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Abstract L

Translator hecking

Analyzing interactions among peers that interact via 7 s

messages is a crucial problem due to increasingly dis- Cotaboraton Dependency o o
tributed nature of current software systems, especialy th Diagrams 0| oorabh ™| Constructor [ 7| Synthesizer

ones bgilt usi_ng the service.oriented computing paradigm. T )

In service oriented computing, interactions among peers — Comversation | _ Realizabity
participating to a composite service involve message ex- Analyzer prolocol > Anabsis

changes across organizational boundaries in a distributed
computing environment. In order to build such systems in a
reliable manner, it is necessary to develop techniques for Figure 1. Atool for choreography analysis
analysis and verification of interactions among services.
Collaboration diagrams provide a convenient visual model
for modeling service interactions. In this paper, we présen
a tool that 1) checks the realizability of interactions spec
fied by the given collaboration diagram, 2) verifies the LTL
properties of the interactions specified by the given cellab
oration diagram by automatically converting it to a state
machine model, and 3) synthesizes peer state machines th
realize the set of interactions specified by the given cellab
oration diagram.

interactions using a global view, as collaboration diaggam
allow us to do, can lead to specification of choreographies
that may not be implementable. Hence, using collaboration
diagrams for choreography specification leads to the fellow
ing realizability problem: Given a choreography specifica-
tion, is it possible to find a set of distributed peers which in
teract exactly according to the choreography specification
% a collaboration diagram is realizable, then we can check
the properties of the interactions among the peers by inves-
tigating the possible message orderings allowed by the col-
laboration diagram.
1 Introduction In this paper we present a toolset for verification and
analysis of choreographies specified using collaboration d
Service oriented computing provides technologies that agrams. As shown in Figure 1, our tool consists of six
enable multiple organizations to integrate their busieess components: The first component constructs a dependency
over the Internet. Typical execution behavior in such a dis- graph for the events in the input collaboration diagram. The
tributed system involves a set of autonomous peers inter-second component checks the realizability of the input col-
acting with each other through messages. Choreographyaboration diagram by checking a set of conditions on this
specification languages, such as the Web Services Choreogdependency graph. The third component converts the col-
raphy Description Language (WS-CDL), are used for spec- laboration diagram to a finite state automaton such that the
ification of such interactions. A choreography specificatio language accepted by the automaton is equal to the set of in-
identifies the global ordering of the messages exchangederactions specified by the input collaboration diagrame Th
among the peers participating to a composite service. Wefourth components converts the collaboration diagram au-
call such message sequences conversations, i.e., a choreotpmaton to the input language of the Web Service Analysis
raphy specification identifies the set of allowable conversa Tool (WSAT) [11] (a tool developed for checking realiz-
tions for a composite web service. ability web service choreography specifications) to check
Collaboration diagrams (called communication dia- a different set of realizability conditions. The fifth com-
grams in [20]) provide a convenient visual formalism for ponent converts the collaboration diagram automaton to a
specifying the choreography among the services (peers)Promela specification in order to check LTL properties us-
participating to a composite service [6]. Characterizatb ing the Spin model checker [13]. Finally, the sixth compo-



nent synthesizes a set of state machines that generate exextend the collaboration diagram semantics to collabomnati
actly the set of interactions specified by the collaboration diagrams sets and collaboration diagram graphs which have
diagram automaton. We collected a set of collaboration more expressive power.

diagrams from the literature and analyzed them using this

toolset. Our experiments indicate that realizability s, 2 Formal Model

LTL model checking and synthesis for collaboration dia-

grams is very eff_icienF and_ can easily be used in pra_ctice. a finite set of peer®, and a finite set of messagks. Each

Our contributions in this paper can be summarized as messagen € M has a unique sender and a unique receiver
follows: 1) Extending the semantics for a single collabo- 4.qteq bysend(m) € P andrecu(m) € P, respectively
ration diagram given in [6] to collaboration diagram sets Note that, messages can always be converted to this form

and graphs, with increasing expressive power. 2) An algo- by concatenating each message with tags its sender and its
rithm for converting collaboration diagrams/sets/grahs . i.eiver.

an automaton that accepts the same set of conversations. 3) A onversatiors is a sequence of messages exchanged
A translator for converting the coll_aboratlon diagram au- among the peers that participate to a composite web service,
tomaton to a_PromeIa model, enabling LTL mode! checking i.e.,c € M*. A choreography is a set of conversations,
using the Spin model checker [13]. 4) Implementing the re- ie.C C M*.
alizability check for single collaboration diagrams fro6j.[ -

5) A translator for converting the collaboration diagram au

tomaton to a Conversation Protocol, enabling realizabilit

check for collaboration diagram sets/graphs using the re-

We assume that a choreography specification consists of

scheduler:
EactoryScheduler

alizability analysis for conversation protocols implertesh L Slaﬂl Tszsaz:completed
in Web Service Analysis Tool [11]. 6) A peer synthe-
sis algorithm for generating state machine implementation manager:

EactoryJobManager

for peers for realizable collaboration diagrams/setg/gsa
by projecting the collaboration diagram automaton to each 1/A1:stanOvenl TAz;wmp.ethoVen 1/BlrstartRobotl TBZ:compIetedRobot
peer participating to the collaboration. 7) Experimentshwi
several collaboration diagrams from the literature. oven:Oven Lobot:Robot

Related Work Message Sequence Charts (MSCs) pro-

vide another visual model for specification of interactions Lsat

in distributed systems. MSC model has also been used in UALstartoven 1/BLstanRobot
modeling and verification of web services [8]. However,

collaboration diagrams provide a global view of interactio A2:completedOven B2:completedRobot
where as MSCs provide a local view. The realizability prob-

lem for MSCs [2] have been studied before. However as we A2,B2/2:completed

mentioned above, the type of interactions specified by col-
laboration diagrams and MSCs are different. .
There has been work on formalizing choreography spec-  Figure 2. A collaboration diagram (top) and its depen-
ifications using process algebras [7, 16]. Our work is com-  dency relation (bottom)
plementary to work on formalizing semantics of choreog-
raphy specification languages. Our focus in this paper is  Figure 2 shows an example collaboration diagram from
formal visual representations that can be used by servicethe UML 1.3 specification.The diagram consists of four
developers to visualize their designs. peers Scheduler, Manager, Oven, Robot. The edges that
There has been earlier work on using various UML dia- connectthe boxes shows the links between the peers. A link
grams in modeling different aspects of service composition between two peers indicate that they can send each other
(for example [3, 18]). Specification and analysis of web messages. In collaboration diagrams, message send events
service interactions using conversation protocols has bee are shown as arrows drawn over the links. The direction of
investigated [10, 12]. In this paper, we investigate tharel the arrow indicates the sender and the receiver (the arrow
tionship between the collaboration diagrams and the cenver points to the receiver). Each send event is marked with a
sation protocols using the collaboration diagram semantic sequence label. The sequence labels specify the ordering of
from [6]. A complementary approach to the one presentedthe message send events.
here is discussed in [17], where realizability of collabora Formally, a collaboration diagram C =
tion diagrams is analyzed using process algebra encodings(P, L, M, E, D) consists of a set of peerB, a set of
However, compared to these earlier works, in this paper welinks L € P x P, a set of message¥, a set of message



send eventr and a dependency relatioh C E x E eventer Where for alle € E ep ¢ pred(e) afinal eveniof
among the message send events [6]. For each messagP.

m € M, the sender and the receivermaf must be linked, Given a collaboration diagrar® = (P,L, M, E, D)
i.e., (send(m), recv(m)) € L. we denote thehoreographydefined byD asC(D) where

In a collaboration diagram, each message send event ha§(D) € M*. Aconversatiow = mims ... m, isinC(D),
a unique sequence label. Each sequence label consists of €., € C(D), ifand only ifo € M* and there exists a cor-
possibly empty prefix followed by a sequence number. The responding matching sequence of message send eyents
numeric ordering of the sequence numbers defines an im-1¢z - . . e, such that: 1) for ali € [1..n] m; = e;.m and
plicit total ordering among the message send events withei € E; 2) foralli,j € [1..n] (e;,e;) € D =i < j; 3) for
the same prefix. Each prefix representmessage thread alle € E (foralli € [L.n] e; # ) = (e.r = x Ver =7);
where each message thread refers to a set of messages th@d 4) for alle € E if there existsi, j € [1..n] such that
have a total ordering and that can be interleaved arbigraril ¢ # j A e; = e; thene,.r = x. The first condition above
with other messages. For example, event A2 can occur onlyensures that each message in the conversatienequal
after the event A1, but B1 and A2 do not have any implicit to the message of the matching send event in the event se-
ordering. In addition to the implicit ordering defined by the duencey. The second condition ensures that the ordering
sequence numbers, it is possible to explicitly state thatsve  Of the events in the event sequenceloes not violate the
that should precede an eveﬂby ||St|ng their sequence la- dependenCies i. The third condition ensures that if an
bels (followed by the symbol “/") before the sequence label event does not appear in the event sequentten it must
of the evente. For example if an event is marked with be either a conditional event or an iterative event. Finally
“B2,C3/A2" then A2 is the sequence label of the event  the fourth condition states that only iterative events can b
and the events with sequence labels B2, C3 and Al mustepeated in the event sequence

precede:. Also, message send events can be marked to beC llab ion Di Sets With h ditional
conditional, denoted as a suffixcnditior]”, or iterative, ollaboration Diagram Sets Without the conditional or

denoted as a suffix “tfonditior]”, where conditionis writ- iterative events, a single cp!laborat_ion diagram Wit.h asin
ten in some pseudocode. gle message thread specifies a single conversation. The
. conditional and iterative events and message threads in-
Formally, the set Of send evenfisis a set of tuples of_the troduce nondeterminism to collaboration diagrams, en-
form (I, m,r) wherel is the label of the evenip € M is

nde (1.7 #Vis th We d abling specification of multiple conversations with a sin-
a mesr]sagg, af E { élf’f}h'sbf € rzt;urrencr? type. % e gle collaboration diagram. However, the level of nonde-
note the size of the sé with | .| and foreach evente £, terminism in a single collaboration diagram is still quite
e.l, e.m, ande.r denote the unique sequence label, the mes-|inited. For example, assume that we have three mes-

sage and the recurrence type for evenespectively. Each sagesni,ms andms sent from one peer to another peer
evente € E denotes a message send event where the P€€Lnd we would like to specify the following choreography
send(e.m) sends a messagen to the_ peel_recv(e.m). The {mymams, magmims). It is not possible to specify this
recurrence type € {1,7,+} determines if the send event  g,10 choreography using a single collaboration diagram.
cprresponds to a single message send.eveﬁt 0. a con- However, it is possible to specify each conversation in this
ditional message send event<?), or an iterative message choreography using a separate collaboration diagram. So,
send event(= ). the choreography we want to describe is the union of the
The dependency relatio® C E x E denotes the or-  choreographies of two different collaboration diagrams.

dering among the message send events whgres) € D We define acollaboration diagram setas S =
means that; has to occur before,. The bottom of the {D1,Ds,...,D,} wheren is the number of collabora-

Figure 2 shows the dependency graph for the the collaboratjon diagrams inS and eachD; is in the formD; =

tion diagram shown at the top. We assume that there are NQPp, L, M, E;, D;), i.e., the collaboration diagrams in a col-
circular dependencies, i.e., the dependency grdphD), laboration diagram set only differ in their event sets and de
where the send events iaform the vertices and the depen- pendencies. (we can always convert a set of collaboration
dencies inD form the edges, should be a directed acyclic diagrams to this form without changing their interactiotsse

graph (dag). Given a dependency relatibnC E x E by replacing the individual peer, link and message sets by
let pred(e) denote the predecessors of the eventhere  their unions.) We define the set of interactions defined by a
e e pred(e) if there exists a set of eVen@, €2,...,€Ek collaboration diagram set ﬁs) — UDGS C(D)

wherek > 1, ¢ = e, e = e, and for alli € [1..k — 1],

(ei,ei+1) € D. We assume that there are no redundant de- Collaboration Diagram Graphs Although collaboration
pendenciesirD (i.e., it is the transitive reduction). We call diagrams sets increase the expressiveness of collabworatio
e’ an immediate predecessor off (¢/,e) € D. We call diagrams, they still have an important limitation. It is not
an evenk; with pred(e;) = 0 aninitial eventof D and an possible to specify looping behaviors using collaboration



diagram sets. The only looping construct in collaboration
diagrams/sets is the iterative event that specifies thdirepe el
tion of a single event. Assume that we have two message:

my andmsy exchanged among two peers and we would like Astarovey

to specify the following choreographynims)*, i.e., zero
or more repetitions of the message sequenger,. This AZ:completedOver
A2:completedOven,

Bl:startRobot

{2.A1,A2,82}

Al:startOven

B2:completedRobot

B2:completed Robot

Bl:startRobot
could be a typical request/acknowledgement sequence fo
example, which can be repeated arbitrary many times. It is
not possible to specify this choreography using collabora-
tion diagram sets, however by allowing the concatenation
of choreographies specified by different collaboration dia
grams, we can specify such choreographies.

A collaboration diagram graptg = (vs, Z,V,0) is a
directed graph which consists of a set of vertites set of
directed edge® C V x V, an initial vertexv, € V, a set
of final verticesZ C V, where each vertexin € Vis a
collaboration diagrame = (P, L, M, E,,, D,,). As with the

collaboration diagram sets, _to simplify our.presentatine, _ We define the choreograpl§(.A) defined by the col-
assume that the coII.aboratlon. diagrams in a COII""bor"’monIaboration diagram automato# is the language accepted
(rjé?agtirgrr;r;graph only differ in their event sets and dependencyby A ie.,C(A) € M*ando € C(A) if and only if
Given a collaboration diagram gragh= (vs, Z,V, O)
we define the set of interactions defined®wasC(G). The
interactions of a collaboration diagram graph is defined as
the concatenation of the interactions of its vertices onta pa Collaboration Diagram Automaton Construction
that starts from the initial vertex and ends at a final vertex. Given a collaboration diagrar® = (P, L, M, E, D), we
Formally, an interactioar € M*, is in the interaction set of want to automatically construct a collaboration diagram
Gg,ie.,oc € G,ifandonlyifo = 0105 ...0, where for all automatondp = (M, T, s, F, §) suchthaC(D) = C(Ap).

{2B1B2)

Bl:startRobot Al:startOven

B2:completed Robot

Figure 3. Automata construction

= mi,ma,...,m, where for alli € [1.n]| m; € M
and there exists a path, ts, ..., t,, trr1 in A such that
t1 = s, tp1 € F,andforalli € [1..n] (t;, m4, tit1) € 9.

i € [1.n] o; € M* and there exists a path, v2, ..., v, We define the set of states df, as7T = 27, i.e., the set
in G such that; = v, v, € Z, foralli € [1.n — 1] of states ofAp is the power sets of the event set of the
(vi,vi+1) € O andforalli € [1..n] o; € C(v;). collaboration diagran®. The initial state is defined as

As the two simple examples we discussed above demon-s = E. The set of final states are definedias= {0}. We
strate, collaboration diagram sets are strictly more péuver  define the transition relatioti as follows: For each state
than single collaboration diagrams, and collaboration dia S C E, if there exists an event € S such that for all
gram graphs are strictly more powerful than collaboration (¢’,e) € D €’ ¢ S, then

diagram sets. e c=(l,m,1) = (S,m,S\ {e}) €3,

3 Automata Construction o = (Lm,?) = {(S,m, S\ {e}), (S,e, S\ {e})} € 4,

Figure 3 shows an automaton automatically constructed
. X o e c=(I,m,x) = {(9,m,S),(S,e,S\ {e})} C9.
from the collaboration diagram shown in Figure 2. The lan- ( )= A ) \ehbe
guage accepted by this automaton is exactly the choreograEach state in the automaton represents a set of events that

phy specified by the collaboration diagram in Figure 2. need to be executed. Given a st#eif there is an event
Given a collaboration diagrar® = (P,L, M, E, D), e € FE which does not have any of its predecessor&in
the corresponding collaboration diagram automatign = then we add a transition fror to £ — {e} to represent
(M, T, s, F,¢) is a nondeterministic FSA wher¥ is a set the execution of the send eventlf ¢ is an iterative event,
of messages such that for each € M recv(m) € P then we add a self loop tb to represent arbitrary number of

and send(m) € P, T is the finite set of states; € T sends. For iterative and conditional events, we also gémera
is the initial state,F" C T is the set of final states, and e-transitions.

d C T x (MU{e}) x T is the transition relation. A col- Figure 3 shows the collaboration diagram automaton
laboration diagram automaton has two types of transitions: automatically constructed from the collaboration diagram
(1) (t1,m, t2) denotes a message transmission where mes-shown in Figure 2 based on the above construction. The
sagem is sent from peegend(m) to peerrecv(m), and (2) initial state corresponds to the whole event det =
(t1,€,t2) denotes am-transition. {1,2, A1, A2, B1, B2} meaning that initially all the events



have to be executed, and the final state corresponds t&(Ag).
the empty set meaning that there are no more events to First, for each vertex € V of G, construct an automa-

be executed. In the initial state, only events enabled

ton A, = (M, Ty, s, Fy, 6,) using the construction given

since event has no predecessors in the dependency graphabove for translating collaboration diagram sets to autama

shown in Figure 2 (i.e., it is an initial event). Hence,
there is one one transition from the initial state to theestat
{2, A1, A2, B1, B2} labeled with the messagtart, corre-

(each vertexy corresponds to a singleton collaboration di-
agram set) such th&(v) = C(A,). Then forAg = (M,
T,s, F,d)we havel' = J . Ty, i.., the set of states of

sponding to the execution of event 1. Note that, in state Ag is the union of the states of the automata constructed for

{2, A1, A2, B1, B2} eventsAl and B1 are both enabled

each vertex off. We define the initial state odg as the ini-

since their only predecessor in the dependency graph istial state of the automaton constructed for the initial @ert

eventl and eventl is not in {2, A1, A2, B1, B2}, mean-

vs, 1.€.,5 = s,,. The final states aflg are the union of the

ing that it has already been executed. Hence, there are twdinal states of the automata constructed for vertices 7,

transitions from the 2, A1, A2, B1, B2}, one for eventd1
and one for evenB1.

i.e, F = U,cz Fo-
The transitions of4g include all the transitions of the

Based on the above construction, the number of statesautomata constructed for all the vertices, i%eQ User 0o-

generated for a collaboration diagrathwith the event set
F could be2!Zl in the worst case. This worst case is real-
ized only if C' has|E| threads, i.e., the number of states is
exponential in the number of threads.

Automaton Construction for Collaboration Diagram

Sets The above construction algorithm can be extended

to collaboration diagram sets as follows. Given a collabo-
ration diagram se§ = {Dy,Ds, ..., D, } wheren is the
number of collaboration diagrams i and eachD; is in

the formD; = (P, L, M, E;, D;) we want to construct an
automatonds = (M, T, s, F, §) such thaC(As) = C(S).

For eachD,; € S construct the corresponding collabora-
tion diagram automatolp, = (M, T;,s;, F;,d;) where
C(D;) = C(Ap,) using the construction defined above. Let
As = (M, T,s, F,§). We define the set of states dfs as

T = {s}UUp,cs Ti, iI-€., the set of states ofs consists of

a start state and the power sets of the event sets of the col-

laboration diagrams that are & Each state in the automa-

Additionally we add some-transitions ta) as follows. For

each edgév,v’) € O, whereA, = (M, T, s,, F,, §,) and
Ay = (M, Ty, sy, Fy, 6, ) are the automata constructed
for v and’, respectively includes anc-transition from
each final state of4, to the initial state of4,., i.e.,§ O

U(Uﬂ)')EO,sEFU(SanSv’)-
4 Synthesizing Peer | mplementations

We model the behaviors of peers that participate to
a composite web service as concurrently executing finite
state machines that interact via messages [10, 12]. We as-
sume that the machines interact with asynchronous mes-
sages where each finite state machine has a single FIFO in-
put queue, and the messages are delivered reliably i.e., no
message loss or reordering during transmission.

Formally, given a set of peer® {p1,--- 0}
that participate in a collaboration, the peer state machine
for the peerp;, € P is a nondeterministic FSA4A; =

ton after the start state represent a set of events that need t(Mi Ti, s, Fi, 6;) whereM; is the set of messages that are

be executed. If there exists dr} such thatZ; = (), then

F = {s,0}, otherwiseF" = {(}. We define the transition
relationd as follows:d = (Up, c5(s, €, Ei))U(Up,cs 0i))-
The automatonds first nondeterministically chooses one
of the collaboration diagrams in the collaboration diagram
set and then transitions to the initial state of the corragpo
ing collaboration diagram automaton.

Recall that, the number of states in a collaboration di-
agram automatotdp, generated from a collaboration di-
agramD; is exponential in the number of threadsin.

If we determinize the automatads, then the number of
states will also be exponential i, i.e., the number of
collaboration diagrams in the collaboration diagram set.

Automaton Construction for Collaboration Diagram
Graphs Next, we show that given a collaboration diagram
graphG = (vs, Z,V, O) where eachy € V is a collabora-
tion diagramw = (P, L, M, E,, D,), we can construct an
automaton wherelg = (M, T, s, F, 0), such that(G) =

either received or sent by;, T; is the finite set of states,
s; € T is the initial state/F; C T is the set of final states,
andd; C T; x ({1, 7} x M; U {e}) x T; is the transition re-
lation. A transitionr € ¢; can be one of the following three
types: (1) a send-transition of the forfty, !m, ¢2) which
sends out a message € M, from peerp; = send(m) to
peerrecv(m) that appends the message to the end of the in-
put queue of the receiveecv(m), (2) a receive-transition
of the form(¢1, ?m, t2) which receives a message € M;
from peersend(m) to peerp; = recv(m) that removes the
message at the head of the input queue of the pgend
(3) ane-transition of the form(ty, ¢, t2).

A run of a set of peers is a sequence of transitions exe-
cuted by the peers. A complete run is one such that at the
end of the run each peer is in a final state and each FIFO
gueue is empty. The corresponding sequence of messages
induced from thesend transitionsf a complete run is called
a conversation (see [12] for the detailed formal definition)
Thechoreography’ (A, ..., .A,,) of a set of peer state ma-



chinesAy, ..., A, is the set of conversations generated by
all the complete runs ofly, ..., A,.

We call a set of peer state machinds, ..., A, well-
behavedf each partial run is a prefix of a complete run.
If a set of peer state machines are well-behaved then the
peers never get stuck (i.e., each peer can always consume
all the incoming messages in its input queue and reach a
final state). LeC be a choreography. We say that the peer
state machined,, ..., A, realizeCif C(A,...,A,) =C
andA,,..., A, are well-behaved. .

@rJobMana er .

(tl, €, tg) to 6;.

e For eachm € M; such thatsend(m) = p;, for each
transition(t, , m , t2) € 0, we add the transitiof¢,,
Im, tz) to 51

e For eachm € M; such thatrecv(m) = p;, for each
transition (¢, , m, t2) € §, we add the transitiof¢,,
m, tg) to d;.

For each transitiofty, €, t2) € § we add the transition
(tl, €, tg) to 6;.

Using the standard automata algorithms, we can remove
transitions in a projection using determinization and then
minimize it. We call the resulting automaton the deter-
minized peer projection tp;.

Figure 4 shows the determinized peer projection of the
collaboration diagram automaton shown in Figure 3 to the
peers Manager, Scheduler, Oven and Robot. The set of con-
versations generated by the peer state machines shown in

:Scheduler

~ 2completed

Istart

/:OVEFI

R IcompletedOven
.

?startOven

CRobot

?completedRobot

?completedOven

lcompleted

N

/

-

?startRobot

!completedRobot

J

M Figure 4 is exactly the choreography specified by the col-

laboration diagram automaton in Figure 3 and the collabo-
ration diagram in Figure 2. In the next section we show that
this is is not the case for some collaboration diagrams.

, 5 Realizability
Figure 4. Peer synthesis

Given a choreography specification in the form of a col-

laboration diagram, it would be helpful to synthesize peer

implementations that realize the interactions defined by th
choreography specification. Since we already showed that
collaboration diagrams can be converted to automata, we
can use the collaboration diagram automaton to synthesize

orderWindow:
OrderEntryWindow

1:prepareOrder l

order:Order

the peer state machines. In fact, one can obtain the peer zprepareora

erLlnel

state machines by projecting the transitions of the coliabo 3icheck ’—J lsmeeﬂmewdﬂ
tion diagram automata to the peers. Consider a transition in macallanLine: masallanStock;
Orderline Stockitem

collaboration diagram automaton for a message send event
from peerp; to peerp;. This transition should be projected
to the peer state machine of pegras a send transition and

7:newDel

ivery?l

deliveryltem:
Deliveryltem

4:remove?

ls: newReOrder

reorderitem:
ReOrderltem

it should be projected to the peer state machine of peer
as a receive transition. Given a pegrthat is different than
peersp; andp;, the same transition should be projected to
the peer state machine of pegr as ane transition. We
formalize this projection operation below.

Given a collaboration diagram automatad =
(M,T,s,F,6) we denote the projection oA to peer
p; € P asm;(A) which is defined as followsr;(A) =
(M;, T, s, F,o;) whereM; C M contains all the messages
m such thatsend(m) = p; or recv(m) = p;. The set of
states, the initial state and the final statesdoand r;(A)
are the same. We defingas follows:

e Foreachn € M suchthatn ¢ M;, for each transition
(t1,m,t2) € 6, 0r (t1,m, t2) € § we add the transition

Figure 5. An unrealizable example

Figure 5 shows a collaboration diagram taken from a
book on UML [9]. This collaboration diagram is not re-
alizable since it is not possible to guarantee tiewDeliv-
ery message will be sent after timewReordemessage as
required by this collaboration diagram. Based on the order-
ing of the send events in this collaboration diagram there is
no way for OrderLine process to know that Stockltem pro-
cess has already sent thewReordemessage. Hence, in
any implementation of this collaboration diagranewDe-
livery message may be sent beforetlegyReordemessage.
The realizability analysis techniques we implement in our



toolset will identify that this collaboration diagram istno 6 I mplementation and Experiments

realizable. It is possible to fix this collaboration diagram We imol ted the techni d ibed ab .
by adding an extra message from Stockltem to Orderline € impiemented the techniques described above in our

and changing the event labels so that this new message igollaboration diagram analysis an(_j verifica_ltion tool. W(_a
sent after thewReordemessage and before thewDe- chose the Sparx Systems Enterprise Architect UML Edi-

livery message. After this modification, our tool identifies thor [1_9] as the f:(;nt En,\;jt%.o ur tool bec;au;elz_toftlts (;(:jmpre-
the modified collaboration diagram to be realizable. ensive support for lagrams and abiiity 1o add cus-
tom modules. The Add-In we built translates Collaboration

We formalize the realizability problem as follows. Let pjagrams defined by the user into our implementation of
D be a collaboration diagram. We say that a set of peery collaboration Diagram consisting of Peers, Links, Mes-
state machinesly, ..., A, realize D if the set of conver-  ga4eg and Events, based on the formal model defined in
sations generated by the peer state machigs .., A, Section 2. From there, we are able to construct the depen-
is the same as the choreography defined By i.e.,  gency graph based on the event orderings defined in each
C(Ay, ..., A,) = C(D), A collaboration diagranD is 1€~ gyent abel as defined in Section 2. Using the dependency
alizableif there exists a set of well-behaved peer state ma- 5144 e create the collaboration diagram automaton based
chines which realize®. on the construction given in Section 3. Using the collabora-

In [6] a sufficient condition for realizability of collabo-  tion diagram automaton we generate the peer state machines
ration diagrams was given. This realizability conditiomca using the peer synthesis algorithm described in Section 4.
be checked on the dependency relation of the collaboration We implement two types of realizability checks. The first
diagram. We implemented this realizability conditionirrou one is an implementation of the realizability condition de-
toolset. However, the realizability condition in [6] canlpn  scribed in [6]. This realizability check is implemented by
be used in determining realizability of a single collabora- checking a set of condition on the dependency graph. How-
tion diagram and results on realizability of collaboration ever, this realizability check cannot be used for checking
diagrams are not directly applicable to collaboration dia- realizability of collaboration diagram sets and graphs. So
grams. A collaboration diagram set that consists of realiz- we also implemented a translator that converts collabora-
able collaboration diagrams may not be realizable, and, iti tion diagrams/set/graphs to conversation protocols aad us
also possible to have a realizable collaboration diagram se the Web Service Analysis Tool (WSAT) [11] to check the
which consists of unrealizable collaboration diagrams [5]  realizability condition from [10, 12].

Hence, determining realizability of a single collabora- Finally, we convert the collaboration diagram automaton
tion diagram is not sufficient for checking realizability of to Promela and use the model checker Spin [13] to check
a collaboration diagram set. However, our results in this LTL properties of the choreography defined by a given col-
paper show that the realizability of collaboration diagram laboration diagram, collaboration diagram set or a collabo
sets can be reduced to realizability @inversation proto-  ration diagram graph. In addition, the Add-In creates Visua
cols[10]. A conversation protocol is a finite state automaton representations of the dependency graphs, collaboraition d
that specifies a choreography. In fact, the collaboratien di @gram automaton, and the peer state machines.
agram automata we discussed in Section 3 are conversation Using our collaboration diagram analysis and verifica-
protocols. For example, the collaboration diagram automa- tion tool we experimented with several examples we found
ton shown in Figure 3 is a conversation protocol. Hence, thein the literature on collaboration diagrams. For each exam-
collaboration diagram to finite state automatatranslatien ~ Ple, we checked the realizability first. If the example was
presented in Section 3 is equivalent to a translation from anot realizable we manually added new events to make them
collaboration diagram to a conversation protocol. Further realizable. We then used our tool to generate a Promela
more, as we discussed in Section 3, the translation can beépecification and wrote temporal logic properties for each

extended to collaboration diagram sets and graphs. example collaboration diagram. These specifications were
then verified using the Spin model checker.

In Table 1, we summarize each example and our experi-
mental results. All of the examples in Table 1 are single col-
laboration diagrams, so we able to use the realizability con
dition from [6] for all of them. In Table 1, R1 corresponds
to the realizability condition from [6]. and R2 corresponds
to the realizability condition from [10, 12]. Note that both
of these conditions are sufficient conditions, so the faat th
they are not satisfied does not mean that the collaboration
diagram is not realizable. However if they are satisfied, we
are sure that the collaboration diagram is realizable. Two

In [10, 12] sufficient conditions for realizability of con-
versation protocols were presented. Given a collaboration
diagram setS, let As be the conversation protocol with the
same choreography set. Afs satisfies the realizability con-
ditions presented in [10,12], then we conclude tha real-
izable. Moreover, if the realizability condition holdS will
be realized by the determinized projections of its collabor
tion diagram automatous [10, 12] which means that the
peers synthesized based on the algorithm given in Section
will realize S. These results also apply to collaboration di-
agram graphs.



[ Problem Instance [[ Source] R1 [ R2 ] States |

Factory Manager [20] YES NO 383

Order ltem 9 NO NO 42 (after fix)

Purchase Order 4 YES | NO 246 [1]
Company Store 1 YES | YES 22

Information Exchange 14 YES | YES 50

Voting Booth 15 NO NO 59 (after fix)

Causality Model 20 YES | NO 116 [2]

Table 1. Realizability analysis and verification results @l
of the collaboration diagrams we analyzed (Order Item and
Voting Booth) violated both of the realizability conditisn
and after manual inspection we concluded that they were [4]
not realizable. Order Item example is shown in Figure 5.

The realizability condition from [6] identified remaining
five collaboration diagrams as realizable. Three of these
five violated the realizability condition from [10,12]. All
the three examples that violate the the realizability condi
tion from [10, 12] have multiple message threads and vio-
late this realizability condition due to nondeterminism be
tween message send and receive events. Our results show
that it is beneficial to use the realizability condition fr¢@h
whenever it is applicable rather than using the more general
realizability condition from [10, 12].

Finally, the verification of LTL properties of these exam-
ples with the Spin model checker took less than 15 millisec-
onds each and used 2.5 MBytes of memory. In Table 1 we [9]
show the number of states visited during verification. Note [10]
that, as expected, the three examples with larger statespac
are the ones with multiple message threads. Spin is able to
handle much larger state spaces than any of these example&ll
so itis safe to say that verification of collaboration diagsa
with a model checker is feasible.

: . [12]

The unrealizable examples we discussed above are un-
realizable under the concurrent execution semantics we de-
fined in Section 4. We believe that in some of these caseg13)
the intention of the developers were to specify a sequential
execution rather than a concurrent execution and under thg14]
concurrent execution semantics these specifications beecom
unrealizable. Even for such specifications the realizigbili
analysis we implement in our tool is useful since it can help
in identifying specifications for which concurrent exeouti
can create problems.

(5]

(6]

(8]

[15]

7 Conclusions [16]

In this paper we discussed choreography specification
with collaboration diagrams. We defined three classes of
collaboration diagrams with increasing expressive power:
single collaboration diagrams, collaboration diagrans set [1g]
and collaboration diagram graphs. We presented techniques
for realizability, synthesis and verification and we imple-
mented these techniques in a toolset. Our experimental re{19]
sults indicate that realizability analysis, synthesis aed-
fication of choreographers specified using collaboratien di [20]
agrams can be done efficiently.

[17]
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