
A Tool for Choreography Analysis Using Collaboration Diagrams

Tevfik Bultan Chris Ferguson
University of California Santa Barbara

{bultan,fergy}@cs.ucsb.edu

Xiang Fu
Hofstra University

Xiang.Fu@hofstra.edu

Abstract

Analyzing interactions among peers that interact via
messages is a crucial problem due to increasingly dis-
tributed nature of current software systems, especially the
ones built using the service oriented computing paradigm.
In service oriented computing, interactions among peers
participating to a composite service involve message ex-
changes across organizational boundaries in a distributed
computing environment. In order to build such systems in a
reliable manner, it is necessary to develop techniques for
analysis and verification of interactions among services.
Collaboration diagrams provide a convenient visual model
for modeling service interactions. In this paper, we present
a tool that 1) checks the realizability of interactions speci-
fied by the given collaboration diagram, 2) verifies the LTL
properties of the interactions specified by the given collab-
oration diagram by automatically converting it to a state
machine model, and 3) synthesizes peer state machines that
realize the set of interactions specified by the given collab-
oration diagram.

1 Introduction

Service oriented computing provides technologies that
enable multiple organizations to integrate their businesses
over the Internet. Typical execution behavior in such a dis-
tributed system involves a set of autonomous peers inter-
acting with each other through messages. Choreography
specification languages, such as the Web Services Choreog-
raphy Description Language (WS-CDL), are used for spec-
ification of such interactions. A choreography specification
identifies the global ordering of the messages exchanged
among the peers participating to a composite service. We
call such message sequences conversations, i.e., a choreog-
raphy specification identifies the set of allowable conversa-
tions for a composite web service.

Collaboration diagrams (called communication dia-
grams in [20]) provide a convenient visual formalism for
specifying the choreography among the services (peers)
participating to a composite service [6]. Characterization of

Realizability
Analyzer

Dependency
Graph

Constructor

Automata
Constructor

Conversation
Protocol

Translator

Collaboration
Diagrams

Realizability
Analysis

with WSAT

Promela
Translator

LTL Model
Checking
with SPIN

Peer
Synthesizer

Figure 1. A tool for choreography analysis

interactions using a global view, as collaboration diagrams
allow us to do, can lead to specification of choreographies
that may not be implementable. Hence, using collaboration
diagrams for choreographyspecification leads to the follow-
ing realizability problem: Given a choreography specifica-
tion, is it possible to find a set of distributed peers which in-
teract exactly according to the choreography specification.
If a collaboration diagram is realizable, then we can check
the properties of the interactions among the peers by inves-
tigating the possible message orderings allowed by the col-
laboration diagram.

In this paper we present a toolset for verification and
analysis of choreographies specified using collaboration di-
agrams. As shown in Figure 1, our tool consists of six
components: The first component constructs a dependency
graph for the events in the input collaboration diagram. The
second component checks the realizability of the input col-
laboration diagram by checking a set of conditions on this
dependency graph. The third component converts the col-
laboration diagram to a finite state automaton such that the
language accepted by the automaton is equal to the set of in-
teractions specified by the input collaboration diagram. The
fourth components converts the collaboration diagram au-
tomaton to the input language of the Web Service Analysis
Tool (WSAT) [11] (a tool developed for checking realiz-
ability web service choreography specifications) to check
a different set of realizability conditions. The fifth com-
ponent converts the collaboration diagram automaton to a
Promela specification in order to check LTL properties us-
ing the Spin model checker [13]. Finally, the sixth compo-

1

nent synthesizes a set of state machines that generate ex-
actly the set of interactions specified by the collaboration
diagram automaton. We collected a set of collaboration
diagrams from the literature and analyzed them using this
toolset. Our experiments indicate that realizability analysis,
LTL model checking and synthesis for collaboration dia-
grams is very efficient and can easily be used in practice.

Our contributions in this paper can be summarized as
follows: 1) Extending the semantics for a single collabo-
ration diagram given in [6] to collaboration diagram sets
and graphs, with increasing expressive power. 2) An algo-
rithm for converting collaboration diagrams/sets/graphsto
an automaton that accepts the same set of conversations. 3)
A translator for converting the collaboration diagram au-
tomaton to a Promela model, enabling LTL model checking
using the Spin model checker [13]. 4) Implementing the re-
alizability check for single collaboration diagrams from [6].
5) A translator for converting the collaboration diagram au-
tomaton to a Conversation Protocol, enabling realizability
check for collaboration diagram sets/graphs using the re-
alizability analysis for conversation protocols implemented
in Web Service Analysis Tool [11]. 6) A peer synthe-
sis algorithm for generating state machine implementations
for peers for realizable collaboration diagrams/sets/graphs
by projecting the collaboration diagram automaton to each
peer participating to the collaboration. 7) Experiments with
several collaboration diagrams from the literature.

Related Work Message Sequence Charts (MSCs) pro-
vide another visual model for specification of interactions
in distributed systems. MSC model has also been used in
modeling and verification of web services [8]. However,
collaboration diagrams provide a global view of interactions
where as MSCs provide a local view. The realizability prob-
lem for MSCs [2] have been studied before. However as we
mentioned above, the type of interactions specified by col-
laboration diagrams and MSCs are different.

There has been work on formalizing choreography spec-
ifications using process algebras [7, 16]. Our work is com-
plementary to work on formalizing semantics of choreog-
raphy specification languages. Our focus in this paper is
formal visual representations that can be used by service
developers to visualize their designs.

There has been earlier work on using various UML dia-
grams in modeling different aspects of service compositions
(for example [3, 18]). Specification and analysis of web
service interactions using conversation protocols has been
investigated [10, 12]. In this paper, we investigate the rela-
tionship between the collaboration diagrams and the conver-
sation protocols using the collaboration diagram semantics
from [6]. A complementary approach to the one presented
here is discussed in [17], where realizability of collabora-
tion diagrams is analyzed using process algebra encodings.
However, compared to these earlier works, in this paper we

extend the collaboration diagram semantics to collaboration
diagrams sets and collaboration diagram graphs which have
more expressive power.

2 Formal Model

We assume that a choreography specification consists of
a finite set of peersP , and a finite set of messagesM . Each
messagem ∈ M has a unique sender and a unique receiver
denoted bysend(m) ∈ P andrecv(m) ∈ P , respectively.
Note that, messages can always be converted to this form
by concatenating each message with tags its sender and its
receiver.

A conversationσ is a sequence of messages exchanged
among the peers that participate to a composite web service,
i.e., σ ∈ M∗. A choreographyC is a set of conversations,
i.e.,C ⊆ M∗.

scheduler:
FactoryScheduler

manager:
FactoryJobManager

oven:Oven robot:Robot

1: start

1/B1:startRobot B2:completedRobot1/A1:startOven A2:completedOven

A2,B2/2:completed

1:start

1/A1:startOven

A2:completedOven

1/B1:startRobot

B2:completedRobot

A2,B2/2:completed

Figure 2. A collaboration diagram (top) and its depen-
dency relation (bottom)

Figure 2 shows an example collaboration diagram from
the UML 1.3 specification.The diagram consists of four
peers Scheduler, Manager, Oven, Robot. The edges that
connect the boxes shows the links between the peers. A link
between two peers indicate that they can send each other
messages. In collaboration diagrams, message send events
are shown as arrows drawn over the links. The direction of
the arrow indicates the sender and the receiver (the arrow
points to the receiver). Each send event is marked with a
sequence label. The sequence labels specify the ordering of
the message send events.

Formally, a collaboration diagram C =
(P, L, M, E, D) consists of a set of peersP , a set of
links L ∈ P × P , a set of messagesM , a set of message

2

send eventsE and a dependency relationD ⊆ E × E

among the message send events [6]. For each message
m ∈ M , the sender and the receiver ofm must be linked,
i.e.,(send(m), recv(m)) ∈ L.

In a collaboration diagram, each message send event has
a unique sequence label. Each sequence label consists of a
possibly empty prefix followed by a sequence number. The
numeric ordering of the sequence numbers defines an im-
plicit total ordering among the message send events with
the same prefix. Each prefix represents amessage thread
where each message thread refers to a set of messages that
have a total ordering and that can be interleaved arbitrarily
with other messages. For example, event A2 can occur only
after the event A1, but B1 and A2 do not have any implicit
ordering. In addition to the implicit ordering defined by the
sequence numbers, it is possible to explicitly state the events
that should precede an evente by listing their sequence la-
bels (followed by the symbol “/”) before the sequence label
of the evente. For example if an evente is marked with
“B2,C3/A2” then A2 is the sequence label of the evente,
and the events with sequence labels B2, C3 and A1 must
precedee. Also, message send events can be marked to be
conditional, denoted as a suffix “[condition]”, or iterative,
denoted as a suffix “*[condition]”, whereconditionis writ-
ten in some pseudocode.

Formally, the set of send eventsE is a set of tuples of the
form (l, m, r) wherel is the label of the event,m ∈ M is
a message, andr ∈ {1, ?, ∗} is the recurrence type. We de-
note the size of the setE with |E| and for each evente ∈ E,
e.l, e.m, ande.r denote the unique sequence label, the mes-
sage and the recurrence type for evente, respectively. Each
evente ∈ E denotes a message send event where the peer
send(e.m) sends a messagee.m to the peerrecv(e.m). The
recurrence typer ∈ {1, ?, ∗} determines if the send event
corresponds to a single message send event (r = 1), a con-
ditional message send event (r =?), or an iterative message
send event (r = ∗).

The dependency relationD ⊆ E × E denotes the or-
dering among the message send events where(e1, e2) ∈ D

means thate1 has to occur beforee2. The bottom of the
Figure 2 shows the dependency graph for the the collabora-
tion diagram shown at the top. We assume that there are no
circular dependencies, i.e., the dependency graph(E, D),
where the send events inE form the vertices and the depen-
dencies inD form the edges, should be a directed acyclic
graph (dag). Given a dependency relationD ⊆ E × E

let pred(e) denote the predecessors of the evente where
e′ ∈ pred(e) if there exists a set of eventse1, e2, . . . , ek

wherek > 1, e′ = e1, e = ek, and for alli ∈ [1..k − 1],
(ei, ei+1) ∈ D. We assume that there are no redundant de-
pendencies inD (i.e., it is the transitive reduction). We call
e′ an immediate predecessor ofe if (e′, e) ∈ D. We call
an eventeI with pred(eI) = ∅ an initial eventof D and an

eventeF where for alle ∈ E eF 6∈ pred(e) a final eventof
D.

Given a collaboration diagramD = (P, L, M, E, D)
we denote thechoreographydefined byD asC(D) where
C(D) ⊆ M∗. A conversationσ = m1m2 . . . mn is inC(D),
i.e.,σ ∈ C(D), if and only ifσ ∈ M∗ and there exists a cor-
responding matching sequence of message send eventsγ =
e1e2 . . . en such that: 1) for alli ∈ [1..n] mi = ei.m and
ei ∈ E; 2) for all i, j ∈ [1..n] (ei, ej) ∈ D ⇒ i < j; 3) for
all e ∈ E (for all i ∈ [1..n] ei 6= e) ⇒ (e.r = ∗ ∨ e.r =?);
and 4) for alle ∈ E if there existsi, j ∈ [1..n] such that
i 6= j ∧ ei = ej thenei.r = ∗. The first condition above
ensures that each message in the conversationσ is equal
to the message of the matching send event in the event se-
quenceγ. The second condition ensures that the ordering
of the events in the event sequenceγ does not violate the
dependencies inD. The third condition ensures that if an
event does not appear in the event sequenceγ then it must
be either a conditional event or an iterative event. Finally,
the fourth condition states that only iterative events can be
repeated in the event sequenceγ.

Collaboration Diagram Sets Without the conditional or
iterative events, a single collaboration diagram with a sin-
gle message thread specifies a single conversation. The
conditional and iterative events and message threads in-
troduce nondeterminism to collaboration diagrams, en-
abling specification of multiple conversations with a sin-
gle collaboration diagram. However, the level of nonde-
terminism in a single collaboration diagram is still quite
limited. For example, assume that we have three mes-
sagesm1,m2 andm3 sent from one peer to another peer
and we would like to specify the following choreography
{m1m2m3, m3m1m2}. It is not possible to specify this
simple choreography using a single collaboration diagram.
However, it is possible to specify each conversation in this
choreography using a separate collaboration diagram. So,
the choreography we want to describe is the union of the
choreographies of two different collaboration diagrams.

We define a collaboration diagram setas S =
{D1,D2, . . . ,Dn} where n is the number of collabora-
tion diagrams inS and eachDi is in the form Di =
(P, L, M, Ei, Di), i.e., the collaboration diagrams in a col-
laboration diagram set only differ in their event sets and de-
pendencies. (we can always convert a set of collaboration
diagrams to this form without changing their interaction sets
by replacing the individual peer, link and message sets by
their unions.) We define the set of interactions defined by a
collaboration diagram set asC(S) =

⋃
D∈S C(D).

Collaboration Diagram Graphs Although collaboration
diagrams sets increase the expressiveness of collaboration
diagrams, they still have an important limitation. It is not
possible to specify looping behaviors using collaboration

3

diagram sets. The only looping construct in collaboration
diagrams/sets is the iterative event that specifies the repeti-
tion of a single event. Assume that we have two messages
m1 andm2 exchanged among two peers and we would like
to specify the following choreography(m1m2)

∗, i.e., zero
or more repetitions of the message sequencem1m2. This
could be a typical request/acknowledgement sequence for
example, which can be repeated arbitrary many times. It is
not possible to specify this choreography using collabora-
tion diagram sets, however by allowing the concatenation
of choreographies specified by different collaboration dia-
grams, we can specify such choreographies.

A collaboration diagram graphG = (vs, Z, V, O) is a
directed graph which consists of a set of verticesV , a set of
directed edgesO ⊆ V × V , an initial vertexvs ∈ V , a set
of final verticesZ ⊆ V , where each vertex inv ∈ V is a
collaboration diagramv = (P, L, M, Ev, Dv). As with the
collaboration diagram sets, to simplify our presentation,we
assume that the collaboration diagrams in a collaboration
diagram graph only differ in their event sets and dependency
relations.

Given a collaboration diagram graphG = (vs, Z, V, O)
we define the set of interactions defined byG asC(G). The
interactions of a collaboration diagram graph is defined as
the concatenation of the interactions of its vertices on a path
that starts from the initial vertex and ends at a final vertex.
Formally, an interactionσ ∈ M∗, is in the interaction set of
G, i.e.,σ ∈ G, if and only if σ = σ1σ2 . . . σn where for all
i ∈ [1..n] σi ∈ M∗ and there exists a pathv1, v2, . . . , vn

in G such thatv1 = vs, vn ∈ Z, for all i ∈ [1..n − 1]
(vi, vi+1) ∈ O and for alli ∈ [1..n] σi ∈ C(vi).

As the two simple examples we discussed above demon-
strate, collaboration diagram sets are strictly more powerful
than single collaboration diagrams, and collaboration dia-
gram graphs are strictly more powerful than collaboration
diagram sets.

3 Automata Construction

Figure 3 shows an automaton automatically constructed
from the collaboration diagram shown in Figure 2. The lan-
guage accepted by this automaton is exactly the choreogra-
phy specified by the collaboration diagram in Figure 2.

Given a collaboration diagramD = (P, L, M, E, D),
the corresponding collaboration diagram automatonAD =
(M, T, s, F, δ) is a nondeterministic FSA whereM is a set
of messages such that for eachm ∈ M recv(m) ∈ P

and send(m) ∈ P , T is the finite set of states,s ∈ T

is the initial state,F ⊆ T is the set of final states, and
δ ⊆ T × (M ∪ {ǫ}) × T is the transition relation. A col-
laboration diagram automaton has two types of transitions:
(1) (t1, m, t2) denotes a message transmission where mes-
sagem is sent from peersend(m) to peerrecv(m), and (2)
(t1, ǫ, t2) denotes anǫ-transition.

A1:startOven B1:startRobot

{1,2,A1,A2,B1,B2}

{2,A1,A2,B1,B2}

1:start

{2,A2,B1,B2} {2,A1,A2,B2}

{2,B1,B2} {2,A1,A2}

A2:completedOven

{2,A2,B2}

B1:startRobot

{2,B2}

{2}

B2:completedRobot

{2,A2}

2 : completed

∅∅∅∅

A1:startOven

A1:startOven

B1:startRobot

B2:completedRobot A2:completedOven

A2:completedOven B2:completedRobot

Figure 3. Automata construction

We define the choreographyC(A) defined by the col-
laboration diagram automatonA is the language accepted
by A, i.e., C(A) ⊆ M∗ and σ ∈ C(A) if and only if
σ = m1, m2, . . . , mn where for alli ∈ [1..n] mi ∈ M

and there exists a patht1, t2, . . . , tn, tn+1 in A such that
t1 = s, tn+1 ∈ F , and for alli ∈ [1..n] (ti, mi, ti+1) ∈ δ.

Collaboration Diagram Automaton Construction
Given a collaboration diagramD = (P, L, M, E, D), we
want to automatically construct a collaboration diagram
automatonAD = (M, T, s, F, δ) such thatC(D) = C(AD).
We define the set of states ofAD asT = 2E, i.e., the set
of states ofAD is the power sets of the event set of the
collaboration diagramD. The initial state is defined as
s = E. The set of final states are defined asF = {∅}. We
define the transition relationδ as follows: For each state
S ⊆ E, if there exists an evente ∈ S such that for all
(e′, e) ∈ D e′ 6∈ S, then

• e = (l, m, 1) ⇒ (S, m, S \ {e}) ∈ δ,

• e = (l, m, ?) ⇒ {(S, m, S \{e}), (S, ǫ, S \{e})} ⊆ δ,

• e = (l, m, ∗) ⇒ {(S, m, S), (S, ǫ, S \ {e})} ⊆ δ.

Each state in the automaton represents a set of events that
need to be executed. Given a stateE, if there is an event
e ∈ E which does not have any of its predecessors inE,
then we add a transition fromE to E − {e} to represent
the execution of the send evente. If e is an iterative event,
then we add a self loop toE to represent arbitrary number of
sends. For iterative and conditional events, we also generate
ǫ-transitions.

Figure 3 shows the collaboration diagram automaton
automatically constructed from the collaboration diagram
shown in Figure 2 based on the above construction. The
initial state corresponds to the whole event setE =
{1, 2, A1, A2, B1, B2} meaning that initially all the events

4

have to be executed, and the final state corresponds to
the empty set meaning that there are no more events to
be executed. In the initial state, only event1 is enabled
since event1 has no predecessors in the dependency graph
shown in Figure 2 (i.e., it is an initial event). Hence,
there is one one transition from the initial state to the state
{2, A1, A2, B1, B2} labeled with the messagestart, corre-
sponding to the execution of event 1. Note that, in state
{2, A1, A2, B1, B2} eventsA1 and B1 are both enabled
since their only predecessor in the dependency graph is
event1 and event1 is not in {2, A1, A2, B1, B2}, mean-
ing that it has already been executed. Hence, there are two
transitions from the{2, A1, A2, B1, B2}, one for eventA1
and one for eventB1.

Based on the above construction, the number of states
generated for a collaboration diagramC with the event set
E could be2|E| in the worst case. This worst case is real-
ized only if C has|E| threads, i.e., the number of states is
exponential in the number of threads.

Automaton Construction for Collaboration Diagram
Sets The above construction algorithm can be extended
to collaboration diagram sets as follows. Given a collabo-
ration diagram setS = {D1,D2, . . . ,Dn} wheren is the
number of collaboration diagrams inS and eachDi is in
the formDi = (P, L, M, Ei, Di) we want to construct an
automatonAS = (M, T, s, F, δ) such thatC(AS) = C(S).
For eachDi ∈ S construct the corresponding collabora-
tion diagram automatonADi

= (M, Ti, si, Fi, δi) where
C(Di) = C(ADi

) using the construction defined above. Let
AS = (M, T, s, F, δ). We define the set of states ofAS as
T = {s}∪

⋃
Di∈S Ti, i.e., the set of states ofAS consists of

a start states and the power sets of the event sets of the col-
laboration diagrams that are inS. Each state in the automa-
ton after the start state represent a set of events that need to
be executed. If there exists anEi such thatEi = ∅, then
F = {s, ∅}, otherwiseF = {∅}. We define the transition
relationδ as follows:δ = (

⋃
Di∈S(s, ǫ, Ei))∪(

⋃
Di∈S δi)).

The automatonAS first nondeterministically chooses one
of the collaboration diagrams in the collaboration diagram
set and then transitions to the initial state of the correspond-
ing collaboration diagram automaton.

Recall that, the number of states in a collaboration di-
agram automatonADi

generated from a collaboration di-
agramDi is exponential in the number of threads inDi.
If we determinize the automatonAS , then the number of
states will also be exponential in|S|, i.e., the number of
collaboration diagrams in the collaboration diagram set.

Automaton Construction for Collaboration Diagram
Graphs Next, we show that given a collaboration diagram
graphG = (vs, Z, V, O) where eachv ∈ V is a collabora-
tion diagramv = (P , L, M , Ev, Dv), we can construct an
automaton whereAG = (M , T , s, F , δ), such thatC(G) =

C(AG).
First, for each vertexv ∈ V of G, construct an automa-

tonAv = (M , Tv, sv, Fv, δv) using the construction given
above for translating collaboration diagram sets to automata
(each vertexv corresponds to a singleton collaboration di-
agram set) such thatC(v) = C(Av). Then forAG = (M ,
T , s, F , δ) we haveT =

⋃
v∈V Tv, i.e., the set of states of

AG is the union of the states of the automata constructed for
each vertex ofG. We define the initial state ofAG as the ini-
tial state of the automaton constructed for the initial vertex
vs, i.e.,s = svs

. The final states ofAG are the union of the
final states of the automata constructed for verticesv ∈ Z,
i.e,F =

⋃
v∈Z Fv.

The transitions ofAG include all the transitions of the
automata constructed for all the vertices, i.e.,δ ⊇

⋃
v∈V δv.

Additionally we add someǫ-transitions toδ as follows. For
each edge(v, v′) ∈ O, whereAv = (M , Tv, sv, Fv, δv) and
Av′ = (M , Tv′ , sv′ , Fv′ , δv′) are the automata constructed
for v andv′, respectively,δ includes anǫ-transition from
each final state ofAv to the initial state ofAv′ , i.e., δ ⊇⋃

(v,v′)∈O,s∈Fv
(s, ǫ, sv′).

4 Synthesizing Peer Implementations

We model the behaviors of peers that participate to
a composite web service as concurrently executing finite
state machines that interact via messages [10, 12]. We as-
sume that the machines interact with asynchronous mes-
sages where each finite state machine has a single FIFO in-
put queue, and the messages are delivered reliably i.e., no
message loss or reordering during transmission.

Formally, given a set of peersP = {p1, . . . , pn}
that participate in a collaboration, the peer state machine
for the peerpi ∈ P is a nondeterministic FSAAi =
(Mi, Ti, si, Fi, δi) whereMi is the set of messages that are
either received or sent bypi, Ti is the finite set of states,
si ∈ T is the initial state,Fi ⊆ T is the set of final states,
andδi ⊆ Ti × ({!, ?} × Mi ∪ {ǫ})× Ti is the transition re-
lation. A transitionτ ∈ δi can be one of the following three
types: (1) a send-transition of the form(t1, !m, t2) which
sends out a messagem ∈ Mi from peerpi = send(m) to
peerrecv(m) that appends the message to the end of the in-
put queue of the receiverrecv(m), (2) a receive-transition
of the form(t1, ?m, t2) which receives a messagem ∈ Mi

from peersend(m) to peerpi = recv(m) that removes the
message at the head of the input queue of the peerpi, and
(3) anǫ-transition of the form(t1, ǫ, t2).

A run of a set of peers is a sequence of transitions exe-
cuted by the peers. A complete run is one such that at the
end of the run each peer is in a final state and each FIFO
queue is empty. The corresponding sequence of messages
induced from thesend transitionsof a complete run is called
a conversation (see [12] for the detailed formal definition).
ThechoreographyC(A1, . . . ,An) of a set of peer state ma-

5

chinesA1, . . . ,An is the set of conversations generated by
all the complete runs ofA1, . . . ,An.

We call a set of peer state machinesA1, . . . ,An well-
behavedif each partial run is a prefix of a complete run.
If a set of peer state machines are well-behaved then the
peers never get stuck (i.e., each peer can always consume
all the incoming messages in its input queue and reach a
final state). LetC be a choreography. We say that the peer
state machinesA1, . . . ,An realizeC if C(A1, . . . ,An) = C
andA1, . . . ,An are well-behaved.

:FactorJobManager

:Oven

?startOven

!completedOven

!startOven !startRobot

?start

?completedOven

!startOven!startRobot

?completedOven

!startRobot

?completedRobot

?completedRobot

?completedRobot

!startOven

?completedOven

!completed

:Robot

?startRobot

!completedRobot

:Scheduler

!start

?completed

Figure 4. Peer synthesis

Given a choreography specification in the form of a col-
laboration diagram, it would be helpful to synthesize peer
implementations that realize the interactions defined by the
choreography specification. Since we already showed that
collaboration diagrams can be converted to automata, we
can use the collaboration diagram automaton to synthesize
the peer state machines. In fact, one can obtain the peer
state machines by projecting the transitions of the collabora-
tion diagram automata to the peers. Consider a transition in
collaboration diagram automaton for a message send event
from peerpi to peerpj. This transition should be projected
to the peer state machine of peerpi as a send transition and
it should be projected to the peer state machine of peerpj

as a receive transition. Given a peerpk that is different than
peerspi andpj , the same transition should be projected to
the peer state machine of peerpk as anǫ transition. We
formalize this projection operation below.

Given a collaboration diagram automatonA =
(M, T, s, F, δ) we denote the projection ofA to peer
pi ∈ P asπi(A) which is defined as follows:πi(A) =
(Mi, T, s, F, δi) whereMi ⊆ M contains all the messages
m such thatsend(m) = pi or recv(m) = pi. The set of
states, the initial state and the final states ofA andπi(A)
are the same. We defineδi as follows:

• For eachm ∈ M such thatm 6∈ Mi, for each transition
(t1, m, t2) ∈ δ, or (t1, m, t2) ∈ δ we add the transition

(t1, ǫ , t2) to δi.

• For eachm ∈ Mi such thatsend(m) = pi, for each
transition(t1 , m , t2) ∈ δ, we add the transition(t1,
!m, t2) to δi.

• For eachm ∈ Mi such thatrecv(m) = pi, for each
transition(t1 , m, t2) ∈ δ, we add the transition(t1,
?m, t2) to δi.

• For each transition(t1, ǫ, t2) ∈ δ we add the transition
(t1, ǫ, t2) to δi.

Using the standard automata algorithms, we can removeǫ-
transitions in a projection using determinization and then
minimize it. We call the resulting automaton the deter-
minized peer projection topi.

Figure 4 shows the determinized peer projection of the
collaboration diagram automaton shown in Figure 3 to the
peers Manager, Scheduler, Oven and Robot. The set of con-
versations generated by the peer state machines shown in
Figure 4 is exactly the choreography specified by the col-
laboration diagram automaton in Figure 3 and the collabo-
ration diagram in Figure 2. In the next section we show that
this is is not the case for some collaboration diagrams.

5 Realizability

orderWindow:
OrderEntryWindow

order:Order

macallanLine:
OrderLine

deliveryItem:
DeliveryItem

macallanStock:
StockItem

reorderItem:
ReOrderItem

1:prepareOrder

2:prepareOrderLine

3:check

4:remove?

5:needToReorder

6:newReOrder7:newDelivery?

Figure 5. An unrealizable example

Figure 5 shows a collaboration diagram taken from a
book on UML [9]. This collaboration diagram is not re-
alizable since it is not possible to guarantee thatnewDeliv-
ery message will be sent after thenewReordermessage as
required by this collaboration diagram. Based on the order-
ing of the send events in this collaboration diagram there is
no way for OrderLine process to know that StockItem pro-
cess has already sent thenewReordermessage. Hence, in
any implementation of this collaboration diagram,newDe-
liverymessage may be sent before thenewReordermessage.
The realizability analysis techniques we implement in our

6

toolset will identify that this collaboration diagram is not
realizable. It is possible to fix this collaboration diagram
by adding an extra message from StockItem to Orderline
and changing the event labels so that this new message is
sent after thenewReordermessage and before thenewDe-
livery message. After this modification, our tool identifies
the modified collaboration diagram to be realizable.

We formalize the realizability problem as follows. Let
D be a collaboration diagram. We say that a set of peer
state machinesA1, . . . ,An realizeD if the set of conver-
sations generated by the peer state machinesA1, . . . ,An

is the same as the choreography defined byD, i.e.,
C(A1, . . . ,An) = C(D), A collaboration diagramD is re-
alizableif there exists a set of well-behaved peer state ma-
chines which realizeD.

In [6] a sufficient condition for realizability of collabo-
ration diagrams was given. This realizability condition can
be checked on the dependency relation of the collaboration
diagram. We implemented this realizability condition in our
toolset. However, the realizability condition in [6] can only
be used in determining realizability of a single collabora-
tion diagram and results on realizability of collaboration
diagrams are not directly applicable to collaboration dia-
grams. A collaboration diagram set that consists of realiz-
able collaboration diagrams may not be realizable, and, it is
also possible to have a realizable collaboration diagram set
which consists of unrealizable collaboration diagrams [5].

Hence, determining realizability of a single collabora-
tion diagram is not sufficient for checking realizability of
a collaboration diagram set. However, our results in this
paper show that the realizability of collaboration diagram
sets can be reduced to realizability ofconversation proto-
cols[10]. A conversation protocol is a finite state automaton
that specifies a choreography. In fact, the collaboration di-
agram automata we discussed in Section 3 are conversation
protocols. For example, the collaboration diagram automa-
ton shown in Figure 3 is a conversation protocol. Hence, the
collaboration diagram to finite state automata translationwe
presented in Section 3 is equivalent to a translation from a
collaboration diagram to a conversation protocol. Further-
more, as we discussed in Section 3, the translation can be
extended to collaboration diagram sets and graphs.

In [10, 12] sufficient conditions for realizability of con-
versation protocols were presented. Given a collaboration
diagram setS, letAS be the conversation protocol with the
same choreography set. IfAS satisfies the realizability con-
ditions presented in [10,12], then we conclude thatS is real-
izable. Moreover, if the realizability condition holds,S will
be realized by the determinized projections of its collabora-
tion diagram automatonAS [10, 12] which means that the
peers synthesized based on the algorithm given in Section 4
will realizeS. These results also apply to collaboration di-
agram graphs.

6 Implementation and Experiments

We implemented the techniques described above in our
collaboration diagram analysis and verification tool. We
chose the Sparx Systems Enterprise Architect UML Edi-
tor [19] as the front end to our tool because of its compre-
hensive support for UML diagrams and ability to add cus-
tom modules. The Add-In we built translates Collaboration
Diagrams defined by the user into our implementation of
a Collaboration Diagram consisting of Peers, Links, Mes-
sages, and Events, based on the formal model defined in
Section 2. From there, we are able to construct the depen-
dency graph based on the event orderings defined in each
event label as defined in Section 2. Using the dependency
graph, we create the collaboration diagram automaton based
on the construction given in Section 3. Using the collabora-
tion diagram automaton we generate the peer state machines
using the peer synthesis algorithm described in Section 4.

We implement two types of realizability checks. The first
one is an implementation of the realizability condition de-
scribed in [6]. This realizability check is implemented by
checking a set of condition on the dependency graph. How-
ever, this realizability check cannot be used for checking
realizability of collaboration diagram sets and graphs. So
we also implemented a translator that converts collabora-
tion diagrams/set/graphs to conversation protocols and uses
the Web Service Analysis Tool (WSAT) [11] to check the
realizability condition from [10,12].

Finally, we convert the collaboration diagram automaton
to Promela and use the model checker Spin [13] to check
LTL properties of the choreography defined by a given col-
laboration diagram, collaboration diagram set or a collabo-
ration diagram graph. In addition, the Add-In creates visual
representations of the dependency graphs, collaboration di-
agram automaton, and the peer state machines.

Using our collaboration diagram analysis and verifica-
tion tool we experimented with several examples we found
in the literature on collaboration diagrams. For each exam-
ple, we checked the realizability first. If the example was
not realizable we manually added new events to make them
realizable. We then used our tool to generate a Promela
specification and wrote temporal logic properties for each
example collaboration diagram. These specifications were
then verified using the Spin model checker.

In Table 1, we summarize each example and our experi-
mental results. All of the examples in Table 1 are single col-
laboration diagrams, so we able to use the realizability con-
dition from [6] for all of them. In Table 1, R1 corresponds
to the realizability condition from [6]. and R2 corresponds
to the realizability condition from [10, 12]. Note that both
of these conditions are sufficient conditions, so the fact that
they are not satisfied does not mean that the collaboration
diagram is not realizable. However if they are satisfied, we
are sure that the collaboration diagram is realizable. Two

7

Problem Instance Source R1 R2 States

Factory Manager [20] YES NO 383
Order Item [9] NO NO 42 (after fix)
Purchase Order [4] YES NO 246
Company Store [1] YES YES 22
Information Exchange [14] YES YES 50
Voting Booth [15] NO NO 59 (after fix)
Causality Model [20] YES NO 116

Table 1. Realizability analysis and verification results

of the collaboration diagrams we analyzed (Order Item and
Voting Booth) violated both of the realizability conditions
and after manual inspection we concluded that they were
not realizable. Order Item example is shown in Figure 5.

The realizability condition from [6] identified remaining
five collaboration diagrams as realizable. Three of these
five violated the realizability condition from [10, 12]. All
the three examples that violate the the realizability condi-
tion from [10, 12] have multiple message threads and vio-
late this realizability condition due to nondeterminism be-
tween message send and receive events. Our results show
that it is beneficial to use the realizability condition from[6]
whenever it is applicable rather than using the more general
realizability condition from [10,12].

Finally, the verification of LTL properties of these exam-
ples with the Spin model checker took less than 15 millisec-
onds each and used 2.5 MBytes of memory. In Table 1 we
show the number of states visited during verification. Note
that, as expected, the three examples with larger state spaces
are the ones with multiple message threads. Spin is able to
handle much larger state spaces than any of these examples,
so it is safe to say that verification of collaboration diagrams
with a model checker is feasible.

The unrealizable examples we discussed above are un-
realizable under the concurrent execution semantics we de-
fined in Section 4. We believe that in some of these cases
the intention of the developers were to specify a sequential
execution rather than a concurrent execution and under the
concurrent execution semantics these specifications become
unrealizable. Even for such specifications the realizability
analysis we implement in our tool is useful since it can help
in identifying specifications for which concurrent execution
can create problems.

7 Conclusions

In this paper we discussed choreography specification
with collaboration diagrams. We defined three classes of
collaboration diagrams with increasing expressive power:
single collaboration diagrams, collaboration diagram sets
and collaboration diagram graphs. We presented techniques
for realizability, synthesis and verification and we imple-
mented these techniques in a toolset. Our experimental re-
sults indicate that realizability analysis, synthesis andveri-
fication of choreographers specified using collaboration di-
agrams can be done efficiently.

References

[1] A. Abdurazik and A. J. Offutt. Using uml collaboration diagrams for
static checking and test generation. InProc. 3rd Int. Conf. on the
Unified Modeling Language (UML’00), pages 383–395, 2000.

[2] R. Alur, K. Etessami, and M. Yannakakis. Inference of message
sequence charts. InProc. 22nd Int. Conf. on Software Engineering,
pages 304–313, 2000.

[3] B. Benatallah, Q. Z. Sheng, and M. Dumas. The self-serv envi-
ronment for web services composition.IEEE Internet Computing,
7(1):40–48, Jan 2003.

[4] Business process execution language for web services (BPEL),
version 1.1. http://www.ibm.com/developerworks/
library/ws-bpel.

[5] T. Bultan and X. Fu. Realizability of interactions in collaboration di-
agrams. Technical Report 2006-11, Computer Science Department,
University of California, Santa Barbara, September 2006.

[6] T. Bultan and X. Fu. Specification of realizable service conversations
using collaboration diagrams. InProc. IEEE Int. Conf. on Service-
Oriented Computing and Applications (SOCA’07), pages 122–132,
2007.

[7] M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, and
S. Ross-Talbot. A theoretical basis of communication-centred con-
current programming. WCD-Working Note, 2006.

[8] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verifi-
cation of web service compositions. InProc. 18th IEEE Int. Conf. on
Automated Software Engineering, pages 152–163, 2003.

[9] M. Fowler. UML Distilled. Addison Wesley, 2004.

[10] X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for
specification and analysis of reactive electronic services. Theoretical
Computer Science, 328(1-2):19–37, November 2004.

[11] X. Fu, T. Bultan, and J. Su. WSAT: A tool for formal analysis of web
services. InProc. 16th Int. Conf. on Computer Aided Verification
(CAV’04), pages 510–514, 2004.

[12] X. Fu, T. Bultan, and J. Su. Synchronizability of conversations
among web services.IEEE Transactions on Software Engineering,
31(12):1042–1055, December 2005.

[13] G. J. Holzmann.The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley, Boston, Massachusetts, 2003.

[14] J. Pu, Z. Zhang, Y. Xu, and H. Yang. Reusing legacy cobol code with
uml collaboration diagrams via a wide spectrum language. InPro-
ceedings of the 2005 IEEE International Conference on Information
Reuse and Integration (IRI’05), pages 78–83, 2005.

[15] H. C. Purchase, L. Colpoys, M. McGill, and D. A. Carrington. Uml
collaboration diagram syntax: An empirical study of comprehension.
In Proc. 1st Int. Workshop on Visualizing Software for Understanding
and Analysis (VISSOFT’02), pages 13–22, 2002.

[16] Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the theoretical foun-
dation of choreography. InProceedings of WWW 2007, 2007.

[17] G. Salaün and T. Bultan. Realizability of choreographies using pro-
cess algebra encodings. InProc. 7th Int. Conf. on Integrated Formal
Methods (IFM’09), pages 167–182, 2009.

[18] D. Skogan, R. Gronmo, and I. Solheim. Web Service Composition
in UML. In Proc. of 8th Int. IEEE Enterprise Distributed Object
Computing Conference, 2004.

[19] Sparx systems enterprise architect UML editor.https://www.
sparxsystems.com.au/.

[20] OMG unified modeling language superstructure, version2.1.2.
http://ww.uml.org/, October 2007.

8

