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2ENDIF, Università di Ferrara, Italy
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Abstract

In Semantic Web technologies, searching for a service
means to identify components that can potentially satisfy
the user needs in terms of outputs and effects (discovery),
and that, when invoked by the customer, can fruitfully in-
teract with her (contracting). In this paper, we present an
application framework that encompasses both the discovery
and the contracting steps, in a unified search process. In
particular, we accommodate service discovery by ontology-
based reasoning, and contracting by automated reasoning
about policies published in a formal language. To this pur-
pose, we consider a formal approach grounded on Compu-
tational Logic, and Abductive Logic Programming in par-
ticular. We propose a framework, called SCIFF Reason-
ing Engine, able to establish, by ontological and abductive
reasoning, if a semantic web service and a requester can
fruitfully inter-operate, taking as input the behavioural in-
terfaces of both the participants, and producing as output a
sort of a contract.

1. Introduction

Service Oriented Architecture (SOA) and Web Services
are emerging as standard architectures for distributed ap-
plication development. The adoption of well-known net-
work protocols and communication standards has solved
interoperability and heterogeneity issues. Eventually, the
use of off-the-shelf solutions/services is becoming possi-
ble, although concerns about the adoption of such compo-
nents have been raised. In particular, the search of software
components on the basis of the functionality they provide,
rather than on some syntactical property, is still an open re-
search matter. To this end, some authors identify Semantic
Web technologies as a promising way to address this issue

[9, 12]. The idea is to augment web service descriptions by
semantic information that can be used to search for Seman-
tic Web Services (SWS, for short, in the following).

In our view, searching for a service means to identify
such components that i) can potentially satisfy the user
needs in terms of outputs and effects, and ii) can be invoked
by the customer and interact with her without violating her
interaction policies. An example of interaction policy could
be a user constraint that prevents providing a credit card
number to a service which is not certified, or a service con-
straint that prevents to accept credit card payments for items
out of stock or with more than 30 % discount. Hence, a user
request contains not only a description (given in semantic
terms) of the user desires, but also the user policies, which
constitute a declarative “behavioural interface.”

We consider the search of a SWS as the process of identi-
fying, among a given set of services, those components that
both satisfy the ontological requirements (i.e., they provide
the requested functionality), and the constraints on interac-
tion (i.e., they support the requested behaviour). Following
[9], we propose a two-fold search process. A first phase,
called discovery, considers a requester’s desires, and, using
ontology-based reasoning, produces a selection of services
that can potentially satisfy a request of such a kind. A sec-
ond step, called contracting, matches the requester’s inter-
action policies with those of every selected service, and es-
tablishes whether an interaction can be effectively achieved,
and if the result matches the user goals.

The contracting phase requires reasoning about poli-
cies, that should be provided in a web-friendly language.
Rule-based languages, such as RuleML (http://www.
ruleml.org/) or the RIF (http://www.w3.org/
2005/rules), have been advocated to enhance the se-
mantic information associated to web content. Once the
rules are published in a formal language, one can adopt the
results obtained by the community of computational logics,
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that developed a plethora of languages, tools, and proof-
methods for formal reasoning.

In previous work [1], we focused on the contracting
step only, exploring the possibility of using a computational
logic language to specify both the interaction policies of the
requester and of the service. Then, by exploiting abductive
reasoning, we showed how our approach could be a feasible
solution for reasoning upon interactions. The solution pro-
posed, called SCIFF Reasoning Engine (SRE), is a frame-
work able to establish if a given SWS and a requester can
fruitfully inter-operate, taking as input the behavioural in-
terfaces of both the participants, and producing as output a
sort of a contract (a plan).
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Figure 1. Framework overview

Building on the contracting framework extensively de-
scribed in [1], in this paper we present the implemented ap-
plication framework that encompasses both the discovery
and the contracting steps, in a unified search process. In
particular, we accommodate service discovery by ontology-
based reasoning, specifically by matching the user inputs,
outputs and effects, with “similar” inputs, outputs and ef-
fects of potentially suitable services. Similarity here can be
intended as subsumption. Once a set of software compo-
nents has been shortlisted from all the available services,
in a second step the SRE evaluates which services can suc-
cessfully interact with the user. Ontology-based reasoning
can also be performed in this second stage, if necessary.

2 The description of a Semantic Web Service

Several, different solutions have been proposed in order
to describe a Semantic Web Service, and a vast literature is
available on the topic. However, up to now no solution has
been widely accepted, and a proper standard for defining
the semantics of a Web Service is still a matter of research.
This is indeed, in our opinion, one of the biggest obstacles
to the adoption of SWS standards.

The two major proposals, the Web Service Modeling On-
tology (WSMO [18]) and the Semantic Markup for Web
Services (OWL-S [11]) address both the ontological aspects
and the behavioral issues, when describing a SWS. How-
ever, WSMO proposes a rigid structure, and the behavioural
aspects are mainly defined on abstract state machines se-
mantics. OWL-S instead is more flexible, and can be ex-

tended by the user: behavioural aspects are supported by al-
lowing their definition using at least two languages (Knowl-
edge Interchange Format, KIF [4] and Semantic Web Rule
Language, SWRL [6]), plus the possibility of adding any
required language. WSMO offers a complete suite of tools
for editing, developing and testing SWS descriptions, while
OWL-S comes as a general ontology, not associated with
specific dedicated tools.

Our framework implements two strata of the semantic
web cake: the ontology and the logical reasoning. They are
internally represented with two different sets of information
and stored in two different files. Ontological aspects are
represented by means of an OWL-S 1.1 profile, while be-
havioural properties are defined using the SCIFF language
[2]. This allows us to keep the architecture open to other
SWS description solutions, without giving up the powerful
SCIFF formalism for representing the interaction issues.

3 An example scenario

User alice forgot to buy her brother a Christmas present
and now she is desperately searching the Internet for an on-
line shop that sells the last crime fiction novel featuring de-
tective Montalbano. She is particularly worried because she
needs to find a shop that can deliver the book to Italy within
3 days. She can pay by cash or by credit card. She is also
worried about frauds, so she will not provide her credit card
number to any electronic shop, but only to those belonging
to a Better Business Bureau (BBB).

eShop1 is the biggest Internet book seller, and through
its semantic web services it provides every type of books.
Its services are advertised with the generic term “book”.
Moreover, it has some policies about the delivery: fast de-
livery (one day) is allowed only if payment is performed
by means of credit card; otherwise, standard delivery (one
week) is the default option.

eShop2 is a small Internet seller, specialized in crime
fiction books only. Its service advertisements use again the
generic term “book,” and it accepts “credit card” payment
and “cash” payment. The shop delivers in two days but
delivers only to customers in the European Union. It will
prove its membership to the BBB on request.

eShop3 is a huge consumer electronics chain, which ad-
vertises its Internet service as “selling hardware.” It accepts
any payment method, supports delivery in 1 day, provides
its membership to BBB each time the selected payment
method is credit card.

We envisage a scenario in which alice queries a search
engine, which will perform a discovery step; in this phase
eShop1 and eShop2 are selected as possible services
(eShop3 is discarded as it does not sell items related to the
concept of “book”). However, this does not guarantee that
an interaction is possible. Due to alice’s policy, the credit
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card number is provided only to those that are members of
BBB, so only eShop2 remains viable. Feasibility of deliv-
ery, based on geographical criteria, is also to be checked.

In the next section, we briefly recall the SCIFF-based
contracting framework [1], and show how the policies of al-
ice and eShop2 (called simply eShop in the following) can
be represented in it. The policies of eShop1 and eShop3
can be represented in an analogous way.

4 The SCIFF framework

A web service’s policy is defined, in the SCIFF lan-
guage, as an abductive logic program (ALP). An ALP is de-
fined as the triplet 〈KBS ,A, IC〉. KBS is a logic program
in which the clauses can contain special atoms, that belong
to the set A and are called abducibles. Such atoms are not
defined in KBS , and, as such, they cannot be proven: their
truth value can be only hypothesized. In order to avoid un-
constrained hypotheses, a set of integrity constraints (IC)
must always be satisfied. Integrity constraints, in our lan-
guage, are in the form of implications, and can relate ab-
ducible literals, defined literals, as well as constraints with
Constraint Logic Programming [8] semantics.

We represent interaction as message sequences, by
means of special abducible predicates: events H/4 repre-
sent message exchanges that one observes or controls (such
as the sending of her own messages), and expectations E/4
represent messages that are expected to happen, such as an-
other entity’s messages. In both cases, the arguments are
the message’s sender, receiver, content and time.

An SWS’ policies can be represented with integrity con-
straints, which relate the web services’ messages with the
expected input from peer web services. The possible re-
lations can be of various types, including temporal rela-
tions (e.g., deadlines), linear constraints, disequalities and
inequalities, all defined by means of constraints. Such def-
initions are then used to make assumptions on the possible
evolutions of the interaction.

For example, alice’s policy states that if a shop asks to
pay cash, alice will proceed with the payment:

H(S, alice, ask(pay(Item, cash)), Ta)→
H(alice, S, pay(Item, cash), Tr) ∧ Ta < Tr.

As in all event and expectation atoms, the last parameter
represent the time at which the event happens or is expected.
In this case, the constraint Ta < Tr imposes that the pay
event follow the ask event.

If, instead, the payment is with credit card, then alice

will require evidence of the shop’s affiliation to the BBB.

H(S, alice, ask(pay(Item, cc)), Ta)→
H(alice, S, request guar(BBB), Trg) ∧ Trg > Ta∧
E(S, alice, give guar(BBB), Tg) ∧ Tg > Trg.

(1)

H(S, alice, ask(pay(Item, cc)), Ta)∧
H(S, alice, give guar(BBB), Tg)→
H(alice, S, pay(Item, cc), Tp) ∧ Tp > Ta ∧ Tp > Tg.

(2)

The policy of the eShop2 is also represented through in-
tegrity constraints. “If an acceptable customer requests an
item, then I expect the customer to pay for the item with an
acceptable payment method. If the customer is not accept-
able, I will inform him/her of the failure. If an acceptable
customer pays with an acceptable means of payment, I will
deliver the item within two days. If a customer requests
evidence of my affiliation to the BBB, I will provide it.”

H(C, eShop, request(Item), Tr)

→ accepted customer(C) ∧ accepted pay(How)

∧H(eShop, C, ask(pay(Item, How)), Ta) ∧ Ta > Tr

∧E(C, eShop, pay(Item, How), Tp) ∧ Tp > Ta

∨ rejected customer(C)

∧H(eShop, C, inform(fail), Ti) ∧ Ti > Tr.

(3)

H(C, eShop, pay(Item, How), Tp)
∧accepted customer(C) ∧ accepted pay(How)
→ H(eShop, C, deliver(Item), Td) ∧ Tp < Td < Tp + 2.

H(C, eShop, request guar(BBB), Trg)

→ H(eShop, C, give guar(BBB), Tg) ∧ Tg > Trg.
(4)

The notion of acceptability for customers and pay-
ment methods from eShop’s viewpoint, given with the ac-
cepted customer/1 and accepted pay/1 predicates, can be
defined in eShop’s knowledge base, as we proposed in a
previous work [1]. The fact that only EU residents are ac-
cepted customers, can be defined by the following clauses:

accepted customer(C) : −resident in(C, L),

accepted destination(L).

rejected customer(C) : −resident in(C, L),

not accepted destination(L).

accepted destination(european union).

accepted pay(cc). accepted pay(cash).

(5)

On her side, alice knows she is resident in the EU:

resident in(alice, european union). (6)

Operationally, the SCIFF reasoning engine (SRE) joins the
knowledge bases of the customer with that of the candidate
shops. It starts with alice’s goal, namely obtaining a book
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by interacting with a shop: alice will start an interaction by
requesting the book, and will expect the shop to deliver it:

H(alice, eShop, request(book), 0)∧
Ealice(eShop, alice, deliver(book), Td), 0 ≤ Td ≤ 3

SRE reasons about events and expectations, and tries to
match them in order to find a successful arrangement. For
this reason, it tags each expectation with its holder: in this
example, alice is the entity that holds the expectation of eS-
hop delivering the book.

Now, the happened request event triggers new integrity
constraints. In particular, it activates the IC (3) of the eS-
hop’s policy, that can be satisfied in two alternative ways:
either the transaction succeeds or fails. The SCIFF proof-
procedure generates a proof tree; typical implementations
adopt a depth-first search strategy. In the first branch,
SCIFF verifies that alice is an acceptable customer (that
can be proven by joining alice and eShop knowledge bases),
then abduces that eShop will ask for payment with one of
the accepted payments. Let us consider the case in which
payment with cc is assumed; in this case, eShop will ask for
the payment and expect alice to perform it:

H(eShop, alice, ask(pay(book, cc)), Ta)
EeShop(alice, eShop, pay(book, cc), Tp).

The new abduced event makes the body of rule (2) true:
SRE assumes that alice will follow her own policy, by re-
questing the guarantee and expecting a reply. The request
event will activate rule (4) that forces eShop to provide it.

In this way, a set of events and one of expectations are
generated by abduction. If the expectations are matched
by corresponding events, the current branch succeeds, oth-
erwise it fails, and another alternative will be selected (if
there exists one). In this way, the SCIFF proof-procedure
is able to find if there exists at least a set of events that sat-
isfies a given ALP, and provides in output both the abduced
events and expectations. A successful computation yields a
sequence of actions that satisfies all the parties’ policies.

Representing customer acceptability with KB
clauses, however, is prolematic. For example, it
would not work in case the customer declared
resident in(alice,italy), as the term italy

does not syntactically unify with european union.
One could, of course, add to the knowledge base
accepted destination/1 facts for all the EU members,
but such knowledge should be updated locally when new
countries join the EU. In other cases, acceptability could be
defined by a transitive, symmetric relation. For example,
a service could accept requests from a set of trusted peers,
and also from customers that are trusted by them, in a
transitive fashion. If the abductive proof procedure adopts a
depth-first search, symmetric and/or transitive relations can
lead to loops. A solution (which, as shown in the following,

also brings performance improvement) is to use ontological
reasoning, as described in the next section.

4.1. Representing domain knowledge with
ontologies

An alternative way to represent (part of) the domain spe-
cific knowledge is to use technology and concepts devel-
oped, with focus on this very purpose, in the Knowledge
Representation field, and to rely, in particular, on ontolo-
gies. Ontologies are one of the layers of the semantic web
cake, are more and more used on the web, and, in signifi-
cant cases, they support reasoning in polynomial time. The
W3C recommendation for ontology representation on the
Web is the Web Ontology Language (OWL) [3] based on the
well established semantics of Description Logics [10] and
on XML and RDF syntax. Using OWL for domain knowl-
edge representation improves expressivity (with such fea-
tures as stating subclassing relations, constructing classes
on property restrictions or by set operators, defining transi-
tive properties and so on) yet keeping decidability (if using
OWL Lite or OWL DL) in a straightforward and domain
modeling-oriented notation. Moreover, since OWL is tai-
lored for the Web, it provides support for expressing knowl-
edge in distributed contexts (identified by URIs) and its rec-
ognized standard status is a warranty on interoperability and
reusability issues. As a plus, it can be mentioned that com-
munity driven development of Semantic Web tools provides
already good support for OWL ontology management tasks
such as editing [14] also for not KR-skilled users.

Figure 2. A graphical representation of the
ontology

In Fig. 2 we show a possible ontological representa-
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tion of eShop’s policies concerning acceptable customers
and means of payments, merged with alice’s own knowl-
edge. For example, we can state that acceptedCustomer
is a subclass of the potentialCustomer class, and that
it is disjoint from the rejectedCustomer class with the
following OWL syntax:

<owl:Class rdf:about="#acceptedCustomer">
<rdfs:subClassOf

rdf:resource="#potentialCustomer" />
<owl:disjointWith

rdf:resource="#rejectedCustomer" />
</owl:Class>

The following assertion states that cash is an instance of
the acceptedPayment class:

<owl:Thing rdf:about="#cash">
<rdf:type

rdf:resource="#acceptedPayment" />
</owl:Thing>

The following is the declaration of the paysWith property:

<owl:ObjectProperty rdf:ID="paysWith">
<rdfs:domain
rdf:resource="#potentialCustomer" />

<rdfs:range rdf:resource="#payment" />
</owl:ObjectProperty>

The following assertion states that alice is an instance of
italian, with value ae1254 for the paysWith property:

<owl:Thing rdf:about="#alice">
<rdf:type rdf:resource="#italian" />
<paysWith rdf:resource="#ae1254" />

</owl:Thing>

Now alice no longer needs to express explicitly that she is
resident in the European Union. Simply declaring that she is
from Italy, and providing her ontology (or, possibly, the of-
ficial ontology of the EU, containing all the member states),
ontological reasoning is able to infer that she is European.

Another interesting feature of Description Logic (and
thus OWL) ontologies is the definition of classes using re-
strictions on properties. For instance we could define a
class, premiumCustomer, representing the accepted cus-
tomers who pay with a credit card. It could be then used to
add refinements to policies (for instance providing to cus-
tomers belonging to this class a faster delivery or a lower
price) and since alice is an accepted customer and pays
with her credit card, the ontological reasoning would auto-
matically recognize her as a premiumCustomer.

5. Discovery and Contracting with SCIFF

As in [9], we distinguish between the discovery step and
the contracting step. During the discovery step, the user re-
quest for a service is compared with each SWS description,

and possible services are selected. In this phase the main
problem is that the terms/concepts used in the request could
differ from those used in the service description. In partic-
ular, two apparently different terms could actually refer to
the same concept, or to different but related concepts (e.g.,
one concept could be subsumed by the other). These are
typical ontological problems, and several different ontolog-
ical reasoners are available to cope with such issues. At the
end of the discovery phase, a set of services that might fulfil
the user requirements is provided as result. Such a set will
be the input for the next phase.

The contracting phase then focuses on the interaction
policies, i.e., on the set of rules that each partner has de-
clared as representing its behavioural interface. Here the
problem consists of deciding whether an interaction can ef-
fectively happen, achieving at the same time the user goals.

5.1. Discovery

In our framework the discovery phase is implemented
following the algorithm by Paolucci et al. [15]. Given a
client’s request, discovery is conceived as the problem of
selecting those services that might satisfy the client’s needs.
The client publishes her needs in term of information she is
willing to provide as input to the service, and in term of out-
puts she expects from the service. Similarly, each service
advertises its own capabilities as a list of information she re-
quires in input, paired with the information she will provide
as output. Each piece of information represents a parame-
ter, and the discovery problem can be intended as looking
for those services whose input (output) parameters match
the input (output) parameters of the client. The client’s re-
quest is confronted with every service description available,
and a set of candidate services is returned to the client.

Paolucci et al. assume that each parameter is described
by means of ontological propositions (in our approach the
parameters are defined in terms of OWL-S concepts; we as-
sume that, if providers refer to different ontologies, equiv-
alences between concepts have already been established).
The parameters of each available service profile are checked
against the parameters in the client’s request. To decide
if two parameters match, we use an ontological criterion,
namely subsumption, as in [15]; however, the matching al-
gorithm could use other criteria, for example based on se-
mantic contexts, as long as a degree of similarity is provided
by the criteria, rather than a yes/no answer.

Paolucci and colleagues propose four different matching
levels, depending on the subsumption relation: exact, if it is
possible to establish that two parameters defined with dif-
ferent terms refer both to the same concept; plugin and sub-
sume if a parameter is subsumed/subsumes the other; and
fail if no subsumption relation can be identified among two
parameters.
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Our implementation differs slightly from the algorithm
in [15], in order to provide more flexibility. The original al-
gorithm requires the number of input/output parameters to
be exactly the same in the client request and in the service
profile, in order for a service to be discovered. In our sys-
tem instead, if a service provides more outputs or requires
less inputs than those stated in the client’s query, such a ser-
vice is selected anyway. The reason for this choice is to give
more choices to the following contracting phase. The con-
tract could be satisfactory for both parties even if the client
discards some of the outputs of the service, or if it does pro-
vide an input disregarded by the service. Suppose, e.g., that
eShop2 is sponsoring a marketing campaign to attract new
customers: together with each book bought on its web site,
eShop2 will provide also a free voucher of 10$ valid for the
next order. The algorithm in its original form would disre-
gard eShop2 since it provides both a book and a voucher,
while alice is looking for a book only. We include eShop2
in the set of discovered services, following the intuition that
alice can freely decide to use the voucher or not.

5.2. Contracting

The contracting phase is performed through the SCIFF
reasoning engine. As explained in Section 4, SRE tries to
establish if there exists a possible sequence of events (ex-
changed messages) that respect the constraints of both the
service and the user. If such interaction is possible, SRE
comes up with a sort of a plan indicating the messages that
should be exchanged. Note that the reasoning process is
driven by the user goals: not all the possible interactions
are of interest, but only those that satisfy the user’s needs.

In this work, the SRE framework [1] is extended to cope
with the ontological layer of the semantic web. In fact, we
do not limit the use of ontologies to the discovery phase,
but extend it also to the contracting phase. This is useful
both to provide precise meaning to the terms used in the
contract, and to exploit efficient, polynomial reasoners for
the parts regarding terms. In particular, we intertwine the
SCIFF proof procedure (that deals with the rules part) and
the Pellet reasoner (that deals with ontologies).

5.3 Interfacing SCIFF and ontological
reasoners

A possible approach to let SCIFF access ontological
knowledge is to exploit the common root of logic program-
ming and description logics in first order logic, by finding
their intersection and translating ontologies to LP clauses,
following Grosof et al. [5] and Hustadt et al. [7]. For exam-
ple, it is possible to use dlpconvert [13] to translate domain
knowledge described in OWL to SCIFF clauses. Reason-
ing is then performed by SCIFF in the usual way. How-

ever, this solution limits ontological expressivity, since the
DLP fragment covered by dlpconvert is a proper subset of
DL, and some OWL axioms are not included. Moreover,
some axioms translations are not suitable for reasoning with
goal-driven operational semantics, such as as resolution or
unfolding, employed in SCIFF, because it leads to loops.

A different (and more effective) approach consists of in-
terfacing SCIFF with an external specific ontology-focused
component which can be queried by SCIFF and which per-
forms the actual ontological reasoning. As represented in
Fig. 3, this solution involves a Prolog meta-predicate which
invokes the ontological reasoning on desired goals, an inter-
communication interface from SCIFF to the external com-
ponent (which incorporates a query and results translation
schema) and the actual reasoning module. Both modules
can access both local and networked knowledge.

Figure 3. Integration architecture

Goals given to the meta-predicate are handled, as sug-
gested in [7, 20], considering single arity predicates as
“belongs to class (with same name of predicate)” queries
and double arity ones as “are related by property (with
same name of predicate)” queries. To reduce the over-
head caused by external communication, we implemented
a caching mechanism: the meta-predicate first checks if a
similar query (i.e., involving the same predicate) has been
issued before and, only if not, it invokes the external rea-
soner and stores its answers as Prolog facts. The OWL rea-
soning module uses the Pellet [16] API, while the commu-
nication interface uses the Jasper Prolog-Java library [19].
This solution provides full OWL(-DL) expressivity, includ-
ing features such as equivalence of classes and properties,
transitive properties, declaration of classes on property re-
striction and property-based individual classification.

We tested the approach in simple contracting scenarios,
where the overhead was hardly measurable. However, to as-
sess scalability, we experimented with randomly generated
ontologies. Each ontology, composed of N classes, was
built starting from its root node, and recursively trying, for
each node, five attempts of child generation, each with prob-
ability 1/3. Table 1 compares the implementation based on
the meta-interpreter with one in which the whole ontology
was converted into SCIFF syntax and then imported into
the SCIFF knowledge base (through dlpconvert [13]).
For both approaches, we report the time spent for loading
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Ontology import Interface with Pellet
N Load Query Total Load Query Total

100 3.4 ∼ 0 3.4 ∼ 0 ∼ 0 ∼ 0
500 5.8 ∼ 0 5.8 1.0 ∼ 0 1.0

1000 8.2 ∼ 0 8.2 1.0 ∼ 0 1.0
5000 14.9 ∼ 0 14.9 2.0 1.2 3.2
10000 26.6 ∼ 0 26.6 4.0 2.8 6.8

Table 1. Performance comparison

the ontology into the reasoner1 and for the actual query (PC
with Intel Celeron 2.4 GHz CPU, times in seconds, average
over 50 runs). Both approaches appear to scale reasonably.
In both cases, the loading time is higher than the query time.
On the other hand, importing is possible only for those on-
tologies that can be expressed in DLP [5]. In conclusion,
the interface approach appears to dominate the importing
approach both in expressivity and in performance.

6. Architecture
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Figure 4. The Framework architecture

The framework is organized as a set of web services.
The aim was a modular architecture, with the intention of
using the framework as a proof of concept of the SRE ap-
proach. Our framework provides two facilities: registering
and querying. The first is used by service providers, which
register by providing a service description in terms of the
pair (OWL-S profile, SRE profile). The second facility ac-
cepts requests from the users, and returns a list of SWS ful-
filling the requirements.

The web services composing the system are shown in
Figure 4 (where arrows represent data flows). A Web Ser-
vice can register at our application, by providing an OWL-S

1For the importing approach, the load time is the time spent for trans-
lating the ontology and parsing the resulting clauses and ICs, while for the
Pellet-based approach it is the time spent for parsing ICs and loading the
ontology into a persistent OWLOntology object.

description together with a SRE description of the provided
functionality and its behavioural policies. After a syntactic
validation performed by the Syntax Validation module, the
service description is sent to the Service Register compo-
nent which manages the storing procedures. It stores OWL-
S profiles by means of a RDF store, while SRE profiles are
directly stored in the file system. OWL-S profiles are pre-
processed, and a summary of the profile is extracted for each
SWS; in this way, some specific cases can be directly iden-
tified and handled, simplifying the matching algorithm de-
scribed in Section 5.1. If the storing procedure terminates
successfully, an acknowledgement is returned to the service
asking for registration.

A user starts the process with a request, composed of
a description of the functionality she is looking for and
her own behavioural policies. The desired service is de-
scribed in terms of inputs and outputs: however we assume
such lists as a sort of “indication” of the needs of the user,
and a certain flexibility is adopted, as explained in Sec-
tion 5.1. After a syntactic validation step, the request is
passed to the Service Seeker component, which coordinates
the search process orchestrating the other components. The
input/output list is passed to the Service Matcher compo-
nent that selects, among the registered services, the ones
that could satisfy the user request, with the algorithm ex-
plained in Section 5.1. The ontology subsumption relation
is evaluated by the MatchMaker component, a simple wrap-
per for the Pellet reasoner [16].

The list of selected services is returned to the Service
Seeker, that in turn gives it to the SCIFF Reasoning En-
gine module. Such module reasons about the existence of a
possible interaction that could satisfy the user needs, as ex-
plained in Section 5.2. The result is a restricted list of ser-
vices , for each selected service, a possible interaction plan
that justifies why that service has been selected, and shows
how the user can successfully interact with the service. To
perform ontological reasoning, also the SCIFF Reasoning
Engine module uses the MatchMaker and its integrated Pel-
let reasoner. Finally, the list of selected services is returned
to the user by the Service Seeker module.

7. Related Work

Many authors tackled the service matching problem,
considering both ontological and interaction perspectives.
Kifer et al. [9] propose a comprehensive solution to the dis-
covery and contracting problem. Our proposal resembles
the solution proposed by Kifer and colleagues: both solu-
tions are based on declarative approaches (they rely on F-
Logic while we build up on extended logic programming);
both use hypothetical reasoning to solve the contracting
problem. However, in [9] the contracting problem is solved
by taking into account only the user’s goal, while in our ap-
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proach the user can also specify policies that constrain how
the goal can be achieved. The use of SRE, and in particu-
lar of the underlying SCIFF language and proof procedure,
provides a great expressivity when defining the policies,
with the typical advantages of declarative approaches and
of a solid underlying computational counterpart. Ragone et
al. [17] use the idea of Concept Covering and Concept Ab-
duction to overcome some of the limits of previous match-
ing approaches, and to address also the composition prob-
lem. In this work we focus on discovering a SWS able
to satisfy the user requests, and we concentrate our efforts
instead on reasoning about the interaction aspects: in this
perspective, we understand a SWS as a complex agent, for
which the interaction aspects play an important role.

8 Discussion and Conclusion

The architecture introduced in this paper is a first pro-
totype, suffering from many limitations we introduced to
support flexibility and extensibility. E.g., we currently store
service profiles using a relational DBMS. This enables a
certain flexibility, but does not permit to take advantage
of ontology-aware storing systems. We assumed also that
all the service profiles and the user requests refer to the
same set of ontologies, and that no ontology alignment is
required.

Another limit of the current implementation is that the
discovery phase mostly relies upon the algorithm in [15],
where only input and output parameters are considered
while looking for a match. However, OWL-S profiles and
other proposals let the user specify a service profile also in
terms of pre-conditions and effects.

Nevertheless, the results of our preliminary test using
OWL-S profiles at projects.semwebcentral.org are
encouraging. They show that our proposal for the service
discovery and contracting problem is a viable solution, with
the advantages of offering a powerful yet simple, declara-
tive language for expressing service policies.

In the future, we intend to run a more comprehensive
comparison with other solutions, by considering both ex-
pressive power and computational performance. We also
plan to extend our application by providing support to other
service description languages, such as WSMO, SAWSDL
and WSMO-Lite. Finally, we plan to encode SRE rules us-
ing emerging standards such as the Rule Interchange Format
(RIF) and its Framework for Logic Dialects (RIF-FLD).
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