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Abstract

With REST becoming the dominant architectural
paradigm for web services in distributed systemsrem
and more use cases are applied to it, includingaases
that require transactional guarantees. We propose a
RESTful transaction model that satisfies both the
constraints of transactions and those of the REST
architectural style. We provide formal proof of
consistency and recoverability in the proposed
framework and show the robustness of its properties
when it comes to executing concurrent transactions.

1. Introduction

Representational State Transfer (REST) is a
distributed computing architectural style introddicey
Roy Fielding in [7] as a formal description of the
architectural style that had emerged in the WorlaiaV
Web. The main features of REST include focusing on
resources identified by names, a fixed number of
methods with known semantics to manipulate those
resources, hypermedia as a means of discovering the
resources and statelessness in the interactiongedet
client and server.

REST, especially over the HTTP protocol [8], has
long been championed as a competing web service
paradigm to the WS-* stack. This claim has recently
been reinforced with the publication of works suah
[17], the more recent [11], together with the radtign
of the apparent complexity and lack of adoptionWwf-

* technologies beyond the corporate firewall [19].

As is common with disruptive technologies, REST
over HTTP is evolving to compete with  WS-* in
increasingly advanced usage scenarios [4],[12].s Thi
paper aims to be part of the next wave of REST
evolution by defining a RESTful transaction moduwhtt
is designed to operate over HTTP. To date, usage of
REST has remained at the level of serial sequeates
operations, each succeeding or failing atomicalile
its advantages have made it the dominant web sevic
paradigm on the web, the WS-* stack provides thg on
standard for unplanned transactions. RESTful
applications have to resort to ad-hoc solutiongaofable
quality in order to address this need.

Transactions have been defined in terms of the fou
properties contained in the ACID acronym [9]. These
properties guarantee that a system is maintained in
consistent state, even as transactions are exegittgd

it concurrently. This includes the situations whene or
more transactions fail to commit.

When dealing with a sequence of transactions (one
transaction executed at a time), each transactanss
with the consistent state that its predecessorcndid.

If all the transactions are short, the data aréraksed in

a main memory, and all data are accessed through a
single thread, then there is no need for concuyrehbe
transactions can simply be run in sequence. Redbwo
interactive systems however, often require the @ti@c

of several transactions concurrently. Use caseh asc
distributed environments [4,22] or dynamic allooatbf
resources to external developers [21] illustraie tleed.

While transactions are concerned with the condsain
of adhering to ACID properties, REST adheres tows
set of constraints. These are primarily expressethe
uniform interface constraint, but supported by the
following four constraints: Resource Identificatjon
Resource manipulation through representations,- Self
descriptive messages, and Hypermedia as the enfjine
application state[20]. Our efforts are directectraating
a truly RESTful transaction model that satisfieshbihe
constraints of REST and the constraints relevarthéo
ACID properties of transactions. In this paper we
describe a RESTful framework for transactions
(RETRO) in which the locking scheme necessary for
ACID transactions is adapted to work within the
architectural style of REST.

We provide a more rigorous justification of the dee
for our new model in the next two sections. Follogyi
that, we discuss how locks may be introduced for
concurrency control into RESTful working over HTTP.
In Section 5, we then elaborate this into a twosghack
model and demonstrate that the result is consjstent
wormhole free, and supports recoverability. Proofs
soundness and completeness of the resulting maodel a
provided in Section 6, and then conclude.

2. Relevant work

Different approaches have been proposed for
supporting concurrent execution of transactiong, du
consensus has emerged on the use of locks as tste mo
feasible solution [2],[15],[9],[16]. This is thepproach
followed in this paper. In addition we note that fhd

[14] use similar principles with different semapésr
When implementing the  corresponding lock

mechanisms, it is important to ensure that conatirre



execution does not have lower throughput or much
higher response times than serial execution. Thensk
major concern is to avoid high computational bead
(e.g see concurrency control laws in [9])

The application of the transactional concept in WS-
adds considerable complexity to the required
coordination framework [21]. This can be seen more
clearly when analysing the pattern behaviour fog th
recovery model dompensation [22], [23]. In contrast,
REST works directly with resources. This is in Iwéh
the semantics of the basic theorems in conventional
transaction processing [9]. Transactions rely on
read/write operations on objects and RESTful HTTP,
likewise, provides GET (equivalent to ‘read’) and
DELETE, POST, PUT (equivalents of ‘write’) methods.

Various approaches have been proposed for handling
RESTful transactions. The traditional approach as t
simply design a new resource that can be usedgigetr
the desired transaction on the server side. Fompba
when trying to transfer funds from one bank accdont
another, there could be a ‘transfer request’ resoutio
which new ‘transfer requests’ can be posted. Whitan
be very simple to implement at design time, it ¢@iss
users to the predictive ability of the developdrdesign
time. Furthermore, in scenarios where a large or
unpredictable variation of transactions may taleze)] it
cannot be expected that all the necessary resoheses
been designed beforehand. This situation is sirtdlahe
static versus dynamic allocation debate found ia th
database and transaction literature [2],[9]. Thpraach
completely breaks down however, when a transaction
exceeds the scope of a single provider, the case of
distributed transactions. Other approaches sudi3js
suggest extending REST to include mutex locks thist
would necessitate extending HTTP as well.

The alternative to these approaches is to introduce
locks on resources by modeling them as resources
themselves [17]. While this approach looks muchemor
capable, the details of its implementation and its
extension into transactions have neither been digiut
nor proven. In this paper we describe how this eagin
can be extended to produce a fully specified and
theoretically robust RESTful transaction model.

3. Concurrency issuesin RESTful HTTP

The classic view taken in addressing tlelation
property is to consider transactions in terms pfits and
outputs [9],[6]. These are essentiallgad (input) and
write (output) operations. Write operations are desdribe
as operations that affect the state of resourcesth®
other hand, REST prescribes a uniform interface for
accessing resources. One challenge is thereforeatm
the traditional input/output perspective with thE ST ful
approach to the uniform interface. Since our model

operates over the HTTP protocol, we examine itg fou
resource interaction operations.

GET is the standard retrieve operation. Its exeauti
must be safe; it should have no side-effects. ttukh
also be idempotent. Duplicate messages should have
adverse effects. POST is understood as an opergtion
create a new resource on a server where the tdRjeis
not known. The representation of the resourcerns wa
POST to the collection that will contain the resmur
The server determines its appropriate location tied
resulting URI is returned to the client as partthé
response. POST is neither safe nor idempotent. T
be used for updating resources, by simply instngcthe
server to apply a new representation as a replateofie
the previous one. It can also be used to createva n
resource, when a representation is PUT at a URMABa
previously unused. A very important point is thaR@T
operation may correspond to a Create or an Update
operation in the CRUD paradigm, and sometimes the
client may not even know which of the two is gotode
applied. This depends solely on the state of timeese
Finally, DELETE is used to request removal of the
resource representation at the target URI.

All the operations described above are used to gana
the lifecycle of the resources directly related the
transaction itself. However, the transactions owdeh
can orchestrate are only those that intend to parfo
GET and PUT operations. In the case of PUT, sinee w
guarantee that the resource exists before it is flJWe
are only dealing with the ‘update’ capacity of the
operation and not its ‘create’ aspect. In this sertke
only type of non-safe operation (‘write’) that oomnodel
currently supports is PUT, in its update capaditthin
the scope of these assumptions, the term ‘PUTSésl s
equivalent to ‘write’ for the rest of this paper.

As GET operations do not change the state of
resources, provided the initial state of a resouse
consistent, concurrent GET requests to the sanoeimes
cannot cause inconsistency. On the contrary, PUT
operations of different transactions on the sarseue
change the state of the resource and may violate
consistency or isolation. While we can assume that
transaction “knows what it is doing” in terms of it
internal data manipulation, overlap between PUTenaf
transaction and GET actions of another, can violate
isolation and cause inconsistency.

Additionally, PUT-related interactions between
different concurrent transactions on the same resou
can also cause a problem. If we consider GET ojpeat
as inputs of transactions and PUTs operations gsibu
operations of them, this can be expressed as:

EQ. 1: 0;,n(I;u0;)= ¢ forall i #j

where denotes the set of resources accessed via

GET by transactiofT}, (its inputs), and), the set of



resources altered via PUT by transacfipr{its outputs).
Based on EQ.L, it is appropriate to say that theose
transaction§T;}, whose outputs are disjoint from one
another’s inputs and outputs, can run in parali&h wo
concurrency anomalies.

We define history’ as any sequence-preserving merge
of the actions of a set of transactions into a lsing
sequence .A history is denoted H = ({t,a,7);|i =
1,..,n). Eachstep of the history is a tuplét,a,r)
comprising an actioa by transactiort on resource. A
history for the set of transactiof} is a sequence,
containing each transactidh) as a subsequence and
containing nothing else. Essentially, a historyslithe
order in which actions were successfully completed.

Serialhistories are one-transaction-at-a-time histories.
Since no concurrency is induced in serial historilesre
is no interdependency between transactions. Therefo
wormholes or inconsistencies will not be an issgile
this is a useful theoretical aspect, in realityns@ctions
can have any order and hence histories will nctduil.

3.1. Concurency anomalies

In this section we will analyse the result of exewy
transactions concurrently, in a RESTful manner,
highlight the potential concurrency anomalies #rige.

When two (or more) transactions access the same
resource, they may produce two (or more) different
versions of that resourcéo$t updatg or simply they
may work with the out-of-date version of the ressur
(dirty GET andunrepeatableGET). Fig. 1 shows these
three inconsistent scenarios.

As shown in Fig 1, interleaved RESTful interactions
by multiple parties may cause several concurrency
issuesA transaction GETs a resource twice, once before
another transaction’s PUT action and the second one
after the PUT action (the second transaction may BU
new version and commit). This means a transaction
changes the resource (PUT), when another transactio
had ongoing access (GET) to it and has not findlite
access. On the other hand, the first transactisriddeal

with inconsistent GETs on the same resource.
Unrepeatable GET Lost Update Dirty GET

l<r'1> <r’1>l
<I,1> <f 1> <l,2>

O @ OO0 OO

J,Sl

Tz PUT <I,2>

and

<r1> <I,1>

<l,2> <[,3>

T2 GET <I,2>

T1 GET <[1>

Tz PUT <[,2> T PUT <[,2> T+ GET <I,2>

Tv GET <I,2> , PUT <I,3> Tz PUT <I3>
Figure 1 — Concurrency challenges

The second classical problem oSt updatesand it
occurs when the first transaction’s PUT is oveneritby
the second transaction which uses PUT based on the

initial value of the resource (second scenarioig E).
This means one of the updates will be overwritten
without being taken into account.

Finally, a problem can also occur when a transactio
relies on out-of date resources (Fig. 1). A tratisac
GETs a resource between two PUT operations by
another transaction. As a result, the transactiay ose
an inconsistent resource state as the other trémsdms
not finished its updates on the resource and mayn ev
roll back, rendering the retrieved representatioalid.

Fig 1 shows the simplest scenarios of these praqlem
but they may be easily extended to multi transastio
where accessing resources are a sequence whereasc
back to the first transaction. On the other hardeasing
a resource may look like a cycle when we try tondea
sequence diagram for them. These classical trdosatt
problems are calledormholes.In the next section, we
try to provide a clear definition for them in term$
RESTful transactions.

3.2 Wormholes

We start by defining dependencies between
transactions in a history. A transactiol is said to
dependent on another transactibnin a historyH if T
GET (reads) or PUT (writes) data-resources preWous
PUT (written) byT’ in the historyH, or if T PUT (writes)

a resource previously GET (read) By

PUT% GET

P P
- 0 == 0 B e Do @ e
: l

Ti GET <[,1> T: PUT <l,2> Ty PUT <I,2>
Tz PUT <f,2> T: GET <I,2> T: PUT <l,3>

Figure 2 — Types of dependencies

PUT—> PUT
Dependency

FET% PUT

We can formalise different types of dependencies
(shown in Fig. 2) through ®ependency Graphvhere
nodes are ‘transactions’, arcs indicate ‘transactio
dependencies’, and labels on arcs denote ‘resource
versions’. Theversion of a resource at stepk of a
history is an integer and is denoted (k). In the
beginning each resource has version z¥i,@=0). At
stepk of a historyH, resource has a version equal to the
number of writes to that resource before this stdyis is
put formally as follows.

V(r,k) = |{(tj, a;, ) EH |j <kanda; =PUTandr; = r}|

The outer vertical bars represent the set cardynali
function. Each historyH, for a set of transactiod§;}
defines a ternarglependency relatio®EPH), defined
as follows. Let T1 and T2 be any two distinct
transactions, let be any resource, and fgj be any two
steps ofH with i < j. Suppose stef[i] involves action
al of T1 on resource, stepH|[j] involvesa2 of T2 onr,
and suppose there is no PUT pbrby any transaction
between these steps (there is(fiqQPUT,r) in H[i +
1],...,H[j — 1]). Then DEPH) is defined as:



(T,(r,V(r,j)),T") € DEP(H)
if al is a PUT an@2 is a PUT
alisa PUT and2 is a GET
al isa GET ané?2 is a PUT.

PUT—PUT, PUT-GET and
dependencies.

The dependency relation for a history defines a
directeddependency graphwhere transactions are the
nodes of the graph, and resource versions are dabidle
edges. IKT,(r,j), T’y € DEP(H), then the graph has an
edge from nodeT to nodeT’ labeled by(r,j). Two
histories are equivalent, if they have the same
dependency relation.

The dependency relation of a history defines a time
order of the transactions. Conventionally this ortgis
signified by<<< and it is thetransitive closureof <<
<y. It is the smallest relation satisfying the ecquati
T <<<y T if(T,r,T") € DEP(H) for some resource
version r, orT <<<y T" and (T",r,T’) € DEP(H) for
some transactiof” and some resource r. Whenever
T <<<T' there is a path in the corresponding
dependency graph from transactidrto transactiorf'.
The<<< ordering defines the set of all transactions that
run before or after as follows.

BEFORE(T) = {T'|T’ <<< T}
AFTER(T) = {T'|T <<< T'}

If T runs fully isolated (ex: it is the only transactjo
or it GET and PUT resources not accessed by argr oth
transactions), then its BEFORE and AFTER sets are
empty (it can be scheduled in any way). When a
transaction is both after and before the otherirdist
transaction, it is calledrormhole transactioT’ here):

T’ € BEFORE(T) N AFTER(T)

for some resource version r, or ( for some
transaction , and some resource r).This meansatimat
cycle in a dependency graph is a wormhole. Using a
well-formed and two phase locking mechanism is a
conventional method for avoiding wormholes [9].the
next section we describe how such a locking meashan
is adapted to RESTful transactions as a practieslfor
avoiding wormholes and then prove that our RESTful
transaction model is wormhole-free.

GEPUT

4. Locksin RESTful HTTP

4.1. Locking resources

In order to handle concurrency challenges in HTTP,
we introduce the concept of locks. This is dona iwvay
that does not affect the always available and baottsv
compatible nature of the web. For an APl to be
characterized as RESTful according to the hyperanedi
constraint, it must allow a client to interact withe
service solely by being given a single entry URHan

understanding of the relevant media types. Thisrent
loose-coupling and elimination of assumptions.

Lockable Resource (R): Ideally, any resource that
can be served by an HTTP server should be lockable
regardless of serialization format. This howeveruldo
require the HTTP protocol to carry the metadatatlier
locking mechanism. Since we wish to preserve th& MT
protocol, we opt for a fragment of XML that is t@ b
included in an XML representation of a resourceisTh
approach could potentially be extended to othemédis
such as JSON [5] but not to binary files such asges
or zip archives. The information that should bethe
fragment is the location of the lock collection aite
location of the transaction collection. The inctusiof
this fragment (Fig. 3) makes any resource lockable.
Namespaces could also be utilized to avoid namespac
collision but this would limit the approach to
serializations that support namespaces.

<lockable>
<link rel="lock_collection” href="http://exaple.org/resource/locks/">
<link rel="transaction_collection” href="httffexample.org/transactions/">
</lockable>

Figure 3 —(R) XML Fragment

Lock Resource (R-L): The lock resource is
represented by a dedicated media type and should
contain the elements in Table 1.

ResourceURI: a link back to the resource thatltiuk affects.

TransactionURI: a link to the transaction that coistthe lock.

Type: “S” or “X” depending on the type of the lock.

PrevLockURI: a link to the previous lock in the kogequence.

Timestamp: Server's timestamp when the lock wastgrth

Duration: Indicates the interval that the lock baen granted for.
ConditionalResourceURI: A link to the representatiaf the resource that will
come into effect once the lock is committed.

Table 1 - Elements of R-L

The type element can take one of two values, X,or S
corresponding to the available lock types. X stafwts
XLOCK: eXclussive Lock, and S stands 8t OCK:
Shared Lock. To place a new lock, the server must
authenticate the user as the owner of the tramsathiat
is referenced by the lock.

The length of time of effectiveness that is grarited
lock is dependent on the maximum length of time tha
the server is prepared to grant a guarantee telitet.
Once the duration of the lock expires, the locabsrted.

To avoid violating 2PL, once a lock of a transaatio
expires, all other locks of the same transactiopirex

The result of the GET operation does not changi unt
a lock of type X is committed. In this sense, thekk
and transactions are transparent to the GET whith o
commit reacts as if a simple PUT was applied. Tvas
a specific design objective. PUT and DELETE
operations return 8405 Method Not Allowed’HTTP
response for the duration of a lock's effect. GEquests
should still return successfully. This behaviourimteins



backwards compatibility, with the understanding tha
client requires further guarantees on the futuatesof
the resource, the client should seek to place la locall
other cases, the semantics of GET are unaffected a
GET on a resource does not guarantee that thewsilhte
remain unchanged for any period of time.

4.2. Well-formed collections of locks

As expected, a transaction cannot lock a resobate t
is locked by another transaction. But if two or mor
transactions want to GET the content of a resouhesy
are not going to change the resource state. This wi
therefore not cause any conflict or access to datah
has been PUT to a resource by another transadtign,
the first transaction has not committed and mayhgha
the version of the resource again). Table 2 shdws t
lock compatibility. The inferred rules constrairetbet of
allowed histories. Histories that satisfy the loaki
constraints are callddgal histories

Mode of Preceding Lock

o q;) o Share Exclusive

o

<§3 z § Share Yes No
©] Exclusive No No

Table 2 — Legal lock sequences

Resource Lock Collection (R-Lc): The R-Lc
contains locks in sequences that follow the corbpieyi
rules stated in Table 2, rendering the transactieti-
formed. The lock collection is represented as aonAt
Feed [12]. Since ATOM does not support sequencing
entries, we use the ‘PrevLockURI’ element of theklo
resource to create a linked list of locks that dan
represented as an ATOM Feed. The client can retriev
the lock collection via GET to determine if the gesce
is locked. An empty feed indicates an unlocked ussa
New locks can be submitted to the resource codlacti
via the POST method.

GET
POST

Returns the resource’s collection of locks.
Adding a new lock to the related resource

Table 3 - Available Operations for R-Lc
5. Two phase locking and recover ability

In the previous section, we described how our model
provides a well-formed locking system for GET and
PUT. We now show that by adding two-phase locking,
the model becomes wormhole-free. We then show how
this facilitates recoverability in RETRO and illtete the
key ideas with a simple example.

5.1. Two phase locking is wormhole free

In two-phase locking [10ref?] each transaction can
use locking in two phases. In the first phagewwth), it
can acquire locks for resources (SLOCK or XLOCK)
and in the second phasgh(ink), it releases them. These
two phases should not have any overlap. When the
transaction starts to UNLOCK a resource, it canock
any more resources under any circumstances. So,
unlocking resources means that the transactioithsre
successfully committing or aborting.

We have seen in discussinboctk Resource (R-L)
(Section 4-1), that each transaction in our RESTful
transaction model can use two different types ofkiso
for its resources (SLOCK for GET and XLOCK for
PUT). Therefore, inH ={(t,a,r)li=1,..,n) we
consider two extra actions fora” : SLOCK; and,
XLOCK. Since these locks at some point should be
released, we also have UNLOCK as another action for
‘a’. Now, we want to show that if all transactions are
well-formed and two-phase, any legal history wil b
isolated (wormhole-free). In what follows, we fidtow
how the additional actions required for the twogeha
locking are incorporated in our well-formed RESTful
transactions, and then invoke the well-known Worlaho
Theorem from conventional transactions [9] to slibat
our model is wormhole-free.

SupposeH is a legal history of the execution of a set
of transactions, each of which is well-formed an-t
phase. For each transactidn,define SHRINKT) to be
the index of the first unlock step @fin history H .
Formally:

SHIRINK(T) =
min(i|H[i] = (T,UNLOCK,r) for some resource)).

Since each transactidnis non-null and well-formed,
it must contain atJNLOCK step. Thus SHRINK is well
defined for each transaction. First we need towstiat
if there is path in the dependency graph from a
transactionT to a transactiorT, then the first unlock step
of T will happen before that of T'. This is sumnsad in
the following lemma.

Lemma: If
SHRINK (7).

Supposd’ <<< T, then suppose there is a resource
and steps < j of history H, such thati[i] = (T, a,r),
H[j] = (T’ a' r); either actiona or actiona’ is a PUT
(this assertion comes directly from the definitiom
DEP(H) in section 3). Suppose that the actioof T is a
PUT. SinceT is well-formed, then, stepis covered byl
doing an XLOCK orr. Similarly, steg must be covered
by T' doing an SLOCK or XLOCK om. H is a legal
history, and these locks would conflict, so thenestrbe
akl andk2, such that:

i < k1< k2< jandH[k1] = (T,UNLOCK,r) and

T <<< T, ten SHRINK(T) <



either  H[k2] = (T,SLOCK,r) or
(T XLOCK, 7).

BecauseT and T' are two-phase, all their LOCK
actions must precede their first UNLOCK, actionggh
SHRINK(T) < k1 < k2 < SHRINK(T"). This proves the
lemma for thea = PUT case. The argument for the
a’' = PUT case is almost identical. The SLOCKTofvill
be incompatible with the XLOCK of’; hence, there
must be an intervenin¢l ,UNLOCK, r) followed by a
(T'"XLOCK, r) action inH. Therefore, ifl <<< T’, then
SHRINK(T) < SHRINK(T") . Proving both these cases
establishes the lemma. We may now invoke the
Wormhole Theorem [9] and infer that H is wormhole-
free by contradiction.

Assume, thatH is not wormhole-free. Then, the
Wormhole Theorem dictates that there must be a
sequence of transactiol®,,T,,Ts,...,T,), such that
each is before the other (i.&;,<<<y T;;1), and the last
is before the first (i.eT, <<<y T;). Using the above
lemma, this in turn means thaSHRINK(T;) <
SHRINK(T,) < -+ < SHRINK(T,,) < SHRINK(T,)

Hence, we haveSHRINK(T;) < SHRINK(T;) which
gives the desired contradiction. Thiscannot have any
wormholes.

H[k2] =

5.2. Transaction Resource

Clarifying the scope of each transaction and
determining whether it is in a GROWTH or SHRINK
phase is necessary. In this part we introduceebaired
resources.

Transaction (T): The transaction resource is
represented by a dedicated media type (e.g.
application/vnd.retro-transaction+xml). It shoulongain
the elements in Table 4.

TransactionCollectionURI:
OwnerURLI:
TransactionLockCollectionURI:

Table 4 - Elements of T

These 3 elements identify the collections of
information vital to the execution of a transactidrne
owner of the transaction can GET the transaction
resource as a means of locating these collections.

Transaction Collection (Tc): The transaction
collection is a resource where new transactions are
submitted via the POST operation which createsva ne
transaction and returns the URI for its represenat
The resource itself cannot be accessed via GEheas t
clients that need to know the location of a specifi
resource are informed at the time of POSTing.

Transaction Lock Collection (T-Lc): The
transaction lock collection contains links to tbels that
belong to a specific transaction, formatted as &mmA
feed. Clients cannot abort single locks directly st
do so through the T-Lc which aborts all the locksao

transaction, leaving the transaction void and is\wegent
to aborting the transaction.

GET
DELETE

Returns the collection of locks relevant to a teai®n
Aborts all the locks of the relevant trartga. This can only
be performed by an owner of the transaction.

Table 5 - Available Operations for T-Lc
5.3. Recoverability

Based on the Rollback Theorem, a transaction that
unlocks an exclusive lock and then performRallback
is not well-formed and can potentially cause a wuola
unless the transaction is degenerated.

As the theorem is well-known, we refer the intezdst
reader to [9] for the actual proof. The importaotnp of
the theorem is that we have to degenerate theairtion
to effect rollback. For this purpose, our model sloet
store potential updates on the actual resourcesbikts
on the shadow of the locked data, calledoaditional
resource representation

Conditional Resource Representation (R-C): A
resource that is of identical media type as the&ddc
resource. The conditional resource representat®n i
essentially the state that will be applied to thsource
once the XLOCK is committed.

GET Returns the representation that will be committethé relevant
XLOCK is committed.

PUT Creates a new conditional state that will replthe current state of
the locked resource once the linking XLOCK is cormbeai.

DELETE Deletes the conditional state. If the XLOCK is coitted, there

will be no write action performed.

Table 6 - Available Operations for R-C
5.4. Model overview

Having defined all the resource types, it is easgde
that an interconnected network arises. Figure plays
the interconnections of the resource graph. It ban
observed that having a URI for R is enough to leadt
other resources in the network. The connection filam
to T is different from the other connections agéhs no
GET ability for the Tc resource, for security re@soTlhe
URI of a given T is only returned as a respons¢ho
initial POST operation on Tc performed by the
transaction’s owner.

Figure 4 — Resource Hypermedia connections

Table 7 summarizes all the relevant resource types
that comprise our model together with a short dpson
and a list of the allowed operations.



A GET R2 200 OK GETting R2 to extract location of TC and R2-LC
A POST <new transaction> TC 201 CREATED {Location: T1} Creating a new transaction

A POST <LOCK {type:X}> R2-LC 201 CREATED {Location: R2-L1}  POSTing an XLOCK to R2-LC

B GET R1 200 OK GETting R1 to extract location of TC and R1-LC
B POST <new transaction> TC 201 CREATED {Location: T2} Creating a new transaction

B POST <LOCK {type:S}> R1-LC 201 CREATED {Location: R1-L1} POSTing an SLOCK to R1-LC

A GET R1 200 OK GETting R1 to extract location of R1-LC

A POST <LOCK {type:S}> R1-LC 201 CREATED {Location: R1-L1}  POSTing an SLOCK to R1-LC

B GET R1 200 OK GETting the locked representation of R1

A GET R1 200 OK GETting the locked representation of R1

A GET R2 200 OK GETting the locked representation of R2

B GET R2 200 OK GETting R2 to extract location of R2-LC

B POST <LOCK {type:X}> R2-LC 403 Forbidden POSTing an XLOCK to R2-LC. R2 is locked, POST fails.
A GET R2-L1 200 OK GETting R1 to extract location of R2-L1-CR

A PUT <new version> R2-L1-CR 201 CREATED Creating a conditional Representation of R2

A DELETE T1 200 OK Commiting R2-C to R2 and Unlocking R1 and R2
B POST <LOCK {type:X}> R2-LC 201 CREATED {Location: R2-L1}  POSTing an XLOCK to R2-LC

B GET R2 200 OK GETting the locked representation of R2

B PUT <new version> R2-C 201 CREATED Creating a conditional Representation of R2

B PUT <new version> R2-C 200 OK Updating the conditional Representation of R2
B DELETE T2 200 OK Commiting R2-C to R2 and Unlocking R1 and R2

Figure 5 — example of two transactions operating on the same resources

The example in Figure 5 shows how two separate
transactions can safely operate on the same resqurc
purely through HTTP operations. We can also see tha
while the two transactions are able to place an GKO
on R1, client B is not allowed to XLOCK R2 whilaesht
A already has an XLOCK on it, a direct applicatioh
the lock compatibility rules seen in Table 2. laste
client B continues the transaction when R2 is ukddc

Lockable Resource (R) A resource that locks can be applied to
Operations: GET, [By XLOCK owner: PUT]
Resource Lock Collection  The collection of locks that apply to a particular

(R-Lc) resource. Operations: GET, POST

Lock Resource (R-L) The representation of a specific lock
Operations: GET

Conditional Resource The potential representation of a locked resource,

Representation (R-C) once its lock is committed. Operations: GET, [By

XLOCK owner: PUT, DELETE]

Transaction Collection (Tc) The collection of transactions on the server.
Operations: POST

Transaction Resource (T) The representation of a specific transaction.
Operations: GET

Transaction Lock The collection of locks connected to a specific

Collection (T-Lc) transaction. Operations: GET, [By transaction
owner: DELETE]

Table 7 — Resources and operations

6. Soundness/ Completeness

One may argue about the necessity of a well-formed
and two-phase history, which our approach carefully
follows. To prove the soundness of these properties
use the converse locking theorem [9]. If a trarieacis
not well-formed or not two-phase, it is possiblewtdte
another transaction such that the resulting parahiegal
but not isolated history, unless the transaction is
degenerated.

Suppose that transactidh= ((T,a;,1;)|li = 1, ...,n)
is not well-formed and not degenerated. Then for

somek, T[k] is a GET or PUT action that is not covered
by a lock. The GET case is proved here; the PUE tas
similar.
Let T[k] = (T,GET,r). Define the transaction,
T =
{(T"XLOCK, r), (T "WRITE, r), (T "WRITE, r), (T ,UNLOCK, 7))

That is,T' is a double update to resource By
inspectionTis two-phase and well-formed. Consider the
history;

H =
(TLli < KT T[], TIK], T[3L T T4DIKT i1 > k)

That is,H is the history that places the first update of
T'just before the uncovered GET and the second apdat
just after the uncovered GEM. is a legal history, since
no conflicting locks are granted on resourcat any
point of the history. In addition, for somg(T’, (r, j), T)
and(T,(r,j),T") must be in the DEP); henceT <<
<pr '<<<yx T. ThusT is a wormhole in the histor.
Invoking the wormhole theorentl is not an isolated
history. Intuitively, T will see resource while it is being
updated by". This is a concurrency anomaly.

Now it is possible to show, if a history is not two
phase it can be legal but not isolated;

Suppose that transactidh= ((T,q;, ;)i =1,...,n)
is not two-phase and not degenerate.

Then for some < k, T[j] = (T,UNLOCK,r1) and
T[k] = (T,SLOCK, r2) or T[k] = (T, XLOCK, r2).
Define the transaction
T =
<(T’,XLOCK, r1), (T XLOCK, r2), (T WRITE, r1), (T WRITE, r2),

(T"UNLOCK, r1), (T, UNLOCK, r2) )



That isT' updates resourcel andr2. By inspection,
T'is two-phase and well-formed. Consider the history
H =(T[i]li < MITIKTLli > j)

This says thaH is the history that placés just after
the UNLOCK ofrl by T. H is a legal history, since no
conflicting locks are granted on resourdeat any point
in the history. In addition, sinc€ is not degenerate, it
must GET or PUT resourad before the unlock at stgp
and must GET or PUT resourc2 after the lock at step
k. From this(T,(r1,j1),T") and(T,(r2,j2),T") must be
in the DEPH). HenceT <<< T <<<T, andT is a
wormhole in the historyH. Invoking the Wormhole
Theorem,H is not isolated history. Intuitively] sees
resourcerl before it is updated Wy and sees resource
r2 after it is been updated BY; thusT is before and
afterT'. This is a concurrency anomaly.

7. Conclusions and future work

We have provided a RESTful framework for
transactions by adapting the conventional locking
mechanism to work within the architectural style of
REST. We have shown that this locking mechanism is
well-formed and sound. Future extensions to thigkwo
include multi-service and multi-owner transactigkiso
the model can be extended to express transactiats t
include any HTTP operation rather than our current
limited scope. Further plans include long-running
transactions with relaxed ACID constraints.
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