
Composition Context for Web Services Selection*

* This work is partially supported by EU inContext (Interaction and Context Based Technologies for Collaborative Teams) project:
IST-2006-034718. The authors would like to thank project partners for discussion.

Hong Qing Yu1, Stephan Reiff-Marganiec1, Marcel Tilly2

1 Department of Computer Science, University of Leicester, UK, {hqy1,smr13 }@le.ac.uk
2 European Microsoft Innovation Centre, Aachen, Germany, marcel.tilly@microsoft.com

Abstract

Often there are several services providing similar
functionality, moving the problem of selecting the most
suitable to the forefront of interest. In this paper we
consider the selection of services in a dynamic
environment with changing requirements. In previous
work we considered selecting services in isolation, here
we present an enhancement to select services in their
relation to each other to gain a global optimal solution
which nevertheless respects local criteria. Novel
contributions are the definition of a composition context
and the global multi-criteria optimization mechanism.

1. Introduction
Building software systems by run-time composition of

existing Web services is capturing increasing interest in e-
Business and e-Government. Meanwhile, many existing
Web services are overlapping in functionality and
designed for satisfying different Quality of Service (QoS)
requirements in different application scenarios. As a
result, the competition raises the issue of Web service
selection, which in addition to lookup considers finding
the best possible service. Our Web service selection
research scenario is based on a dynamic context based
platform [1] and the criteria for service selection can be
gained by reasoning on the context data. The platform
also dynamically stores the metadata of registered
services and allows updating the QoS at any time. Due to
the dynamic aspect, the selection criteria are difficult to
predict in advance. From the composition side, the
problem becomes more challenging than the single
services selection problem, because the composition
context needs to be considered to capture the larger
context of the service invocation. Moreover, the service
selection decision should be made by considering all
relevant criteria both for single service selection and
composed scenarios. In this sense, aggregating the
different related criteria to obtain scores for the competing
services in composed scenarios is challenging.

Many projects have studied the QoS driven Web
service composition problem. Currently, two kinds of
service selection strategies are developed. One focuses on
local optimal selection, the other on global optimal

selection. Local optimization refers to selection methods
which only take certain selection constraints related to the
current activity in the workflow without specifying and
considering the constraints implied by the workflow
context and the consequences that the choice will have on
later activities. Their biggest advantage is efficiency in
selection time, the big drawback is that selections are not
necessarily optimal in the global composition context.
Global optimization on the other hand takes the global
selection constraint to select a group of Web services. The
key assumption of this strategy is that all suitable Web
services for each node have already been discovered and
are inside the global optimization search space. Here the
selection problem is NP-complete, reducing scalability of
the methods. Global optimization approaches do not take
into account local criteria, which are often paramount to
the user.

We propose a new Web service selection framework
which combines the local and global composition
contexts to gather the benefits of both approaches. The
strategy is what we refer to as a step by step backward
knowledge based global optimization; it reduces the
complexity and can cope with run-time service faults.

2. Composition Context
We first consider some scenarios to illustrate the concept
of composition context. We then make precise what we
mean by composition context.

Scenario 1: Error context. For the first activity in a
composed service (Mail Service) the selected Mail
Service from provider P1 delivers an error but instead
P2’s Mail Service is working fine. As a result, P2’s mail
service is selected. This information is tracked in the error
context of the composition context and is useful for future
executions of the composed service.

Scenario 2: Coordination context. The selection
history will also influence the service composition for the
later activities in the workflow. When P2’s services were
selected and executed for activities A1 and A2, then a
service from P2 might be the best choice for activity A3.

Scenario 3: Policy context. Looking at various
services used within a service composition is useful to
make selections dependent on previous selections because
of various QoS or SLA constraints. Furthermore the

policy context could also collect ‘real’ SLA values from
the system policies, like response time and availability.

Having seen the scenarios, we come to the first
contribution of this paper: a precise description of the
composition context (the types are used by the evaluation
framework):

Composition
Context

Explanation Type

1. Execution ratings

1.1
Execution
error

The workflow execution
engine detected an
exception, When the server
is invoking.

Numerical

1.2
Coordination
error

Two services worked fine
independently, however an
error appeared during
their coordination.

Numerical

1.3 Response
time

The time for execution of
the service.

Numerical

2. Composition policy

2.1 Special
Cost

This captures special
deals between services.

Numerical

2.2
Allowance

This captures which
services can and which
cannot be used together,
or “Is composition
allowed?”

Boolean
1 yes
0 no

3. Composition distance

3.1 Co-
location

Are services deployed at
the same physical
location?

Boolean
1 yes
0 no

3.2 Provider
distance

Do services belong to the
same provider?

Boolean
1 yes
0 no

We do not claim that the elements defined here are
complete, but they have shown sufficient for the scenarios
that we studied. If further elements are added to the
composition context, then this should not affect the
feasibility achieved by applying our selection mechanism
– however it might lead to more optimal selections.

3. Web Service Composition Mechanism
We now introduce the novel composition mechanism,
which aims for a global optimal solution while respecting
local selection criteria. Furthermore, it has polynomial
execution time. The main idea is to apply a Backward
Knowledge-based Web Service Selection (BKbWSS)
approach. In contrast to existing global optimization
approaches, the BKbWSS does not need to predict all the
global constrains in advance. The BKbWSS approach
makes the selection decisions activity by activity based on
the currently existing local and global composition
context. The composition context is growing as we
proceed through the activities. One might argue that the
knowledge for selecting the first service is empty and
hence we will not select the best one without knowing the
forward selection context. While this is true, in practice, it
is impossible to predict the execution path as this is going
to be influenced by run time data. Hence, the service
selection must be based on the user’s runtime context
when she/he invoke the composition workflow template.

Furthermore, we should not make a decision relying on
predicted knowledge which is likely to be wrong. We
have to make the service choices based on certain
knowledge, which for the selection of the first service is
the user’s context, for later services the composition
context and the user’s context. The selection algorithm
starts with the selection of the first activity, with the steps
below being applied while more activities are encountered
in the workflow:

1. Look up the service for the current activity; get the

competitive candidate services from registry.
2. Invoke the evaluation framework to rank the candidate

services based on the composition context (containing
knowledge of previously invoked services, the current
candidate services and also user context).

3. Invoke the highest scoring service first. If there is no
service available, the execution has failed.

4. If an error occurs when the service is invoked, then
record this error information. Return to step 3 to select
the next best service. This step adds failure tolerance,
which in a distributed setting is essential.

5. If the invocation finishes successfully, log the
execution details to the context store. Move to next
activity and return to step 1.

The most important step with regard to service selection
is step 2. In step 2, the evaluation framework first
considers the user’s context, then the composition
context. Finally all contexts are aggregated to select the
best service using the mechanisms presented in [2, 3].

4. Conclusion and Future Work
Selecting the best suitable services to complete a complex
composite service is an important research topic. We
introduce a Web service selection method combining
global composition context with local service selection
strategies. The method is based on three parts: the
composition context, the selection mechanism (both novel
contributions) and the evaluation framework (presented in
earlier work [2, 3]).

In the future, we will analyze more composition
scenarios and consider completeness of the composition
context.

References
[1] inContext project: Unleash Team Power, http://www.in-
context.eu, 2007.
[2] S. Reiff-Marganiec, H. Q. Yu and M. Tilly, “Service
Selection based on Non-Functional Properties”. Non Functional
Properties and Service Level Agreements in Service Oriented
Computing (NFPSLA07), 2007.
[3] H.Q. Yu and S. Reiff-Marganiec. A Method for Automated
Web Service Selection. 2nd International Workshop on Web
Service Composition and Adaptation (WSCA08), 2008.

