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Abstract—This paper proposes a hybrid concurrency control 
scheme for transactional composite services. The scheme uses 
the information gathered from the workflow specifications of 
the composite services to reduce the overhead in detecting 
cycles in the serialization graph. The scheme carries out run-
time analysis of the SQL statements used by the composite 
services to determine whether the clients that execute 
composite services depend on each other more accurately. As a 
result, it reduces the response time to some users. The 
proposed scheme also tackles the repeated rollback problem 
facing many concurrency control schemes.  
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I. INTRODUCTION

Business processes can be modeled as composite
services consisting of many tasks implemented by Web 
Services. The workflow of a composite service can be 
specified using BPEL4WS [4]. Since different composite 
services might access the same data concurrently, it is 
necessary to ensure the correctness of the concurrent 
execution of the composite services. 

The ACID-relaxed concurrency control schemes, e.g. [1, 
5, 6], have been used for long-running applications. In these 
schemes, a composite service releases its lock on a service 
provider after its call to the service provider is completed. 
That is, locks on the service providers are released before 
the composite service terminates. These schemes use a 
protocol similar to the distributed Serialization Graph 
Testing protocol [12] to detect violation to the serializability 
of the system. If a violation is detected, the composite 
services are rolled back and re-executed.  

A problem with the ACID-relaxed schemes is that, if a 
composite service is re-executed for serializability violation, 
there is no guarantee that the re-execution can be carried out 
successfully. As a result, some composite services might be 
rolled back repeatedly. For example, assume that (a) a client 
c1 accesses two service providers sp1 and sp2 in sequence 
while client c2 accesses sp2 and sp1 in sequence, and, (b) c1
and c2 start their execution concurrently. It can be seen that 
c1 would access sp1 first while c2 would access sp2 before c1.
As a result, a cycle involving c1 and c2 is formed in the 
serialization graph. Hence, the operations of c1 and c2 are re-
executed. However, during the re-execution, the above 

scenario might reoccur again. Thus, cs1 and cs2 might be 
rolled back again.  

In ACID-relaxed schemes, clients depend on each other 
if they operate on the same set of data. Many existing 
schemes regard two clients depend on each other if they 
access the same service provider. This approach might 
create a lot of false dependency amongst the composite 
services. This is because the clients might pass different 
parameters to the service provider. Thus, the service 
provider might access different sets of data while being 
activated by different clients. Since locks on the service 
providers are released before the clients terminate, if a client 
aborts, the clients that depend on it also need to be aborted. 
Thus, to prevent releasing results to the users prematurely, a 
client can only terminate after all the clients that it depends 
on have terminated. False dependency would make clients 
wait for each other to terminate unnecessarily. Hence, it 
would increase the response time of the clients.   

This paper proposed a concurrency control scheme for 
executing transactional composite services. It uses the static 
analysis technique to collect information about the 
composite services off-line. As the workflows of composite 
services are known in advance, by analyzing the workflows 
of the composite services, the service providers accessed by 
the composite services as well as the composite services that 
are likely to form cycles in the serialization graph can be 
known in advance. This information is used by the 
concurrency control scheme (a) to reduce the overhead on 
checking the serializability of the system, and, (b) to avoid 
the repeated rollback problem described above. The scheme 
analyses the SQL statements used to manipulate data at run-
time to reduce the amount of false dependency amongst the 
clients. To minimise the response time, under normal 
circumstance, the scheme allows clients to carry out their 
calls to the service providers without waiting for other 
clients to terminate. For the clients that are re-executed due 
to serialization violation, the scheme requires the clients to 
reserve execution positions before they start their execution 
to avoid repeated rollback. 

The rest of the paper is organized as follow. Related 
works are described in section II. The proposed scheme is 
given in section III. Section IV compares the performance 
of the scheme with some existing schemes. Conclusions are 
given in section V. 
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II. RELATED WORK

The scheme proposed by Ye et al. [18] requires a 
composite service to reserve an execution position on each 
of the service providers to be accessed by the composite 
service before the execution starts. The position reservation 
scheme ensures that no cycles can be formed in the 
serialization graph. As the execution of the composite 
services is ordered according to their reserved positions, 
sometimes a composite service has to wait for others to 
carry out their execution despite the execution of the 
composite service does not cause serializability violation. 
Hence, the response time to the composite service might be 
unnecessarily increased. The scheme in this paper only 
requires the set of composite services whose executions 
might violate the serilizability of the system to reserve their 
execution positions and to execute in the order of their 
reserved positions. Thus, it causes less unnecessary delay to 
the execution of the composite services. 

Haller et al. [6] described a decentralised serialization 
graph testing protocol to carry out concurrency control in 
peer-to-peer environments. In [6], each peer keeps the 
information on precedence relations amongst the peers. The 
precedence information is passed amongst the peers when 
necessary to discover non-serializable execution of the 
peers. The approaches proposed by Alrifai et al. [1] and 
Choi et al. [5] use the same principle as Haller’s approach in 
detecting non-serializable executions. Microsoft BizTalk 
Server [16] uses the saga model [17] to manage long-lived 
processes. All these schemes suffer a drawback as they 
might repeatedly roll back some composite services. 

Optimistic concurrency control protocols [8, 9] validate 
the serializability of the system at the end of the execution 
of each transaction. Instead of waiting until the end of a 
composite service’s execution, the scheme in this paper rolls 
back a client as soon as it is discovered that the 
serializability of the system is violated. Thus, it avoids 
wasting resources on executing operations that will be rolled 
back later as the scheme initiates the rollback as soon as it is 
needed. 

Yang et al. [14] proposed a scheme for consistently 
updating replicated data in Internet-based applications. 
Yang’s scheme only concerns with the ordering of a 
replicated operation. Since multiple service providers are 
accessed in a composite service, unlike Yang’s scheme, the 
scheme in this paper considers the ordering of multiple 
operations. 

Li et al. [15] described an approach for deriving the 
transactional properties of composite web services. Unlike 
this paper, instead of discussing concrete scheduling 
schemes, they focused on studying whether a given 
composite service is schedule-able. 

Many works have been carried out on query containment 
problem [7]. They focused on determining whether the 
constraints of one query are included in another query. 
Different to these works, the run-time analysis of the SQL 
statements in this paper focuses on checking whether the 

data set operated on by the SQL statements intersect with 
each other. 

III. THE SCHEME

A. System Model 
It is assumed that the workflows of the composite 

services are known in advance and clients only execute 
these composite services1. It is assumed that (a) each service 
provider provides a compensation operation to undo the 
effect of its operation, and, (b) a client re-executes the 
composite service after it is rolled back. 

According to the serilizability theory [2], two clients are 
regarded as conflict if they access the same set of data and at 
least one of them modifies the data. Two clients become 
conflict with each other through invoking the same service 
provider (i.e. the service provider modified the data shared 
by the two clients). It is assumed that the data held by a 
service provider are stored in a database and the granularity 
of data sharing is at the database’s row level. The service 
providers access the databases using SQL statements. For 
two clients, say c1 and c2, if (a) they become conflict with 
each other while accessing a service provider, and, (b) c1
accessed the service provider before c2, it is said c2 depends
on c1 or c1 precedes c2 (denoted as c2  c1). A serialization 
graph is a directed graph (N, E) where “N = {c | c is a 
client}”, and, “E = {<ci, cj> | (i   j)  (ci, cj N)  (ci
cj)}”. N is the set of nodes and E is the set of edges. 
According to the serializability theorem [2], the execution of 
the composite services is regarded as correct if the 
serialization graph is acyclic.  

B. An Overview 
Figure 1 is a conceptual diagram of the system. An 

execution coordinator resides on each service provider’s 
site. Each execution coordinator provides the same 
operation as its corresponding service provider. On the 
client side, the execution engine of the composite service 
binds the operations in the composite service to the 
operations provided by the execution coordinators. Thus, 
calls to the service providers are processed by the execution 
coordinators first. Each execution coordinator keeps an 
execution queue to hold the execution requests from the 
clients. To ensure execution order, the requests in the queue 
are executed one at a time. When it is the turn for a client’s 
request to be executed, the execution coordinator invokes 
the corresponding operation on the service provider. The 
result produced by the service provider is sent back to the 
client through its execution coordinator.  

The workflow of each composite service is analyzed off-
line by a workflow analyzer. From the analysis, the service 
providers that might be accessed in a composite service are 
known. The workflow analyzer checks the composite 

                                                          
1 This assumption is reasonable since in an enterprise environment 
users are only allowed to run pre-configured applications, e.g. 
accounting, billing, etc. 
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services to find out the sets of composite services whose 
executions might form cycles in the serialization graphs. 
The information collected by the analyzer is disseminated to 
the execution coordinators involved in the execution of the 
relevant composite services. Thus, each execution 
coordinator is aware of (a) all the composite services that 
access it, (b) the composite services that have the potential 
to generate non-serializable execution, and, (c) for each 
composite service, the other execution coordinators that are 
involved in the execution of the composite service.  

Figure 1. A Conceptual Diagram of the System 

When a client executes a composite service, the client 
terminates if it aborts or commits all its operations. Like 
other ACID-relaxed schemes, for two clients, say c1 and c2,
such that c2 c1, c2 is allowed to access the service 
providers shared by c1 and c2 before c1 terminates. If c1
aborts later, c2 has to abort as well since it might have 
accessed some values written by c1. Thus, a client can only 
terminate if all the clients that it depends on have 
terminated. The analyzer inserts some operations at the end 
of each composite service’s workflow to determine whether 
a client can terminate. These operations ask each of the 
service providers accessed by the client to find out whether 
the client’s preceding clients have all terminated.  

A server code analyser is used to analyse the code 
implementing the service providers off-line. The analyser 
inserts some statements into the service providers’ code to 
record the SQL statements being executed and the 
parameters being passed to the SQL statements while the 
service providers execute the clients’ requests. After a 
service provider completes the execution of a client’s 
request, the service provider passes the information back to 
the execution coordinator. The execution coordinator 
analyses the SQL statements executed for different clients to 
determine whether the statements operate on any common 
data set. This allows the execution coordinator to determine 
whether the clients conflict with each other. The checking 
for conflicting clients can be carried out at the same time as 
the next client’s request (if any) is executed by the service 
provider. Hence, the checking does not block the operation 
of the service provider. 

If two clients conflict with each other, the execution 
coordinator checks whether the composite services executed 
by the two clients might form a cycle according to the 
information provided by the workflow analyser. If they 
might form a cycle, the execution coordinator runs a 
distributed cycle-chasing algorithm [12] to check whether 
there is a cycle in the serialization graph. The algorithm 
passes probes along the edges in the serialization graph. 
Each execution coordinator only needs to know the 
dependency relations between the clients on its own site. It 
does not need to know the complete serialization graph of 
the system. Since a client might access multiple service 
providers, when a client receives a cycle-chasing probe, the 
probe is propagated to all the service providers accessed by 
the client to ensure that all the relevant paths in the 
serialization graph are checked. If a cycle is discovered, all 
the clients in the cycle are aborted and re-executed.  

To prevent the repeated rollback problem, before a client 
is re-executed, the execution coordinators involved in 
executing the client are asked to reserve a position in their 
execution queues for executing the client’s requests. The 
execution coordinators ensure that the positions reserved for 
the client allow the client’s requests to be carried out in the 
same relative order in terms of the other re-executed clients 
on all the service providers. For example, if two clients, say 
c1 and c2, both need to access two service providers, say sp1
and sp2, then c1’s reserved position should precede c2’s
position on both sp1 and sp2 or vice versa. By reserving 
positions, the scheme prevents cycles from forming in the 
serialization graph. 

C. The Workflow Analyzer 
The cycle detection algorithm needs to exchange 

messages amongst the execution coordinators. To minimize 
the overhead, the algorithm should only be executed when 
there is a potential for the clients to form a cycle. By 
checking the workflows of the composite services, the 
workflow analyzer can determine whether a composite 
service might form a cycle with other composite services.  

The workflow analyzer constructs an undirected 
workflow relationship graph according to the workflows of 
the composite services 2 . Each node in the graph is a 
composite service. If two composite services access at least 
one common service provider, an edge is created between 
the two nodes. Finding all possible cycles in the graph is 
equivalent to the problem of finding the bi-connected 
components in an undirected graph. The analyser uses 
Tarjan's Algorithm [11] to find all the cycles in the graph. 
For each composite service in the cycles, the analyzer 
creates a potential conflict set to record the composite 
services that connect to the composite service in the cycles. 
The potential conflict set for a composite service, say i, is 
denoted as PCi. PCi also includes i itself. This is because 

                                                          
2 There are only a limited number of composite services. Thus, the 
graph is a finite graph. 
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two clients executing the same composite service that 
contains concurrent access to service providers (e.g. 
BPEL4WS’s parallel flow activity) might forms a cycle in 
the serialization graph. Since a composite service, say i, can 
only form cycles with the composite services in PCi, the 
cycle-chasing algorithm only needs to propagate the cycle-
chasing probes to the clients executing the composite 
services in PCi.

For the workflow relationship graph in Figure 2, there are 
three cycles, i.e. CS1-CS2-CS3, CS1-CS2-CS3-CS4, and, CS1-
CS3-CS4. The potential conflict sets are PCCS1={CS1, CS2,
CS3, CS4}, PCCS2={CS1, CS2, CS3}, PCCS3={CS1, CS2, CS3,
CS4}, PCCS4={CS1, CS3, CS4} and PCCS5={CS5}. CS2 and
CS4 are not in each other’s potential conflict sets since they 
are not connected to each other in the cycles. The potential 
conflict sets are given to the relevant execution 
coordinators. Assume that (a) clients c1, c2 and c3, are 
executing CS1, CS2 and CS5 respectively, and, (b) c2  c1
and c3  c2. Since CS1 and CS2 might form a cycle (i.e. 
CS1  PCCS2), the execution coordinator initiates cycle 
detection to check whether there is a cycle in the 
serialization graph after it is known that c2 depends on c1.
However, since CS2 and CS5 cannot be in a cycle (i.e. 
CS2 PCCS5), there is no need to carry out cycle detection 
when it is determined that c3 depends on c2. For the same 
reason, when an execution coordinator receives a cycle-
chasing probe from a client, say c, it only propagates the 
probe to the clients that are executing the composite services 
that are in PCc.

Figure 2. A Workflow Relationship Graph 

D. Detecting Conflicting Clients at Run Time 
Clients accessing the same service providers might not 

access the same set of data. This is because, as clients might 
pass different inputs to the service provider, this might 
result in different sets of SQL statements being executed. 
Also, even if the same set of SQL statements are executed, 
if the parameters given to the SQL statements are different, 
different sets of data might be manipulated by the SQL 
statements. Thus, by comparing the SQL statements that are 
executed by the service provider for different clients, it is 
possible to determine whether the clients access the same set 
of data. Determining whether two clients conflict based on 
whether they share data instead of whether they access the 
same service provider can eliminate some of the false 
conflict amongst the clients.  

According to [2], two operations conflict if they access 
the same data and at least one of them modifies the shared 
data. There are four types of statement for data manipulation 

in SQL, i.e. SELECT, UPDATE, INSERT and DELETE statement. 
The SELECT statement can be regarded as the read operation 
while the other three types of statements can be regarded as 
the write operation.  Thus, two SQL statements are regarded 
as conflicting with each other if (a) at least one of the 
statements is a DELETE, INSERT or UPDATE statement, and, (b) 
they might operate on the same data.  

A service provider might execute multiple SQL 
statements. Two clients conflict with each other if any of the 
SQL statements executed on behalf of different clients 
conflict with each other. The following steps are used to 
determine whether two SQL statements conflict. 

1) Determine the types of the SQL statements: As at 
least one of the statements must be a write operation, it is 
necessary to check whether at least one of the SQL 
statements is a DELETE, INSERT, or, UPDATE command. 

2) Determine the columns that the SQL statements 
operate on: If two SQL statements access the same data, 
they must operate on at least one common column of a 
database table. Each command has some elements 
specifying the columns that the command operates on. By 
comparing these elements, it can be determined whether two 
SQL statements access any column in common. For 
example, assume there are two SQL statements, i.e. 
SQL1=“SELECT Name FROM Persons”, SQL2=“UPDATE
Persons SET year=5”. SQL1 and SQL2 do not operate on any 
shared data as they handle different columns in the table.

3) Compare the constraints for selecting rows in a table:  
The “WHERE” clause in a SQL statement decides the 
rows that will be operated on by the SQL statement. 
First, the Boolean expression contained in the 
“WHERE” clause is converted to a disjunctive (OR) 
normal form. A disjunctive normal form consists of 
one or more disjuncts, each of which is a 
conjunction (AND) of one or more literals [10]. 
Each literal is an expression specifying the constraint 
that the value of a column should satisfy.  
Let the “WHERE” clauses of two SQL statements are 

pspiini subitemitemitemwhere
i..1..11 such that 

and
qtqjjmj subitemitemitemwhere

j..1..12 such that .
To determine that two SQL statements do not 
operate on shared data, it is necessary to show that 
the “WHERE” clause of the two SQL statements 
cannot be evaluated to true at the same time. That is 
“ 21 wherewhere ” (i.e. )(..1,..1 jimjni itemitem ) is 
false. Thus, it needs to check whether all 
“ ji itemitem ” are false. “ ji itemitem ” evaluates 
to false if the constraints expressed in 
“ ji itemitem ” contradict each other, e.g. 
“Name=`Jones` AND Name=`Owen`”. If the value of 
a Boolean expression cannot be determined, e.g. 
“ 5'' YearJonesName ”, the two SQL statements 
will be regarded as operating on some common rows.  

CS1

CS2 CS3 CS4 CS5
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The INSERT and UPDATE statements need special 
consideration as they might create and modify rows 
that satisfy the “WHERE” clause of other statements. 
The INSERT statement inserts a new row into the 
database. To check whether the new row satisfies a 
constraint, say “ ini item..1 ”, it needs to check 
whether “ )()( ..1..1 jjmjini valuecitem ” is true 
(where cj is the column name and valuej is the value 
assigned to cj in the INSERT statement). For example, 
assume that there are two columns, i.e. Name, and, 
Year, in table Persons. To check whether the row 
inserted by “INSERT INTO Persons VALUES (`Owen`,
6)” satisfies constraint “ ini item..1 ”, it needs to 
check whether 

))"6()''(()(" ..1 YearOwenNameitemini  is true. 
When checking whether an UPDATE statement might 
operate on the same data as a SQL statement that is 
executed after the UPDATE statement, if the “WHERE”
clause of the UPDATE statement includes some 
constraints specified in terms of the columns updated 
by the UPDATE statement, the values assigned to the 
columns by the UPDATE statement should be used in 
the checking. For example, assume that (a) there are 
two SQL statements, i.e. SQL1=“UPDATE Persons
SET Year=7 WHERE Year=6”, SQL2=“SELECT * 
FROM Persons WHERE Year=5”, and, (b) SQL2 is 
executed after SQL1. Since the rows operated on by 
SQL1 have changed their value of column Year to 7, 
when comparing whether SQL1 and SQL2 operate on 
the same set of data, the constraint used for SQL1 in 
the checking should be “Year=7” instead of 
“Year=6”,. Thus, condition “(Year=7) (Year=5)” is 
checked.

The server code analyzer can automatically insert code 
into the service provider’s implementation to collect the 
information about the SQL statements at run-time. The 
example below shows the code inserted into the service 
provider implemented using C# and ADO.net. It shows how 
to capture the SQL statement that updates a table. Lines 2 to 
9 are inserted by the server code analyzer. The even handler 
OnRowUpdated is executed whenever the contents of a table 
is changed. The handler captures the SQL command being 
executed (line 5) as well as the values given to the 
parameters (lines 6 to 8). The captured information is stored 
in a record (line 9) to be passed to the execution coordinator 
later.

1 SqlDataAdapter adapter =  
 new SqlDataAdapter(queryString, connectionString); 

2 adapter.RowUpdated +=  
new SqlRowUpdatedEventHandler(OnRowUpdated); 

3 private void OnRowUpdated(object sender,  
                                    SqlRowUpdatedEventArgs e) { 

4 string tempWriteCommand = ""; 
5 tempWriteCommand = e.Command.CommandText; 

6 for (int i = 0; i < e.Command.Parameters.Count;  
++i) { 

7  tempWriteCommand.Replace( 
e.Command.Parameters[i].ParameterName,  
e.Command.Parameters[i].Value.ToString()); 

8 } 
9 AddWrite(tempWriteCommand); 
 } 

E. The Execution Coordinator
In the following discussion, the execution queue 

maintained by an execution coordinator is denoted as EQ.
elem(EQ) denotes the set of all the elements in execution 
queue EQ. e.client denotes the client whose operation is 
held in element e in EQ.

When an execution coordinator receives a client’s 
request for invoking a service provider, the execution 
coordinator places the request at the end of the queue. The 
state of the element holding ER is set to active to indicate 
that the operation is available for execution (line 1 of R1).  

Set re-execute records the clients that are re-executed as 
a result of breaking cycles in the serialization graph. If a 
client is re-executed, in order to avoid repeated rollback, a 
position is reserved for the client on all the service providers 
that will be accessed by the client (line 3 of R1). c.SP
denotes the set of service providers accessed by client c. The 
scheme uses the ABCAST protocol [3] to deliver the reserve 
position request (RPR) messages. The ABCAST protocol 
ensures the total order of multicast messages. Total order 
means multicast messages, say m1 and m2, are always 
delivered to all their recipients in the same relative order 
even if the senders of the messages are different. Thus, the 
RPR messages for different re-executed clients will arrive at 
the relevant execution coordinators in the same relative 
order. The execution positions reserved for the re-executed 
clients are the same as the order in which the multicast RPR
messages are received by the execution coordinators. Thus, 
the positions reserved for the re-executed clients are in the 
same relative order in all the execution coordinators’ 
execution queues. This guarantees that the re-executed 
clients do not form a cycle in the serialization graph.  

On receipt of a RPR message (R2), an execution 
coordinator creates a position for the client at the end of its 
execution queue. Since the execution coordinator has not 
received the request from the client to invoke the service 
provider, the execution coordinator sets the state of the 
element holding the reserved position to dormant to indicate 
that the expected operation has not been received from the 
client.

When the execution coordinator receives an execution 
request from a re-executed client and an execution position 
has been reserved for the client, the state of the element 
holding the reserved position for the client is set to active to 
indicate that the request is waiting to be executed (line 2 of 
R1). 
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R1 when receive an execution request ER from
          a client, say c:

1 if ).).((: cclienteEQeleme then
     e  ER; e.state  active; EQ  EQ^<e>;

2 else  //i.e. ).).((: cclienteEQeleme
e  ER; e.state active

end-if
3 if c re-execute then

ABCAST reserve position request RPR(c)
to all the execution coordinators in c.SP

end-if

R2 when receive a reserve position request RPR(client) 
from an execution coordinator, say ec:

1 create an element e;     
 EQ  EQ^<e>; e.state  dormant;

R3 specifies the condition under which a client’s request 
can be executed. In R3, hd(EQ) denotes the first element in 
EQ. Predicate front(e’,e) means element e’ precedes element 
e in EQ. If an operation is at the head of an execution queue 
and is ready to be executed (i.e. “ )(EQhde ” and 
“ activestatee. ” are both true in R3’s condition), the 
operation can be carried out immediately. When a client 
completed its access to a service provider, the state of the 
element holding the client’s operation is set to completed
(line 1 of R3). As other ACID-relaxed schemes, a client can 
access a service provider as soon as the clients that precede 
it have completed their access to the service provider 
( ),'( eefront  and “ completedstatee'. ” are both true in R3’s 
condition). For the re-executed clients, their requests need to 
be executed in the order determined by their reserved 
positions to avoid repeated rollback problem explained in 
section I. However, other clients (i.e. “ executeree ” in 
R3’s condition) do not need to wait for the re-executed 
clients to complete their requests if the re-executed clients’ 
requests have not been received (i.e. “ dormantstatee'. ” in 
R3’s condition). Thus, if the request of a client, say c, is 
ready to be executed while all the requests preceding c’s
requests are in dormant state (i.e. the preceding requests are 
the elements for holding the execution positions of the re-
executed clients), c’s request can be executed first. Thus, the 
re-executed clients do not delay the execution of the other 
clients.
R3 

when

))))))()'.((
)'.((

),'().((:'(
))((().).(((:

executereedormantstatee
completedstatee

eefrontEQeleme
EQhdeactivestateeEQeleme

1 execute e.op;    e.state completed

As described in section III.B, after the service provider 
completes the execution for a client, say c, the service 
provider returns the SQL statements executed on behalf of c.

The execution coordinator compares the statements with the 
statements executed on behalf of the clients that precede c in 
the execution queue. If c conflicts with other clients, a cycle 
detection algorithm is initiated to find possible cycles in the 
serialization graph. In R4 and R5, conf_setx denotes a set 
that holds the IDs of the clients that conflict with x and 
precede x in EQ. A cycle-chasing probe, say msg, records 
the set of IDs of the clients that have been reached by the 
msg. The set of IDs is denoted as msg.visited. Initially, 
msg.visited is set to empty (line 1 in R4). The cycle-chasing 
message is passed to the other clients using 
SendCycleChasingMsg. Parameter sender is the ID of the 
client that forwards the cycle-chasing message to the other 
clients. Parameter msg is the message being forwarded 
along the edges of the serialization graph. msg is only 
forwarded to the clients that are likely to form cycles with 
sender (i.e. the clients that are executing the composite 
services in sender’s potential conflict set). In line 4 of R4, 
c.cs denotes the composite service executed by client c. As a 
client might access multiple service providers, the message 
needs to be propagated to all the service providers visited by 
the client to ensure that all possible paths are checked (line 7 
of R4).  

R4 when receive the result of executing client c’s
request:

1 create a message msg; visitedmsg.
2 SendCycleChasingMsg(c, msg, conf_setc)

3 SendCycleChasingMsg(sender, msg, conf_setsender)
4 for_each c in conf_setsender s.t. c.cs PCsender.cs do
5    let m be a copy of msg
6 }{.. sendervisitedmvisitedm ; m.receiver = c;
7     send m to all the sites in c.SP
8 end_for_each 

When a cycle-chasing message is received, if it is found 
that the receiver of the message has already been reached 
previously (line 1 in R5), it means that a cycle has been 
detected. As a result, the clients involved in the cycle are 
rolled back (lines 2-4 in R5). If no cycle has been formed 
yet, as explained in R4, the cycle-chasing message is 
propagated to the clients that have the potential to form 
cycles (lines 5-7 in R5).  

R5 when receive cycle_chasing message m:
1 if visitedmreceiverm .. then
2     for_each visitedmclient . do
3        send rollback message RB(client) to

          all the execution coordinators in client.SP
4 end_for_each 
5 else
6 };.{.. receivermvisitedmvisitedm
7 SendCycleChasingMsg(m.receiver,m, conf_setm.receiver)

end_if 
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R6 specifies how the rollback is propagated through the 
execution queues. When a rollback message is received, the 
operation of the rolled back client is compensated and the 
client is notified through the raised exceptions (line 2 of 
R6). The rolled back clients are recorded in re-execute for 
preventing repeated rollback as explained in R1. All the 
operations that have been executed after the rolled back 
operations (line 3 of R6) need to be rolled back. The 
rollback message needs to be propagated to all the service 
providers accessed by the client (lines 4-5 of R6). 

R6 when receive a rollback message RB(client):
1 find an element e in EQ s.t. e.client = client;
2 compensate(e);  raise exception to client;

add client to re-execute;
3 )}',())('(|'{_let eefrontEQelemeesetrb
4 for_each setrbx _ do
5 send rollback message RB(x.client) to all

the execution coordinators in (x.client).SP;
end_for_each 

As described in section III.C, the workflow analyser 
inserts some operations at the end of each composite service 
for checking the termination of the composite service. On 
receipt of the check_termination message, the execution 
coordinators involved in executing the client’s operations 
will determine whether the client can terminate. In R7, OP
is a set that includes all the operations of client c. EQS is the 
set that contains all the execution queues in the system. As 
explained in section III.B, a client can only terminate once 
all the clients that it depends on have completed (i.e. the 
condition in line 1 of R7). When a client terminates, all its 
operations are removed from the execution coordinators’ 
queues (line 2 of R7).  

R7 when receive a check_termination message from  
a client, say c:

1 wait until the following condition becomes true 

))))',(),'(.(:'(
))(.((:.:

eeconflciteefronteqe
eqelemeEQSeqOPe

2 remove c’s operations from their execution queues 
remove c from all re-execute sets in c.SP (if needed) 

IV. PERFORMANCE EVALUATION

Experiments were carried out to compare the 
performance of the proposed scheme with some related 
schemes. In the experiments, the execution coordinators and 
the service providers are implemented using WCF [13]. The 
database being used is SQL-Server 2005.  

The first experiment compares the strict two-phase 
locking scheme (S2PL) [2] and the scheme in this paper. To 
make the experiment condition more favorable to S2PL, two 
composite services are regarded as conflicting with each 
other if they access at least one common service provider. 
The conflict rate is defined as “(the number of composite 

services that conflict with at least one other composite 
service)/(the total number of composite services)”. The 
experiments measured how the two schemes perform by 
varying the rate of the conflict amongst the clients. In each 
experiment, each composite service accesses three service 
providers that are chosen randomly. It is assumed that the 
system has sufficient resource to handle the client’s 
execution. That is, a client is only blocked due to 
concurrency control. The improvement rate is defined as 
“(the response time to client under the S2PL scheme - the 
response time to client under the proposed scheme)/ the 
response time to client under the S2PL scheme”. From 
Figure 3, it can be seen that the scheme in this paper 
performed better than S2PL even if the conflict rate is low 
(i.e. an improvement of 11.5% when the conflict rate is 
10%). When the conflict rate is high, the proposed scheme 
outperforms the S2PL by a large margin (i.e. an 
improvement of 36.2% when the conflict rate is 50%). 

Figure 3. Comparison with the S2PL Scheme 

The second set of experiments compares the the 
proposed scheme with the schemes in [1, 18]. In these 
experiments, it is assumed that two clients share at least one 
service provider. For the schemes in [1, 18], two clients 
conflict with each other if they access the same service 
provider. As discussed in section III.D, for the scheme in 
this paper, two clients sharing a service provider do not 
necessarily conflict with each other. In the experiments, the 
conflict rate for the scheme in this paper is set to 50% (i.e. 
half of the clients that share service providers conflict with 
each other). Conflicts amongst the composite services can 
cause cycles being formed in the serialization graph. 
Breaking the cycles involves rolling back some of the 
operations. The experiment assumes that undo an operation 
takes the same amount of time as carrying out the operation. 
Thus, the amount of cycles influences the efficiency of the 
schemes. The experiments compare the proposed scheme 
with the ones in [1, 18] when 10% and 50% of the 
conflicting clients form cycles. Figure 4 shows the ratios 
between the response time of the schemes being compared, 
i.e. “the response time to the client under the proposed 
scheme / the response time to the client under [1, 18]”. xy10
and xy50 denote the ratios when the percentage of the 
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clients that form cycles in the serialization graph are 10% 
and 50% respectively. 

The scheme in [18] prevents the forming of cycles at the 
cost of causing possible delays to the execution of the 
clients that do not conflict with each other as the clients are 
executed in the order of their reserved positions. From yc10
and yc50, it can be seen that, when there are more cycles 
(i.e. for yc50), the performance of the proposed scheme 
becomes closer to the scheme in [18]. This is because the 
time used to roll back the clients offsets the gain obtained in 
avoiding the unnecessary delay in executing the clients.  

As the scheme in this paper uses run-time analysis to 
eliminate some false dependency amongst the clients, 
compared with [1], the clients under the scheme in this 
paper have fewer conflicts with the other clients. As a result, 
fewer clients need to wait for other clients in order to 
terminate. Hence, as shown in adn10 and adn50, the 
response time of the clients under the proposed scheme is 
shorter than the scheme in [1]. Cycles in the serialization 
graph can also be formed in [1]. From adn10 and adn50, it 
can be seen that the response time of the two schemes is 
similar under different percentages of cycles. This is 
because both schemes have overheads for breaking the 
cycles.

The experiments also compared the number of cycle-
chasing probes of the proposed scheme and the scheme in 
[1]. The ratios between the numbers of probes of the two 
schemes, i.e. “the number of probes generated by the 
proposed scheme / the number of probes generated by [1]” 
are shown as msg-adn10 and msg-adn50 in Figure 4. From 
msg-adn10 and msg-adn50, it can be seen that the proposed 
scheme generates less probes. This is because the scheme in 
[1] propagates the probes to all the composite services that 
conflict with each other, while the proposed scheme only 
propagates the cycle-chasing probes to the clients if there is 
a possibility that a cycle might be formed by the clients.  

Figure 4. Comparisons with Other ACID-relaxed Schemes 

V. CONCLUSION

The scheme in this paper ensures the serilizability of the 
concurrent execution of the composite services. As the 
detection of the cycles in the serialization graph is carried 

out concurrently with the execution of the clients, the 
detection does not slow down the execution of the 
composite services. The information gathered during the 
off-line analysis of the composite services’ workflows can 
effectively reduce the overhead in detecting cycles in the 
serialization graph and avoid the repeated rollback problem. 
Using the run-time analysis of the SQL statements, the 
proposed scheme can decide whether the clients conflict 
with each other more accurately than other schemes. 
Consequently, it reduces the amount of unnecessary waiting 
amongst the clients. Hence, compared to the other schemes, 
the proposed scheme shortened the response time for clients 
and incurred less overhead.  
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