
A Hybrid Scheme for Controlling Transactional Composite Services

Xinfeng Ye Yi Chen
Department of Computer Science

Auckland University
Auckland, New Zealand

xinfeng@cs.auckland.ac.nz yche486@aucklanduni.ac.nz

Abstract—This paper proposes a hybrid concurrency control
scheme for transactional composite services. The scheme uses
the information gathered from the workflow specifications of
the composite services to reduce the overhead in detecting
cycles in the serialization graph. The scheme carries out run-
time analysis of the SQL statements used by the composite
services to determine whether the clients that execute
composite services depend on each other more accurately. As a
result, it reduces the response time to some users. The
proposed scheme also tackles the repeated rollback problem
facing many concurrency control schemes.

Keywords- concurrency control; composite services

I. INTRODUCTION

Business processes can be modeled as composite
services consisting of many tasks implemented by Web
Services. The workflow of a composite service can be
specified using BPEL4WS [4]. Since different composite
services might access the same data concurrently, it is
necessary to ensure the correctness of the concurrent
execution of the composite services.

The ACID-relaxed concurrency control schemes, e.g. [1,
5, 6], have been used for long-running applications. In these
schemes, a composite service releases its lock on a service
provider after its call to the service provider is completed.
That is, locks on the service providers are released before
the composite service terminates. These schemes use a
protocol similar to the distributed Serialization Graph
Testing protocol [12] to detect violation to the serializability
of the system. If a violation is detected, the composite
services are rolled back and re-executed.

A problem with the ACID-relaxed schemes is that, if a
composite service is re-executed for serializability violation,
there is no guarantee that the re-execution can be carried out
successfully. As a result, some composite services might be
rolled back repeatedly. For example, assume that (a) a client
c1 accesses two service providers sp1 and sp2 in sequence
while client c2 accesses sp2 and sp1 in sequence, and, (b) c1
and c2 start their execution concurrently. It can be seen that
c1 would access sp1 first while c2 would access sp2 before c1.
As a result, a cycle involving c1 and c2 is formed in the
serialization graph. Hence, the operations of c1 and c2 are re-
executed. However, during the re-execution, the above

scenario might reoccur again. Thus, cs1 and cs2 might be
rolled back again.

In ACID-relaxed schemes, clients depend on each other
if they operate on the same set of data. Many existing
schemes regard two clients depend on each other if they
access the same service provider. This approach might
create a lot of false dependency amongst the composite
services. This is because the clients might pass different
parameters to the service provider. Thus, the service
provider might access different sets of data while being
activated by different clients. Since locks on the service
providers are released before the clients terminate, if a client
aborts, the clients that depend on it also need to be aborted.
Thus, to prevent releasing results to the users prematurely, a
client can only terminate after all the clients that it depends
on have terminated. False dependency would make clients
wait for each other to terminate unnecessarily. Hence, it
would increase the response time of the clients.

This paper proposed a concurrency control scheme for
executing transactional composite services. It uses the static
analysis technique to collect information about the
composite services off-line. As the workflows of composite
services are known in advance, by analyzing the workflows
of the composite services, the service providers accessed by
the composite services as well as the composite services that
are likely to form cycles in the serialization graph can be
known in advance. This information is used by the
concurrency control scheme (a) to reduce the overhead on
checking the serializability of the system, and, (b) to avoid
the repeated rollback problem described above. The scheme
analyses the SQL statements used to manipulate data at run-
time to reduce the amount of false dependency amongst the
clients. To minimise the response time, under normal
circumstance, the scheme allows clients to carry out their
calls to the service providers without waiting for other
clients to terminate. For the clients that are re-executed due
to serialization violation, the scheme requires the clients to
reserve execution positions before they start their execution
to avoid repeated rollback.

The rest of the paper is organized as follow. Related
works are described in section II. The proposed scheme is
given in section III. Section IV compares the performance
of the scheme with some existing schemes. Conclusions are
given in section V.

2010 IEEE International Conference on Web Services

978-0-7695-4128-0/10 $26.00 © 2010 IEEE

DOI 10.1109/ICWS.2010.51

600

II. RELATED WORK

The scheme proposed by Ye et al. [18] requires a
composite service to reserve an execution position on each
of the service providers to be accessed by the composite
service before the execution starts. The position reservation
scheme ensures that no cycles can be formed in the
serialization graph. As the execution of the composite
services is ordered according to their reserved positions,
sometimes a composite service has to wait for others to
carry out their execution despite the execution of the
composite service does not cause serializability violation.
Hence, the response time to the composite service might be
unnecessarily increased. The scheme in this paper only
requires the set of composite services whose executions
might violate the serilizability of the system to reserve their
execution positions and to execute in the order of their
reserved positions. Thus, it causes less unnecessary delay to
the execution of the composite services.

Haller et al. [6] described a decentralised serialization
graph testing protocol to carry out concurrency control in
peer-to-peer environments. In [6], each peer keeps the
information on precedence relations amongst the peers. The
precedence information is passed amongst the peers when
necessary to discover non-serializable execution of the
peers. The approaches proposed by Alrifai et al. [1] and
Choi et al. [5] use the same principle as Haller’s approach in
detecting non-serializable executions. Microsoft BizTalk
Server [16] uses the saga model [17] to manage long-lived
processes. All these schemes suffer a drawback as they
might repeatedly roll back some composite services.

Optimistic concurrency control protocols [8, 9] validate
the serializability of the system at the end of the execution
of each transaction. Instead of waiting until the end of a
composite service’s execution, the scheme in this paper rolls
back a client as soon as it is discovered that the
serializability of the system is violated. Thus, it avoids
wasting resources on executing operations that will be rolled
back later as the scheme initiates the rollback as soon as it is
needed.

Yang et al. [14] proposed a scheme for consistently
updating replicated data in Internet-based applications.
Yang’s scheme only concerns with the ordering of a
replicated operation. Since multiple service providers are
accessed in a composite service, unlike Yang’s scheme, the
scheme in this paper considers the ordering of multiple
operations.

Li et al. [15] described an approach for deriving the
transactional properties of composite web services. Unlike
this paper, instead of discussing concrete scheduling
schemes, they focused on studying whether a given
composite service is schedule-able.

Many works have been carried out on query containment
problem [7]. They focused on determining whether the
constraints of one query are included in another query.
Different to these works, the run-time analysis of the SQL
statements in this paper focuses on checking whether the

data set operated on by the SQL statements intersect with
each other.

III. THE SCHEME

A. System Model
It is assumed that the workflows of the composite

services are known in advance and clients only execute
these composite services1. It is assumed that (a) each service
provider provides a compensation operation to undo the
effect of its operation, and, (b) a client re-executes the
composite service after it is rolled back.

According to the serilizability theory [2], two clients are
regarded as conflict if they access the same set of data and at
least one of them modifies the data. Two clients become
conflict with each other through invoking the same service
provider (i.e. the service provider modified the data shared
by the two clients). It is assumed that the data held by a
service provider are stored in a database and the granularity
of data sharing is at the database’s row level. The service
providers access the databases using SQL statements. For
two clients, say c1 and c2, if (a) they become conflict with
each other while accessing a service provider, and, (b) c1
accessed the service provider before c2, it is said c2 depends
on c1 or c1 precedes c2 (denoted as c2 c1). A serialization
graph is a directed graph (N, E) where “N = {c | c is a
client}”, and, “E = {<ci, cj> | (i j) (ci, cj N) (ci
cj)}”. N is the set of nodes and E is the set of edges.
According to the serializability theorem [2], the execution of
the composite services is regarded as correct if the
serialization graph is acyclic.

B. An Overview
Figure 1 is a conceptual diagram of the system. An

execution coordinator resides on each service provider’s
site. Each execution coordinator provides the same
operation as its corresponding service provider. On the
client side, the execution engine of the composite service
binds the operations in the composite service to the
operations provided by the execution coordinators. Thus,
calls to the service providers are processed by the execution
coordinators first. Each execution coordinator keeps an
execution queue to hold the execution requests from the
clients. To ensure execution order, the requests in the queue
are executed one at a time. When it is the turn for a client’s
request to be executed, the execution coordinator invokes
the corresponding operation on the service provider. The
result produced by the service provider is sent back to the
client through its execution coordinator.

The workflow of each composite service is analyzed off-
line by a workflow analyzer. From the analysis, the service
providers that might be accessed in a composite service are
known. The workflow analyzer checks the composite

1 This assumption is reasonable since in an enterprise environment
users are only allowed to run pre-configured applications, e.g.
accounting, billing, etc.

601

services to find out the sets of composite services whose
executions might form cycles in the serialization graphs.
The information collected by the analyzer is disseminated to
the execution coordinators involved in the execution of the
relevant composite services. Thus, each execution
coordinator is aware of (a) all the composite services that
access it, (b) the composite services that have the potential
to generate non-serializable execution, and, (c) for each
composite service, the other execution coordinators that are
involved in the execution of the composite service.

Figure 1. A Conceptual Diagram of the System

When a client executes a composite service, the client
terminates if it aborts or commits all its operations. Like
other ACID-relaxed schemes, for two clients, say c1 and c2,
such that c2 c1, c2 is allowed to access the service
providers shared by c1 and c2 before c1 terminates. If c1
aborts later, c2 has to abort as well since it might have
accessed some values written by c1. Thus, a client can only
terminate if all the clients that it depends on have
terminated. The analyzer inserts some operations at the end
of each composite service’s workflow to determine whether
a client can terminate. These operations ask each of the
service providers accessed by the client to find out whether
the client’s preceding clients have all terminated.

A server code analyser is used to analyse the code
implementing the service providers off-line. The analyser
inserts some statements into the service providers’ code to
record the SQL statements being executed and the
parameters being passed to the SQL statements while the
service providers execute the clients’ requests. After a
service provider completes the execution of a client’s
request, the service provider passes the information back to
the execution coordinator. The execution coordinator
analyses the SQL statements executed for different clients to
determine whether the statements operate on any common
data set. This allows the execution coordinator to determine
whether the clients conflict with each other. The checking
for conflicting clients can be carried out at the same time as
the next client’s request (if any) is executed by the service
provider. Hence, the checking does not block the operation
of the service provider.

If two clients conflict with each other, the execution
coordinator checks whether the composite services executed
by the two clients might form a cycle according to the
information provided by the workflow analyser. If they
might form a cycle, the execution coordinator runs a
distributed cycle-chasing algorithm [12] to check whether
there is a cycle in the serialization graph. The algorithm
passes probes along the edges in the serialization graph.
Each execution coordinator only needs to know the
dependency relations between the clients on its own site. It
does not need to know the complete serialization graph of
the system. Since a client might access multiple service
providers, when a client receives a cycle-chasing probe, the
probe is propagated to all the service providers accessed by
the client to ensure that all the relevant paths in the
serialization graph are checked. If a cycle is discovered, all
the clients in the cycle are aborted and re-executed.

To prevent the repeated rollback problem, before a client
is re-executed, the execution coordinators involved in
executing the client are asked to reserve a position in their
execution queues for executing the client’s requests. The
execution coordinators ensure that the positions reserved for
the client allow the client’s requests to be carried out in the
same relative order in terms of the other re-executed clients
on all the service providers. For example, if two clients, say
c1 and c2, both need to access two service providers, say sp1
and sp2, then c1’s reserved position should precede c2’s
position on both sp1 and sp2 or vice versa. By reserving
positions, the scheme prevents cycles from forming in the
serialization graph.

C. The Workflow Analyzer
The cycle detection algorithm needs to exchange

messages amongst the execution coordinators. To minimize
the overhead, the algorithm should only be executed when
there is a potential for the clients to form a cycle. By
checking the workflows of the composite services, the
workflow analyzer can determine whether a composite
service might form a cycle with other composite services.

The workflow analyzer constructs an undirected
workflow relationship graph according to the workflows of
the composite services 2 . Each node in the graph is a
composite service. If two composite services access at least
one common service provider, an edge is created between
the two nodes. Finding all possible cycles in the graph is
equivalent to the problem of finding the bi-connected
components in an undirected graph. The analyser uses
Tarjan's Algorithm [11] to find all the cycles in the graph.
For each composite service in the cycles, the analyzer
creates a potential conflict set to record the composite
services that connect to the composite service in the cycles.
The potential conflict set for a composite service, say i, is
denoted as PCi. PCi also includes i itself. This is because

2 There are only a limited number of composite services. Thus, the
graph is a finite graph.

…client client

execution
co-ordinator

execution
co-ordinator

service
provider

service
provider

…

602

two clients executing the same composite service that
contains concurrent access to service providers (e.g.
BPEL4WS’s parallel flow activity) might forms a cycle in
the serialization graph. Since a composite service, say i, can
only form cycles with the composite services in PCi, the
cycle-chasing algorithm only needs to propagate the cycle-
chasing probes to the clients executing the composite
services in PCi.

For the workflow relationship graph in Figure 2, there are
three cycles, i.e. CS1-CS2-CS3, CS1-CS2-CS3-CS4, and, CS1-
CS3-CS4. The potential conflict sets are PCCS1={CS1, CS2,
CS3, CS4}, PCCS2={CS1, CS2, CS3}, PCCS3={CS1, CS2, CS3,
CS4}, PCCS4={CS1, CS3, CS4} and PCCS5={CS5}. CS2 and
CS4 are not in each other’s potential conflict sets since they
are not connected to each other in the cycles. The potential
conflict sets are given to the relevant execution
coordinators. Assume that (a) clients c1, c2 and c3, are
executing CS1, CS2 and CS5 respectively, and, (b) c2 c1
and c3 c2. Since CS1 and CS2 might form a cycle (i.e.
CS1 PCCS2), the execution coordinator initiates cycle
detection to check whether there is a cycle in the
serialization graph after it is known that c2 depends on c1.
However, since CS2 and CS5 cannot be in a cycle (i.e.
CS2 PCCS5), there is no need to carry out cycle detection
when it is determined that c3 depends on c2. For the same
reason, when an execution coordinator receives a cycle-
chasing probe from a client, say c, it only propagates the
probe to the clients that are executing the composite services
that are in PCc.

Figure 2. A Workflow Relationship Graph

D. Detecting Conflicting Clients at Run Time
Clients accessing the same service providers might not

access the same set of data. This is because, as clients might
pass different inputs to the service provider, this might
result in different sets of SQL statements being executed.
Also, even if the same set of SQL statements are executed,
if the parameters given to the SQL statements are different,
different sets of data might be manipulated by the SQL
statements. Thus, by comparing the SQL statements that are
executed by the service provider for different clients, it is
possible to determine whether the clients access the same set
of data. Determining whether two clients conflict based on
whether they share data instead of whether they access the
same service provider can eliminate some of the false
conflict amongst the clients.

According to [2], two operations conflict if they access
the same data and at least one of them modifies the shared
data. There are four types of statement for data manipulation

in SQL, i.e. SELECT, UPDATE, INSERT and DELETE statement.
The SELECT statement can be regarded as the read operation
while the other three types of statements can be regarded as
the write operation. Thus, two SQL statements are regarded
as conflicting with each other if (a) at least one of the
statements is a DELETE, INSERT or UPDATE statement, and, (b)
they might operate on the same data.

A service provider might execute multiple SQL
statements. Two clients conflict with each other if any of the
SQL statements executed on behalf of different clients
conflict with each other. The following steps are used to
determine whether two SQL statements conflict.

1) Determine the types of the SQL statements: As at
least one of the statements must be a write operation, it is
necessary to check whether at least one of the SQL
statements is a DELETE, INSERT, or, UPDATE command.

2) Determine the columns that the SQL statements
operate on: If two SQL statements access the same data,
they must operate on at least one common column of a
database table. Each command has some elements
specifying the columns that the command operates on. By
comparing these elements, it can be determined whether two
SQL statements access any column in common. For
example, assume there are two SQL statements, i.e.
SQL1=“SELECT Name FROM Persons”, SQL2=“UPDATE
Persons SET year=5”. SQL1 and SQL2 do not operate on any
shared data as they handle different columns in the table.

3) Compare the constraints for selecting rows in a table:
The “WHERE” clause in a SQL statement decides the
rows that will be operated on by the SQL statement.
First, the Boolean expression contained in the
“WHERE” clause is converted to a disjunctive (OR)
normal form. A disjunctive normal form consists of
one or more disjuncts, each of which is a
conjunction (AND) of one or more literals [10].
Each literal is an expression specifying the constraint
that the value of a column should satisfy.
Let the “WHERE” clauses of two SQL statements are

pspiini subitemitemitemwhere
i..1..11 such that

and
qtqjjmj subitemitemitemwhere

j..1..12 such that .
To determine that two SQL statements do not
operate on shared data, it is necessary to show that
the “WHERE” clause of the two SQL statements
cannot be evaluated to true at the same time. That is
“ 21 wherewhere ” (i.e.)(..1,..1 jimjni itemitem) is
false. Thus, it needs to check whether all
“ ji itemitem ” are false. “ ji itemitem ” evaluates
to false if the constraints expressed in
“ ji itemitem ” contradict each other, e.g.
“Name=`Jones` AND Name=`Owen`”. If the value of
a Boolean expression cannot be determined, e.g.
“ 5'' YearJonesName ”, the two SQL statements
will be regarded as operating on some common rows.

CS1

CS2 CS3 CS4 CS5

603

The INSERT and UPDATE statements need special
consideration as they might create and modify rows
that satisfy the “WHERE” clause of other statements.
The INSERT statement inserts a new row into the
database. To check whether the new row satisfies a
constraint, say “ ini item..1 ”, it needs to check
whether “)()(..1..1 jjmjini valuecitem ” is true
(where cj is the column name and valuej is the value
assigned to cj in the INSERT statement). For example,
assume that there are two columns, i.e. Name, and,
Year, in table Persons. To check whether the row
inserted by “INSERT INTO Persons VALUES (`Owen`,
6)” satisfies constraint “ ini item..1 ”, it needs to
check whether

))"6()''(()(" ..1 YearOwenNameitemini is true.
When checking whether an UPDATE statement might
operate on the same data as a SQL statement that is
executed after the UPDATE statement, if the “WHERE”
clause of the UPDATE statement includes some
constraints specified in terms of the columns updated
by the UPDATE statement, the values assigned to the
columns by the UPDATE statement should be used in
the checking. For example, assume that (a) there are
two SQL statements, i.e. SQL1=“UPDATE Persons
SET Year=7 WHERE Year=6”, SQL2=“SELECT *
FROM Persons WHERE Year=5”, and, (b) SQL2 is
executed after SQL1. Since the rows operated on by
SQL1 have changed their value of column Year to 7,
when comparing whether SQL1 and SQL2 operate on
the same set of data, the constraint used for SQL1 in
the checking should be “Year=7” instead of
“Year=6”,. Thus, condition “(Year=7) (Year=5)” is
checked.

The server code analyzer can automatically insert code
into the service provider’s implementation to collect the
information about the SQL statements at run-time. The
example below shows the code inserted into the service
provider implemented using C# and ADO.net. It shows how
to capture the SQL statement that updates a table. Lines 2 to
9 are inserted by the server code analyzer. The even handler
OnRowUpdated is executed whenever the contents of a table
is changed. The handler captures the SQL command being
executed (line 5) as well as the values given to the
parameters (lines 6 to 8). The captured information is stored
in a record (line 9) to be passed to the execution coordinator
later.

1 SqlDataAdapter adapter =
 new SqlDataAdapter(queryString, connectionString);

2 adapter.RowUpdated +=
new SqlRowUpdatedEventHandler(OnRowUpdated);

3 private void OnRowUpdated(object sender,
 SqlRowUpdatedEventArgs e) {

4 string tempWriteCommand = "";
5 tempWriteCommand = e.Command.CommandText;

6 for (int i = 0; i < e.Command.Parameters.Count;
++i) {

7 tempWriteCommand.Replace(
e.Command.Parameters[i].ParameterName,
e.Command.Parameters[i].Value.ToString());

8 }
9 AddWrite(tempWriteCommand);
 }

E. The Execution Coordinator
In the following discussion, the execution queue

maintained by an execution coordinator is denoted as EQ.
elem(EQ) denotes the set of all the elements in execution
queue EQ. e.client denotes the client whose operation is
held in element e in EQ.

When an execution coordinator receives a client’s
request for invoking a service provider, the execution
coordinator places the request at the end of the queue. The
state of the element holding ER is set to active to indicate
that the operation is available for execution (line 1 of R1).

Set re-execute records the clients that are re-executed as
a result of breaking cycles in the serialization graph. If a
client is re-executed, in order to avoid repeated rollback, a
position is reserved for the client on all the service providers
that will be accessed by the client (line 3 of R1). c.SP
denotes the set of service providers accessed by client c. The
scheme uses the ABCAST protocol [3] to deliver the reserve
position request (RPR) messages. The ABCAST protocol
ensures the total order of multicast messages. Total order
means multicast messages, say m1 and m2, are always
delivered to all their recipients in the same relative order
even if the senders of the messages are different. Thus, the
RPR messages for different re-executed clients will arrive at
the relevant execution coordinators in the same relative
order. The execution positions reserved for the re-executed
clients are the same as the order in which the multicast RPR
messages are received by the execution coordinators. Thus,
the positions reserved for the re-executed clients are in the
same relative order in all the execution coordinators’
execution queues. This guarantees that the re-executed
clients do not form a cycle in the serialization graph.

On receipt of a RPR message (R2), an execution
coordinator creates a position for the client at the end of its
execution queue. Since the execution coordinator has not
received the request from the client to invoke the service
provider, the execution coordinator sets the state of the
element holding the reserved position to dormant to indicate
that the expected operation has not been received from the
client.

When the execution coordinator receives an execution
request from a re-executed client and an execution position
has been reserved for the client, the state of the element
holding the reserved position for the client is set to active to
indicate that the request is waiting to be executed (line 2 of
R1).

604

R1 when receive an execution request ER from
 a client, say c:

1 if).).((: cclienteEQeleme then
 e ER; e.state active; EQ EQ^<e>;

2 else //i.e.).).((: cclienteEQeleme
e ER; e.state active

end-if
3 if c re-execute then

ABCAST reserve position request RPR(c)
to all the execution coordinators in c.SP

end-if

R2 when receive a reserve position request RPR(client)
from an execution coordinator, say ec:

1 create an element e;
 EQ EQ^<e>; e.state dormant;

R3 specifies the condition under which a client’s request
can be executed. In R3, hd(EQ) denotes the first element in
EQ. Predicate front(e’,e) means element e’ precedes element
e in EQ. If an operation is at the head of an execution queue
and is ready to be executed (i.e. “)(EQhde ” and
“ activestatee. ” are both true in R3’s condition), the
operation can be carried out immediately. When a client
completed its access to a service provider, the state of the
element holding the client’s operation is set to completed
(line 1 of R3). As other ACID-relaxed schemes, a client can
access a service provider as soon as the clients that precede
it have completed their access to the service provider
(),'(eefront and “ completedstatee'. ” are both true in R3’s
condition). For the re-executed clients, their requests need to
be executed in the order determined by their reserved
positions to avoid repeated rollback problem explained in
section I. However, other clients (i.e. “ executeree ” in
R3’s condition) do not need to wait for the re-executed
clients to complete their requests if the re-executed clients’
requests have not been received (i.e. “ dormantstatee'. ” in
R3’s condition). Thus, if the request of a client, say c, is
ready to be executed while all the requests preceding c’s
requests are in dormant state (i.e. the preceding requests are
the elements for holding the execution positions of the re-
executed clients), c’s request can be executed first. Thus, the
re-executed clients do not delay the execution of the other
clients.
R3

when

))))))()'.((
)'.((

),'().((:'(
))((().).(((:

executereedormantstatee
completedstatee

eefrontEQeleme
EQhdeactivestateeEQeleme

1 execute e.op; e.state completed

As described in section III.B, after the service provider
completes the execution for a client, say c, the service
provider returns the SQL statements executed on behalf of c.

The execution coordinator compares the statements with the
statements executed on behalf of the clients that precede c in
the execution queue. If c conflicts with other clients, a cycle
detection algorithm is initiated to find possible cycles in the
serialization graph. In R4 and R5, conf_setx denotes a set
that holds the IDs of the clients that conflict with x and
precede x in EQ. A cycle-chasing probe, say msg, records
the set of IDs of the clients that have been reached by the
msg. The set of IDs is denoted as msg.visited. Initially,
msg.visited is set to empty (line 1 in R4). The cycle-chasing
message is passed to the other clients using
SendCycleChasingMsg. Parameter sender is the ID of the
client that forwards the cycle-chasing message to the other
clients. Parameter msg is the message being forwarded
along the edges of the serialization graph. msg is only
forwarded to the clients that are likely to form cycles with
sender (i.e. the clients that are executing the composite
services in sender’s potential conflict set). In line 4 of R4,
c.cs denotes the composite service executed by client c. As a
client might access multiple service providers, the message
needs to be propagated to all the service providers visited by
the client to ensure that all possible paths are checked (line 7
of R4).

R4 when receive the result of executing client c’s
request:

1 create a message msg; visitedmsg.
2 SendCycleChasingMsg(c, msg, conf_setc)

3 SendCycleChasingMsg(sender, msg, conf_setsender)
4 for_each c in conf_setsender s.t. c.cs PCsender.cs do
5 let m be a copy of msg
6 }{.. sendervisitedmvisitedm ; m.receiver = c;
7 send m to all the sites in c.SP
8 end_for_each

When a cycle-chasing message is received, if it is found
that the receiver of the message has already been reached
previously (line 1 in R5), it means that a cycle has been
detected. As a result, the clients involved in the cycle are
rolled back (lines 2-4 in R5). If no cycle has been formed
yet, as explained in R4, the cycle-chasing message is
propagated to the clients that have the potential to form
cycles (lines 5-7 in R5).

R5 when receive cycle_chasing message m:
1 if visitedmreceiverm .. then
2 for_each visitedmclient . do
3 send rollback message RB(client) to

 all the execution coordinators in client.SP
4 end_for_each
5 else
6 };.{.. receivermvisitedmvisitedm
7 SendCycleChasingMsg(m.receiver,m, conf_setm.receiver)

end_if

605

R6 specifies how the rollback is propagated through the
execution queues. When a rollback message is received, the
operation of the rolled back client is compensated and the
client is notified through the raised exceptions (line 2 of
R6). The rolled back clients are recorded in re-execute for
preventing repeated rollback as explained in R1. All the
operations that have been executed after the rolled back
operations (line 3 of R6) need to be rolled back. The
rollback message needs to be propagated to all the service
providers accessed by the client (lines 4-5 of R6).

R6 when receive a rollback message RB(client):
1 find an element e in EQ s.t. e.client = client;
2 compensate(e); raise exception to client;

add client to re-execute;
3)}',())('(|'{_let eefrontEQelemeesetrb
4 for_each setrbx _ do
5 send rollback message RB(x.client) to all

the execution coordinators in (x.client).SP;
end_for_each

As described in section III.C, the workflow analyser
inserts some operations at the end of each composite service
for checking the termination of the composite service. On
receipt of the check_termination message, the execution
coordinators involved in executing the client’s operations
will determine whether the client can terminate. In R7, OP
is a set that includes all the operations of client c. EQS is the
set that contains all the execution queues in the system. As
explained in section III.B, a client can only terminate once
all the clients that it depends on have completed (i.e. the
condition in line 1 of R7). When a client terminates, all its
operations are removed from the execution coordinators’
queues (line 2 of R7).

R7 when receive a check_termination message from
a client, say c:

1 wait until the following condition becomes true

))))',(),'(.(:'(
))(.((:.:

eeconflciteefronteqe
eqelemeEQSeqOPe

2 remove c’s operations from their execution queues
remove c from all re-execute sets in c.SP (if needed)

IV. PERFORMANCE EVALUATION

Experiments were carried out to compare the
performance of the proposed scheme with some related
schemes. In the experiments, the execution coordinators and
the service providers are implemented using WCF [13]. The
database being used is SQL-Server 2005.

The first experiment compares the strict two-phase
locking scheme (S2PL) [2] and the scheme in this paper. To
make the experiment condition more favorable to S2PL, two
composite services are regarded as conflicting with each
other if they access at least one common service provider.
The conflict rate is defined as “(the number of composite

services that conflict with at least one other composite
service)/(the total number of composite services)”. The
experiments measured how the two schemes perform by
varying the rate of the conflict amongst the clients. In each
experiment, each composite service accesses three service
providers that are chosen randomly. It is assumed that the
system has sufficient resource to handle the client’s
execution. That is, a client is only blocked due to
concurrency control. The improvement rate is defined as
“(the response time to client under the S2PL scheme - the
response time to client under the proposed scheme)/ the
response time to client under the S2PL scheme”. From
Figure 3, it can be seen that the scheme in this paper
performed better than S2PL even if the conflict rate is low
(i.e. an improvement of 11.5% when the conflict rate is
10%). When the conflict rate is high, the proposed scheme
outperforms the S2PL by a large margin (i.e. an
improvement of 36.2% when the conflict rate is 50%).

Figure 3. Comparison with the S2PL Scheme

The second set of experiments compares the the
proposed scheme with the schemes in [1, 18]. In these
experiments, it is assumed that two clients share at least one
service provider. For the schemes in [1, 18], two clients
conflict with each other if they access the same service
provider. As discussed in section III.D, for the scheme in
this paper, two clients sharing a service provider do not
necessarily conflict with each other. In the experiments, the
conflict rate for the scheme in this paper is set to 50% (i.e.
half of the clients that share service providers conflict with
each other). Conflicts amongst the composite services can
cause cycles being formed in the serialization graph.
Breaking the cycles involves rolling back some of the
operations. The experiment assumes that undo an operation
takes the same amount of time as carrying out the operation.
Thus, the amount of cycles influences the efficiency of the
schemes. The experiments compare the proposed scheme
with the ones in [1, 18] when 10% and 50% of the
conflicting clients form cycles. Figure 4 shows the ratios
between the response time of the schemes being compared,
i.e. “the response time to the client under the proposed
scheme / the response time to the client under [1, 18]”. xy10
and xy50 denote the ratios when the percentage of the

606

clients that form cycles in the serialization graph are 10%
and 50% respectively.

The scheme in [18] prevents the forming of cycles at the
cost of causing possible delays to the execution of the
clients that do not conflict with each other as the clients are
executed in the order of their reserved positions. From yc10
and yc50, it can be seen that, when there are more cycles
(i.e. for yc50), the performance of the proposed scheme
becomes closer to the scheme in [18]. This is because the
time used to roll back the clients offsets the gain obtained in
avoiding the unnecessary delay in executing the clients.

As the scheme in this paper uses run-time analysis to
eliminate some false dependency amongst the clients,
compared with [1], the clients under the scheme in this
paper have fewer conflicts with the other clients. As a result,
fewer clients need to wait for other clients in order to
terminate. Hence, as shown in adn10 and adn50, the
response time of the clients under the proposed scheme is
shorter than the scheme in [1]. Cycles in the serialization
graph can also be formed in [1]. From adn10 and adn50, it
can be seen that the response time of the two schemes is
similar under different percentages of cycles. This is
because both schemes have overheads for breaking the
cycles.

The experiments also compared the number of cycle-
chasing probes of the proposed scheme and the scheme in
[1]. The ratios between the numbers of probes of the two
schemes, i.e. “the number of probes generated by the
proposed scheme / the number of probes generated by [1]”
are shown as msg-adn10 and msg-adn50 in Figure 4. From
msg-adn10 and msg-adn50, it can be seen that the proposed
scheme generates less probes. This is because the scheme in
[1] propagates the probes to all the composite services that
conflict with each other, while the proposed scheme only
propagates the cycle-chasing probes to the clients if there is
a possibility that a cycle might be formed by the clients.

Figure 4. Comparisons with Other ACID-relaxed Schemes

V. CONCLUSION

The scheme in this paper ensures the serilizability of the
concurrent execution of the composite services. As the
detection of the cycles in the serialization graph is carried

out concurrently with the execution of the clients, the
detection does not slow down the execution of the
composite services. The information gathered during the
off-line analysis of the composite services’ workflows can
effectively reduce the overhead in detecting cycles in the
serialization graph and avoid the repeated rollback problem.
Using the run-time analysis of the SQL statements, the
proposed scheme can decide whether the clients conflict
with each other more accurately than other schemes.
Consequently, it reduces the amount of unnecessary waiting
amongst the clients. Hence, compared to the other schemes,
the proposed scheme shortened the response time for clients
and incurred less overhead.

REFERENCES

[1] M. Alrifai, P. Dolog and W. Nejdl, Transactions Concurrency Control
in Web Service Environment, Proc. of the European Conf. on Web
Services, pp 109-118, 2006

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987

[3] K. Birman and T. Joseph. Reliable communications in the presence of
failures. ACM Trans. Comput. Syst., 5(1), 1987

[4] Business Process Execution Language for Web Services, version 1.1,
http://download.boulder.ibm.com/ibmdl/pub/software/ dw /specs/ws-bpel/ws-
bpel.pdf, accessed on 28/02/2010

[5] S. Choi, H. Jang, H. Kim, J. Kim, S. Kim, J. Song, and Y. Lee.
Maintaining consistency under isolation relaxation of web services
transactions. In Proc. of Web Information Systems Engineering,
2005

[6] K. Haller, H. Schuldt, and C. Türker. Decentralized coordination of
transactional processes in peer to peer environments, Proc. of the 14th
ACM Intl. Conference on Information and Knowledge Management,
pp 36-43, 2005.

[7] T. Härder and A. Bühmann, Value complete, column complete,
predicate complete, The VLDB Journal, 17(4):805-826, 2008

[8] H. Kung and J. Robinson. On optimistic Methods for Concurrency
Control. ACM TODSs, 6(2), 1981.

[9] E. Levy, H. Korth, and A. Silberschatz. An Optimistic Commit
Protocol for Distributed Transaction Management. In Proc. of ACM
SIGMOD, pages 88-97, 1991.

[10] Mendelson, E. Introduction to Mathematical Logic, 4th ed. London:
Chapman & Hall, p. 30, 1997.

[11] Tarjan, R.: Depth-first search and linear graph algorithms. In: SIAM
Journal on Computing. Vol. 1 (1972), No. 2, P. 146-160

[12] G.Weikum and G.Vossen, Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control.
Morgan Kaufmann, 2001.

[13] Windows Communication Foundation, http://msdn.microsoft.com/en-
us/library/ms735119.aspx, accessed on 28/02/2010

[14] J. Yang et al., Lock-Free Consistency Control for Web 2.0
Applications, Proc. of the 17th Intl. conference on World Wide Web,
2007.

[15] L. Li, C. Liu, J. Wang: Deriving Transactional Properties of
Composite Web Services, Proc. Of the 2007 IEEE Intl. Conf. on Web
Services, pp 631-638.

[16] Microsoft BizTalk Server, http://msdn.microsoft.com/en-
us/library/bb905520.aspx, accessed on 28/02/2010

[17] H. Garcia-Molina and K. Salem, Sagas, Proceedings of the 1987
ACM SIGMOD International Conference on Management of Data,
ACM Press (1987), pp. 249–259

[18] Ye, X. and Chen, Y., 'Concurrency Control for Transactional
Composite Services', Proc. Of 2009 IEEE World Congress on
Services, p.781-788

607

