
A Uniform Device Information Access for Context-aware Middleware

Weiping Li, Weijie Chu, Frank Tung, Zhonghai Wu
School of Software and Microelectronics, Peking University,

Beijing, China, 100871
(wpli, chuwj, fctung, wuzh)@ss.pku.edu.cn

Abstract

This paper presents a middleware for building

context-aware applications. One of the main
components, Device Information Access (DIA), is
discussed in detail. Since many kinds of devices (e.g.,
RFID, GPS, Bluetooth, etc.) can be used to collect the
context information, the middleware defines the Device
Information Access component to communicate with
different devices. A set of interfaces are devised in DIA,
and the common functions such as getting and setting
a data element are defined in the interfaces. For each
device, we shall provide an implementation of the
interfaces to communicate with the corresponding
servers or software agents. DIA can communicate with
the software agents or servers using various protocols
such as RMI, Web Services, and REST. In this way the
access to the hardware are encapsulated by the
middleware and virtualized to the end-point
applications. The architecture of the middleware and
the functions of DIA are discussed, and an empirical
application is also developed to validate our design.

Key words: Context-aware services, Middleware,

Device Information Access.

1. Introduction

Advances in the area of internet of things have

made context-aware computing an emerging
application paradigm. Context-aware applications
could adapt their behavior automatically to the
environment changes (e.g., location, temperature) by
modeling explicitly these environment factors as
context attributes [1]. An important next step for
context aware computing is to develop context-aware
middleware to facilitate context-aware applications. A
context-aware middleware usually collects context
information from sensing devices and applications,
manipulates them and delivers the required contexts to
the corresponding applications. With the aid of
context-aware middleware, applications only need to

deal with the context attributes provided by the
middleware and adapt their behaviors accordingly [2].

Currently, many context-aware middleware has
been proposed to aid the development of context-
aware applications. Context Toolkit [3] is a well-
known infrastructure supporting the development and
execution of context-aware applications. By
introducing context widgets for collecting,
synthesizing and interpreting contexts, the middleware
decouples the collection and use of contexts to
facilitate the development of context-aware
applications. Lime [4] is another one that supports both
logical and physical mobility of agents in context-
aware environment. It provides a coordination model
for agents to share their contexts and collaborate
seamlessly through the concept of tuple space. Cabot
[5] provides additional context inconsistency detection
and resolution services besides supporting context-
awareness. In addition, there are also many similar
context-aware efforts on middleware for pervasive
computing [6] [7]. K. Kjær provides a survey of
context-aware middleware and taxonomy to categorize
them [8].

In context-aware middleware, many sensing
technologies, such as RFID, Bluetooth, and GPS, can
be used to get the context information. In our ongoing
research project a context-aware middleware is defined.
The Device Information Access module, as proposed,
is the components which interacts with the devices and
exchanges the data between the middleware and the
devices. DIA communicate with the software agents of
the devices, or simply a software component
representing a certain information source, say, a
weather forecast service from Internet.

The rest of this paper is organized as follows:
Section 2 describes the proposed context-aware
middleware. Section 3 presents the details of the
device information access. Section 4 gives an example
to illustrate the middleware as well as the DIA. Finally,
section 5 concludes this paper and outlines future work.

2 The context-aware middleware

This section gives an overview of the context-aware
middleware. The ‘user’ of the middleware is not the
end user, but the software component that may
communicate with the middleware. The architecture
and the functions are also given.

2.1 The users

This section describes the users for the middleware
in terms of its functions. The user here is neither the
end user of a context-aware application nor the
programmer who will use the APIs of the middleware
to develop a context-aware application, but the one
that uses the middleware. Hence typically the user of
the middleware is the context-aware application system,
the external device (e.g. Bluetooth) manager or the
system administrator.
1. The context-aware application system relies on the

middleware to provide the functions such as
context management, send out some data objects to
persons or hardware devices.

2. The device manager is the agent of the hardware
devices or the software components that
communicate with the middleware. It may send
data or event to the middleware.

3. The system administrator is the person who is
responsible for the configuration and maintenance
of the middleware. He or she would build the
context information database and the rules
according to the context model.

2.2 The architecture of the context-aware
middleware

The architecture of the context-aware middleware is

shown in figure 1. With the middleware, one can
develop his own applications. There are two
repositories that work together with the middleware,
namely, service repository and application specific
context repository. The context model of a given
application is manifested in the application repository
shown on the figure 1, but the middleware itself is
independent of the application context model. For
example, the context model could be ontology based
model, rule based model or ad hoc model. The main
functions of every part are shown as follows:

1) Application Specific Context Repository

The context repository stores the real time context
information as well as the rules used in a specific
application.
• Context information database keeps the context

information according to a given context model.

• Rule repository stores the rules that will be used in
the context reasoning.

The context-aware application developers should
define both the context model and the reasoning rules.
In the runtime, Context Information Collection will get
the real time context information and store it into the
context information database. Surely the context
reasoning may also get some deduced context
information and deduced rules.

Figure 1 the architecture of the context-aware
middleware–developer’s perspective

2) Service Repository

Service Repository stores the services used in the
application system. The basic functions of the service
repository include service registry, service
maintenance, service discovery, and service
composition. The services may be developed by the
application developers or come from some third party
service providers.
3) Device Information Access (DIA)

DIA is the interface between the context-aware
middleware and the external devices. The device here
refers to not only the hardware device but also any
software component that can provide context
information. The functions of DIA include:
• GET information from devices
• PUT information to devices
• SET the configuration information to the devices.
• Event handler: With the basic functions of DIA,

i.e. GET, PUT and SET functions, event handler
provides two ways of getting specific information
from the devices: polling and event driven trigger.

4) Context Information Collection (CIC)

CIC gets the real time context information from
DIA and puts it into the context information repository.
CIC also provides interfaces with other components,
such as Context reasoning, Service Management and
even the application.
5) Context Reasoning (CR)

CR will perform some inferencing on the context
information and the rule information when any new
context information is added or when the application
manager triggers it. CR will try to guess what the
current situation is and the result can be further used
by the application system to provide proper service(s)
to the end user. CR can add some deduced context and
rules into the application repository. In this way the
application repository will get more and more
complete and accurate.
6) Service Management

Service Management will dynamically provide the
services according to the current situation. The main
functions are service registry, service discovery,
service composition, and service monitoring. There are
two ways to provide services–active and passive.
When any event happens and the context changes, the
service will actively provide services to the end user
according to the reasoning result. The other is the
passive way, in which the application or the end users
request some services from the middleware.

3 The devices information access

DIA is the interface between the middleware and
the external devices. The main function of DIA is
creating a technology-independent, high-level
application programming interface for two-way
communication between external devices and the
middleware. Based on DIA, technology-dependent
attributes of the underlying technologies can be
masked. Context information consists of many factors,
including physical location, weather conditions, time
of day, date and person’s health status, etc. These are
some of the example of important context information
in context-aware systems.

3.1The functions of DIA

In DIA, we try to standardize a set of high-level
interfaces which are built upon context information
from heterogeneous context sources. So far we have
implemented a variety of APIs ranging from location,
weather, and health. To demonstrate this kind of API,
we shall present a more detail description of the
location API.

DIA Location API

The DIA Location API provides the following two
main functions:
1) Supporting Request-Response pattern location

information of the devices. The device’s location
is computed in response to an upper layer query.

2) Supporting event listener and subscription pattern
for location information. The upper layer can
request to be notified whenever a certain location-
based event occurs.

This section describes the object model of DIA
Location API shown in Figure 2.

Location: the Location class represents the location
information of device; the location is represented by
the Location object that contains an optional
Coordinates object representing the geographical
coordinates (latitude, longitude and altitude) and
information about their accuracy, a timestamp and
possibly information about speed and course of the
terminal. The Location gives the accuracy of the
coordinates as the radius of a circular area indicating
the confidence level.

ZoneInfo

Location

Location()
getTimestamp()
getZoneInfo()
getCoordinateInfo()

Coordinate

LocationProvider

LocationProvider()
getLocation()
getAllDevices()
getAllZoneInfos()
getZoneInfo()

DepartEventListener

EventSource

addListener()
removeListener()
activeEventSource()

DetectedEventListener

Figure 2 the object model of the DIA Location API

ZoneInfo: the ZoneInfo class represents an area.

We partition real environments into several zones,
each assigned to a given area of interest. Each zone is
assigned a set of attributes, including a name, a set of
optional coordinates, a geometric shape description,
and a textual description. ZoneInfo are stored into a
persistent repository, called ZoneInfoStore. The
ZoneInfoStore class provides methods to create,
update, retrieve and delete ZoneInfo from a persistent
ZoneInfo store.

Coordinate: The Coordinate class represents
geometric coordinates as latitude-longitude-altitude
values. The values are expressed in degrees using
floating values.

LocationProvider: The LocationProvider class
represents a module that is able to determine the
location of the terminal. This may be implemented by
using existing location methods, including satellite
based methods like GPS, and short-range positioning
methods like Bluetooth Local Positioning. The
application can select the location provider and obtain
a LocationProvider instance that is able to fulfill
requirements as closely as possible. By using the
LocationProvider, the application can get Location
objects representing the location of the terminal at the
time of the measurement.

EventSource: The EventSource class represents the
event source of all the events occurs in our middleware.
We have defined two events in the events source, one
is DeviceDepartEvent, and the other is
DeviceDetectedEvent. The DeviceDepartEvent class
represents the “One terminal departs from the zone”
event. The DeviceDetectedEvent class represents the
“One terminal is detected by the zone” event. The
EventSource class includes three operations:
AddListener, RemoveListener and ActiveEventSource.
AddListener operation means add EventListener to the
event source. RemoveListener operation means
remove the EventListener from the event source.
ActivateEventSource operation makes the event source
activated and informs the event listener when
correlative event occurs.

The implementation of the DIA interfaces is deeply

depended on the technologies and devices. Usually for
each kind of device there is a software agent for it. For
instance, a Bluetooth server will manage some
Bluetooth devices, an RFID middleware will
communicate with many RFID readers, and so on.
Mostly, the software agents are distributed with the
context-aware application system. For instance, in the
airport location-based system in section 4, the
Bluetooth servers are deployed in different airports. In
that case, the DIA is implemented with the Java
Remote Method Invocation (RMI) to communicate
with the Bluetooth servers. Certainly other
technologies such as Web Services and REST can help
to implement the DIA interfaces.

3.2 Data format in the middleware

This section describes uniform data format in the
DIA location component. The different positioning

implementations have heterogeneous data format for
location information. The DIA components hide this
heterogeneity of the various positioning technologies
from the upper layers. One important task is the
mapping between different locations data formats if the
request specifies a different format than provided by
the selected technology. In this case, DIA components
use Hybrid location models [9] (combining symbolic
and geometric coordinates models) to represent
location information.

In DIA Location API, the ZoneInfo class represents
hybrid location information. A given ZoneInfo is an
interested area. Each zone is assigned a set of
attributes, including a name, a set of optional
coordinates, a geometric shape description, and a
textual description.

Figure 3 a location model

Figure 3 shows an example of location, teaching

building A is located in our school, and room A21 is
our office. The location information of room A21 is
described in table 1.

Table 1 The Location info of roomA21

Name :Rome A21

Coordinates
Latitude : 61.448
Longitude : 23.885
Altitude: Null

ZoneInfo
Street: No.24 Jinyuan
City: Beijing
Country: China

Description

BuildingName: Teaching Building
RoomName: A21
Floor:2
NeighbourRoom: A22
NeighbourRoom: A20

4 An example application

To evaluate the functionality and performance of

the middleware, this section presents an example to

show how to establish a context-aware application
based on our middleware. In this airport example the
Bluetooth technology is used for getting the location
information. A simple context model is built to
analysis the behavior of the passengers and
recommends proper services to the passengers.

4.1 Smart airport scenario description

The experiments reported in this paper are based on
the following scenario. In an airport, Mr. Mo is a
passenger to fly from Beijing to Shanghai at 12:00. He
arrives at the airport at 11:05. On his way to the airport,
because he doesn’t appear in the region of check-in
one hour before his departure time; he receives a short
message to remind him that he needs to check-in in a
hurry. Mr. Mo checks in at 11:10 and then goes to the
security check. His boarding time is 11:40. On his way
to the gate, he meets a friend who has not seen for
many years. They talk for a long time with each other
and Mr. Mo forgets the boarding time. At 11:30,
because he doesn’t appear in the gate area ten minutes
before boarding time, he receives a short message to
remind him that he needs to go to the gate immediately.
Thanks to this smart airport service, Mr. Mo boards his
plane just in time.

The main context variables in this application are
shown in table 2.

Table 2 Main Context variables

Context Type Comments

Time time Current time
Check-in
location Boolean Whether the passenger

appears in the check-in area

Boarding
location Boolean

Whether the passenger
appears in the boarding
area

4.2 Hardware deployment

To develop this system, we choose the BLIP [10], a
Bluetooth-based positioning system, as context sensor
to locate passengers. It is deployed in the area of
check-in and boarding gate to detect whether the user
appears in those regions. The area covered by a blip
node (Bluetooth sensor inside) is called a zone and an
airport will be divided into many such zones. Each blip
node uses Received Signal Strength Indicator (RSSI)

to detect the position of a passenger in its zone. The
Blip nodes accuracy of up to ± 15 meters will
therefore suffice.

4.3 Application’s architecture

The system architecture of Smart Airport is shown
in Figure 4.

Context-Aware Middleware

Smart Airport Applications

Device Information Access

Bluetooth Devices

DIA API

BLIP Bluetooth
Positioning System Implements

Context Management

Service Management

Figure 4． Smart Airport Application Architecture

4.4 Performance analysis

During the experiments, we found that Blip
Bluetooth positioning system could detect almost all
mobile phones that have Bluetooth activated within the
zone. Also it can efficiently push the message to
mobile phones with a short response time and a high
performance rate.

Table 3.Testing Data of this experiment:

Phone’s
 Type

Time
phone
entering
the zone

Time
finding
phone

Time
Difference

OPPO 21:50:13 21:50:17 4seconds
OPPO 21:50:50 21:50:59 9second
OPPO 21:52:22 21:52:28 6seconds
NOKIA 21:53:21 21:53:27 6 seconds
NOKIA 21:55:55 21:56:05 10 seconds
NOKIA 21:59:36 21:59:39 3 second

The application accesses the middleware API
through the encapsulated Blip positioning system
instead of calling Blip APIs directly. The result shows
that DIA encapsulation did not cause delay of the
system response time. The average time for detecting
the phone through DIA and BLIP API is almost the
same, 6.3 seconds. We show the experiment data in
table 3.

5 Conclusions

This paper proposes a context-aware middleware
with a more detailed discussion of one of the main
components, DIA. In DIA we define a set of interfaces
which exchanges data between the middleware and
different devices. DIA leverages different protocols to
communicate with remote devices. An experimental
application is developed to validate the middleware
and the result shows that this middleware provides the
core functions for developing context-aware
applications.

Next, more modules will be added into DIA to deal
with new devices. The context model will be another
focus, and we are currently working on an ontology-
based context model and reasoning method to better
collect and understand the context.

6 Acknowledgments

Research in this paper is supported by the Danish

Strategic Research Council (Grant NO. 2106-08-0046)
and the National High-Technology Research and
Development Plan of China (863) under Grant NO.
2009AA04Z120.

7 References

[1] Yau, S.S., Wang, Y., and Karim, F. Development

of Situation-Aware Application Software for
Ubiquitous Computing Environments, In
Proceedings of the 26th Annual International
Computer Software and Applications Conference
(COMPSAC 2002), pp. 233-238.

[2] Chunyang Ye， S.C. Cheung， et al, A Study
on the Replaceability of Context-aware
Middleware, Proceedings of the First Asia-Pacific
Symposium on Internetware, 2009, Beijing,
China

[3] Dey, A.K., Abowd, G.D., and Salber, D. 1999. A
Context-Based Infrastructure for Smart
Environments. In Proceedings of the 1st
International Workshop on Managing Interactions
in Smart Environments, Dublin, Ireland,
December 1999, pp.114-128.

[4] Murphy, A.L., Picco, G.P., and Roman, G-C.
LIME: a coordination model and middleware
supporting mobility of hosts and agents. ACM
Transactions on Software Engineering and
Methodology, vol.15, no.3, July 2006, pp. 279-
328.

[5] Xu, C., and Cheung, S.C. Inconsistency Detection
and Resolution for Context-Aware Middleware
Support. In ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Sep 2005,
pp. 336-345

[6] Bellavista, P., Corradi, A., Montanari, R., and
Stefanelli, C., Context-aware middleware for
resource management in the wireless Internet.
IEEE Transactions on Software Engineering,
vol.29, no.12, Dec. 2003, pp. 1086-1099

[7] Capra, L., Emmerich, W., and Mascolo, C.
CARISMA: Context-Aware Reflective
Middleware System for Mobile Applications.
IEEE Transactions on Software Engineering, vol.
29, no.10, Oct 2003, pp. 929-945.

[8] Kristian Ellebæk Kjær, A SURVEY OF
CONTEXT-AWARE MIDDLEWARE, in
Proceedings of the 25th conference on IASTED
International Multi-Conference: Software
Engineering, 2007, Innsbruck, Austria, pp 148-
155.

[9] Becker C, Durr F, On location models for
ubiquitous computing. Personal and Ubiquitous
Computing (Lecture Notes in Computer Science,
vol. 9, No.1). Springer London, 2005; 20–31.

[10] http://www.blipsystems.com/

