the Y-axis indicates the failure rate.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

Our Approach

Random

20 21 22 23 24 25 26 27 28 29 210 211 212

Figure 6. Comparison with random (static)
(metric M-FR) [X-axis: no. of invocations; Y-axis: failure rate].

We observe from Figure 6 that, as the number of service
invocations increases to 212, the average failure rate of
executed services (M-FR), randomly selected from Tier-1,
is 0.326%, while that of the random approach is 2.84%.
Thus, the average failure rate using our approach is only
11.5% of that using the random approach.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

Our Approach

Random

20 21 22 23 24 25 26 27 28 29 210 211 212

Evolving
Point

Figure 7. Comparison with random (evolving at 29)
(metric M-FR) [X-axis: no. of invocations; Y-axis: failure rate].

Figure 7 shows a comparison with the random approach
under the scenario of evolving service quality for Experi-
ment B. The X-axis and Y-axis are the same as those of
Figure 6. By comparing Figures 6 and 7, we observe that
our approach can work even better after the quality
evolving, such as achieving a failure rate of 0.265% after
212 invocations in Figure 7 as against a failure rate of
0.326% in Figure 6. This observation shows that our
approach is promising in solving the problem of evolving
service quality. Owing to space limitation, we have to
leave other details of the experiment and analysis to future
publications.

5.3. Threats to Validity
In this section, we discuss the threats to validity on the

design and results of our experiment.
Firstly, we use simulation to evaluate our proposal.

Simulations have been used in many engineering
disciplines to compare different techniques, in both
research and practice. We have tried our best to model the
major factors that may affect the experimental results in
the experiment design, such as the failure rates of service
providers and the random selection of initial service
providers.

75

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:48 from IEEE Xplore. Restrictions apply.

Next, we set up the initial scenarios as randomly as
possible to avoid bias. The random setting may be good for
comparing techniques but may not represent a general
setting of the Internet. In addition, we set the number of
tiers to 3, but other numbers may be used for various
reasons. We tend to believe that even when the number of
tiers is changed, our approach will still show similar
advantages over the random technique.

We only compare our approach with a baseline (the
random) technique in our experiments, which show that
our approach can effectively alleviate the evolving quality
problem. Comparison with other techniques will not
invalidate this reasoning. The failure rates of services are
changed manually in the current experiments. We plan to
further automate the experimental process, thereby
allowing us to simulate more evolving scenarios to
evaluate our approach.

Finally, in the experiment, we assume that the
environment does not affect the failure rates of candidate
services. The study of context dependencies of services is a
question that we shall investigate in the future.

6. Related Work
In this section, we review the literature on service

composition. Since service ranking and selection
approaches have been reviewed in Section 1, we do not
repeat them here.

Firstly, we review context-aware service composition
[8][15][18] in general. Mokhtar et al. [18] discuss the
service composition problem in a pervasive computing
environment. They use Ontology Web Language for
Services (OWL-S), which is considered quite a complete
framework to describe semantic web services and to model
contexts for user tasks. Lee et al. [15] propose to apply
dynamic service composition to alleviate the diversity and
unpredictability problems in the context of mobile network
environments. They use the smart space middleware
architecture to hide the complexity in context-aware
service composition.

These approaches show that, in the context of dynamic
environment, the qualities of services can be changing.
Hence, selecting proper services is crucial for service
compositions.

Lu et al. [16] studies the composition problem in the
context of workflow semantics. Their work allows
developers to define workflow specifications and then to
reason whether the implementations meet the
specifications semantically. Our technique focuses on how
clients treat their service partners expressed in links.
Intuitively, the links express the tendency to form a service
composition among service partners. Our technique is
softer than the work discussed above.

Next, we outline the efforts in testing service
composition. Basic techniques to test service composition
are summarized in [2][7]. Bucchiarone et al. [7] introduce
the testing techniques from two aspects: testing
orchestrations and testing choreography. They also discuss
the application of classical techniques to unit and

integration testing. Members of our research group also
develop service testing techniques [10][17]. Zhang et al.
[24] proposes to use a Petri-net based specification model
for web services to facilitate verification and monitoring of
web service integration. Zhu [25] outlines a framework for
testing web services. An ontology tool for software testing,
STOW, is used to specify the semantics of services. In
STOW, a service must provide the identity of the service
provider and its capability to perform testing tasks. We,
however, use the standard registries that store service
binding information as one of the foundations of our work.

In the area of service selection from multiple service
providers, existing projects [8][23] are in line with our
work.

Zeng et al. [23] propose a middleware platform to
address the issue of selecting web services, aiming at
maximizing user satisfaction. They discuss service
selection from two aspects: task-level selection and global
allocation of tasks to services. Our approach discusses the
selection of services according to their binding information,
which reflects the quality of service in a statistical way.
Our framework can be extended to support other
evaluation criteria (such as execution price and execution
duration) by adding new repositories for service ranking.

Casati et al. [8] use composite e-services to handle the
dynamic environment. They propose to use service
selection rules in specifications to guide service selection.
Their model enhances service modeling from the
specification perspective. Our work provides a more
precise analysis of service ranking. We use dynamic
service binding information rather than the specification.

7. Conclusion
Service ranking and selection are crucial in building

composite services. Because of dynamic environmental
contexts and evolving implementations of services, the
quality and functionality of a service may change over
time. When an organization develops an SO application, in
which some of the services are provided by external
partners, the organization should address these issues.

In this paper, we have proposed an adaptive framework
that aims to provide better quality for the resultant service
compositions. In the framework, estimated failure rates of
services are initially used to rank the services into different
tiers. The binding information in local service registries is
updated dynamically according to the evaluation results
supplied by service consumers. We then use such binding
information to approximate a network of services, and
apply link analysis to prioritize services in the service pool
according to by their current popularity. As such, a guided
service composition can be formed by using the highly
ranked services. To evaluate the quality of the resultant
service composition, we have conducted a simulation
experiment. The experimental results show that, in terms
of the number of failures experienced by consumers, our
proposal significantly outperforms random selection of
applicable services with or without taking evolving quality
into consideration.

76

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:48 from IEEE Xplore. Restrictions apply.

In the future, we plan to conduct more experimentation,
and evaluate our framework using emergent properties. We
shall study context dependencies and explore possible
enhancements of our framework. Link analysis on the
binding repository can be costly if the network is huge. It
would be interesting to explore other approximation
approaches, such as using link analysis on a partial service-
orientation network. It will also be interesting to know the
effect of applying other social network analysis approaches
on top of our framework.

References

[1] D. Ardagna and B. Pernici. Adaptive service composition in
flexible processes. IEEE Transactions on Software
Engineering, 33 (6): 369–384, 2007.

[2] B. Benatallah, R.M. Dijkman, M. Dumas, and Z. Maamer.
Service-composition: concepts, techniques, tools and trends.
In Service-Oriented Software System Engineering:
Challenges and Practices, Z. Stojanovic and A.
Dahanayake, editors, pages 48–66. Idea Group Publishing,
Hershey, PA, 2005.

[3] A. Borodin, G.O. Roberts, J.S. Rosenthal, and P. Tsaparas.
Link analysis ranking: algorithms, theory, and experiments.
ACM Transactions on Internet Technology 5 (1): 231–297,
2005.

[4] A. Bottaro and R.S. Hall. Dynamic contextual service
ranking. In Software Composition, volume 4829 of Lecture
Notes in Computer Science, pages 129–143. Springer,
Berlin, Germany, 2007.

[5] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and
ISDN Systems, 30 (1–7): 107–117, 1998.

[6] M. Broy, I. H. Krüger, and M. Meisinger. A formal model of
services. ACM Transactions on Software Engineering and
Methodology, 16 (1): Article No. 5, 2007.

[7] A. Bucchiarone, H. Melgratti, and F. Severoni. Testing
service composition. In Proceedings of the 8th Argentine
Symposium on Software Engineering (ASSE 2007). Mar del
Plata, Argentina, 2007.

[8] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.C.
Shan. Adaptive and dynamic service composition in eFlow.
In Advanced Information Systems Engineering, volume 1789
of Lecture Notes in Computer Science, pages 13–31.
Springer, Berlin, Germany, 2000.

[9] H. Cervantes and R.S. Hall. Autonomous adaptation to
dynamic availability using a service-oriented component
Model. In Proceedings of the 26th International Conference
on Software Engineering (ICSE 2004), pages 614–623.
IEEE Computer Society Press, Los Alamitos, CA, 2004.

[10] W.K. Chan, S.C. Cheung, and K.R.P.H. Leung. A
metamorphic testing approach for online testing of service-
oriented software applications. International Journal of Web
Services Research 4(2):60–80, 2007.

[11] H. Chen, G. Jiang, and K. Yoshihira. Failure detection in
large-scale internet services by principal subspace mapping.
IEEE Transactions on Knowledge and Data Engineering, 19
(10): 1308–1320, 2007.

[12] A. Erradi and P. Maheshwari. AdaptiveBPEL: a policy-
driven middleware for flexible Web services composition. In

Proceedings of the Middleware for Web Services Workshop
(MWS 2005), pages 5–12. Enschede, The Netherlands, 2005.

[13] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
verification of Web service compositions. In Proceedings of
the 18th IEEE International Conference on Automated
Software Engineering (ASE 2003), pages 152–161. IEEE
Computer Society Press, Los Alamitos, CA, 2003.

[14] J. Gekas and M. Fasli. Automatic Web service composition
based on graph network analysis metrics. In On the Move to
Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE, volume 3761 of Lecture Notes in Computer
Science, pages 1571–1587. Springer, Berlin, Germany,
2005.

[15] C. Lee, S. Ko, S. Lee, W. Lee, and S. Helal. Context-aware
service composition for mobile network environments. In
Ubiquitous Intelligence and Computing, volume 4611 of
Lecture Notes in Computer Science, pages 941–952.
Springer, Berlin, Germany, 2007.

[16] S. Lu, A. Bernstein, and P. Lewis. Automatic workflow
verification and generation. Theoretical Computer Science,
353 (1): 71–92, 2006.

[17] L. Mei, W.K. Chan, and T.H. Tse. Data flow testing of
service-oriented workflow applications. In Proceedings of
the 30th International Conference on Software Engineering
(ICSE 2008), pages 371-380. ACM Press, New York, NY,
2008.

[18] S.B. Mokhtar, D. Fournier, N. Georgantas, and V. Issarny.
Context-aware service composition in pervasive computing
environments. In Rapid Integration of Software Engineering
Techniques, volume 3943 of Lecture Notes in Computer
Science, pages 129–144. Springer, Berlin, Germany, 2006.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: bringing order to the Web.
Stanford InfoLab Publication 1999-66. Stanford University,
Palo Alto, CA, 1999. Available at http://dbpubs.stanford.
edu/pub/1999-66.

[20] M. Sobek. A survey of Google’s PageRank. eFactory GmbH
and Co., Dusseldorf, Germany, 2002/03. Available at
http://pr.efactory.de/.

[21] Travel handling. IBM BPEL Repository. Available at
http://www.alphaworks.ibm.com/tech/bpelrepository.

[22] W.T. Tsai, Y. Chen, Z. Cao, X. Bai, H. Huang, and R. Paul.
Testing Web services using progressive group testing. In
Content Computing, volume 3309 of Lecture Notes in
Computer Science, pages 314–322. Springer, Berlin,
Germany, 2004.

[23] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J.
Kalagnanam, and H. Chang. QoS-aware middleware for
Web services composition. IEEE Transactions on Software
Engineering, 30 (5): 311–327, 2004.

[24] J. Zhang, C.K. Chang, J.Y. Chung, and S.W. Kim. WS-Net:
a Petri-net based specification model for Web services. In
Proceedings of the IEEE International Conference on Web
Services (ICWS 2004), pages 420–427. IEEE Computer
Society Press, Los Alamitos, CA, 2004.

[25] H. Zhu. A framework for service-oriented testing of Web
services. In Proceedings of the 30th Annual International
Computer Software and Applications Conference
(COMPSAC 2006), volume 2, pages 145–150. IEEE
Computer Society Press, Los Alamitos, CA, 2006.

77

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:48 from IEEE Xplore. Restrictions apply.

