
Please do not remove this page

Metamorphic testing for web services:
Framework and a case study
Sun, Chang Ai; Wang, Guan; Mu, Baohong; Liu, Huai; Wang, Zhaoshun; Chen, Tsong Yueh
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Metamorphic-testing-for-web-services-Framework/9921858656701341/
filesAndLinks?index=0

Sun, C. A., Wang, G., Mu, B., Liu, H., Wang, Z., & Chen, T. Y. (2011). Metamorphic testing for web services:
Framework and a case study. Proceedings of the 9th International Conference on Web Services (ICWS
2011), 283–290. https://doi.org/10.1109/ICWS.2011.65

Published Version: https://doi.org/10.1109/ICWS.2011.65

Document Version: Accepted Manuscript

Downloaded On 2024/04/25 10:40:40 +1000
© 2011 IEEE.
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Metamorphic-testing-for-web-services-Framework/9921858656701341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Metamorphic-testing-for-web-services-Framework/9921858656701341
http://doi.org/doi:https://doi.org/10.1109/ICWS.2011.65
https://researchrepository.rmit.edu.au

Thank

Citatio

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©

d Version:

 this docum

IT Researc

ment from

ch Reposit

the RMIT R

ory at:

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

Sun, C, Wang, G, Mu, B, Liu, H, Wang, Z and Chen, T 2011, 'Metamorphic testing for web
services: Framework and a case study', in Proceedings of the 9th International Conference
on Web Services (ICWS 2011), USA, 4-9 July 2011, pp. 283-290.

http://researchbank.rmit.edu.au/view/rmit:22534

Accepted Manuscript

2011 IEEE

http://dx.doi.org/10.1109/ICWS.2011.65

http://researchbank.rmit.edu.au/

Metamorphic Testing for Web Services: Framework and a Case Study

Chang-ai Sun1*, Guan Wang1, Baohong Mu1, Huai Liu2, ZhaoShunWang1, T.Y. Chen2
 1School of Computer and Communication Engineering

University of Science and Technology Beijing
Beijing, China

casun@ustb.edu.cn

2Faculty of Information and Communication
Technologies

Swinburne University of Technology
Melbourne, Australia

{hliu,tychen}@swin.edu.au

Abstract—Service Oriented Architecture (SOA) has become
a major application development paradigm. As a basic unit of
SOA applications, Web services significantly affect the quality
of the applications constructed from them. Since the
development and consumption of Web services are completely
separated under SOA environment, the consumers are
normally provided with limited knowledge of the services and
thus have little information about test oracles. The lack of
source code and the restricted control of Web services limit the
testability of Web services.

To address the prominent oracle problem when testing Web
services, we propose a metamorphic testing framework for
Web services taking into account the unique features of SOA.
We conduct a case study where the new metamorphic testing
framework is employed to test a Web service that implements
the electronic payment. The results of case study show the
feasibility of the framework for web services, and also the
efficiency of metamorphic testing. The work presented in the
paper alleviates the test oracle problem when testing Web
services under SOA.

Keywords-Web services; software testing; metamorphic
testing; test oracle; Service Oriented Architecture

I. INTRODUCTION
Service Oriented Architecture (SOA) has been evolving

as a mainstream software development paradigm where
Web services are basic elements [23]. A Web service often
implements an application or part of an application, and is
able to make a set of operations available to its consumers
through the Web Service Description Language
(WSDL)[16]. Under SOA, Web services can be
implemented and owned by one organization, and published
as an independent resource that is consumed by other
organizations. To implement complex applications, Web
services have to be loosely orchestrated to fulfill a business
goal [24].

Let us consider an e-bookstore system constructed by
several Web services. Among them, a Web service is
responsible for the electronic payment. Usually, such a Web
service is developed and owned by a third-party

organization, such as a software company, a bank, or an
independent commercial office. Due to the fact that the
consumer (i.e. the e-bookstore system) can access the Web
service only through its description (namely WSDL) and
cannot look into the source code of the Web service, this
results in some inconsistency issues. For example, some
faults may exist in the implementation regardless how many
efforts are spent on testing. Also, the service owner may
update the implementation due to the change of payment
policy (specification), however, the service consumer may
not realize the changes happening to the implementation or
specification. This may result in the situation where the
consumer invokes the latest version of implementation
while holds the old version of specification. All these cases
bring us one question, namely “how should we assure the
consistency between implementation and specification of
Web services?”

Software testing provides a practical and feasible
approach to the question. However, the unique features of
SOA pose new challenges for testing. For instance, white-
box testing techniques become inapplicable due to the lack
of source code. Moreover, the test oracle problem, which
puzzled tester for a long-term period [27], is even amplified.
In the example of the electronic payment service, the
consumer, under some situations, may not know exactly
how much should be charged for a given input (i.e. book
price). The problem becomes even worse when the payment
involves charges for transfer between accounts or currency
exchange. Thus, testing Web service under SOA calls for
new testing techniques [3, 5, 15].
 This paper proposes a metamorphic testing framework
for Web services to address the challenges of testing Web
service under SOA. Metamorphic Testing (MT) was first
introduced by Chen et. al [7], and it has been shown that
MT has successfully alleviated the test oracle problem [14].
We investigate how to apply MT into the testing of Web
services, and report a case study. The paper makes the
following contributions:

1. A MT framework which examines and answers the key
issues when using MT to test Web services. The
framework combines the basic principle of MT with
unique features of SOA.

* Contact author

2. An efficient testing technique for Web services. As to
be observed from the results of the mutation analysis,
MT can detect nearly 80% faults of the subject Web
service without the need of oracles.

3. A case study which describes how MT can be
employed to test a representative and widely-practiced
Web service and reports the effectiveness. The case
study clearly shows the applicability of MT for testing
Web services.

The rest of the paper is organized as follows. Section II
introduces underlying concepts related to MT and mutation
analysis. Section III presents a framework of MT for Web
services. Section IV reports a case study where MT is
employed to test a Web service implementing the electronic
payment. Related work is discussed in Section V. Section VI
concludes the paper and points out the future work.

II. BACKGROUND
In this section, we introduce the underlying issues or

concepts related to Web service testing, MT and mutation
analysis.

A. Testing Web Services
Web services must be trustworthy before they can be

used. Testing is a major activity to assure that Web services
can be trusted. However, the testing of Web services is more
challenging than that of traditional software due to the
unique features of SOA. In particular, the lack of source
code and the restricted control of services limit the
testability of Web services.

In order to address these challenges, researchers have
proposed various testing techniques for Web services. For
example, Bartolini et al. [4] developed a tool called TAXI
that generates test cases for Web services based on WSDL
specifications. Bai et al. [2] proposed an ontology-based
partition testing approach for Web services. Lenz et al. [20]
applied model-driven approaches to the testing of Web
services. Many other testing methods for web services can
be found in the literature, such as contract-based Web
services testing [17], fault-based Web services testing [22],
and regression Web services testing [25], etc.

B. Metamorphic Testing
Most testing techniques proposed so far are focused on

how to effectively select test cases such that program faults
can be revealed as early as possible or as many as possible.
There is an implicit assumption behind most of these
techniques, that is, there exists a test oracle that provides a
systematic mechanism for verifying the test output given
any possible program inputs. However, in many practical
situations, the oracle does not exist, or it is very expensive,
if not impossible, to verify the correctness of test outputs.
Such an oracle problem hinders the applicability and
effectiveness of many testing techniques.

Metamorphic testing [7] is an innovative approach to the
oracle problem. In MT, testers first identify some properties
from the software under test. A set of metamorphic relations

(MRs) can then be constructed based on these properties.
Some traditional testing techniques can be applied to
generate some test cases, namely source test cases. MRs are
used to convert source test cases into so-called follow-up
test cases. Both source and follow-up test cases are executed.
The execution results (that is, the test output) will be
checked against the MRs (instead of using the oracle). If an
MR is violated, a fault is said to be revealed.

One simple example for how MT works is as follows.
Suppose P is a program that finds the shortest path from one
node to another node in an undirected graph. For P, we can
have an MR that a graph and its permutation should have
the same output. In order to test P by MT, we generate a
source test case (G, a, b), which G is a graph, a and b are
two nodes of G, and then construct the follow-up test case
(G’, a’, b’), where G’ is the permutation of G, while a’ and
b’ are the permutated points of a and b, respectively. We
execute both (G, a, b) and (G’, a’, b’), and check whether |P
(G, a, b)| = |P (G’, a’, b’)|, where |P (G, a, b)| denotes the
length of the returned shortest path from node a to node b in
G. If the relation does not hold, we can say that P has a fault.

Besides providing a test output verification mechanism
alternative to the oracle, MT has many other advantages.
For example, it can be effectively applied by end users
without much knowledge of software testing. It is also very
easy to automate MT. Based on MRs, a large number of
follow-up test cases can be automatically generated at a low
cost, and the test output verification can be easily fulfilled
by writing some simple scripts. Researchers from different
application areas have used MT to detecting bugs in various
programs [11, 19].

C. Mutation Analysis
Mutation analysis [13] is widely used to assess the

adequacy of a test suite and the effectiveness of testing
techniques. The mutation analysis technique applies some
mutation operators to seed various faults into the program
under test, and thus generates a set of variants, namely
mutants. If a test case causes a mutant to show a behavior
different from the program under test, we say that this test
case can “kill” the mutant and thus detect the fault injected
into the mutant. We normally use the mutation score (MS)
to measure how thoroughly a test suite can kill the mutants,
which is defined as

MS (p, ts) =
eNmN

kN
− , (1)

where p refers to the program being mutated, ts refers to test
suite under evaluation, Nk refers to the number of killed
mutants, Nm refers to the total number of mutants, and Ne
refers to the number of equivalent mutants. An equivalent
mutant refers to one whose behaviors are always the same as
those of p. It has been pointed out that compared with
manually seeded faults, the automatically generated mutants
are more similar to the real-life faults, and the mutant score
is a good indicator for the effectiveness of a testing technique
[1]. In this paper, we will use mutation analysis technique to
evaluate the effectiveness of our testing method.

III. METAMORPHIC TESTING FOR WEB SERVICES
When loosely-coupled web services are orchestrated to

fulfill a business goal, the service consumer must be
confident that the Web services being orchestrated should
implement their expected functionalities. This assumption
requires that the service owner/developer has adequately
tested the Web services. However, the service
owner/developer cannot cover all possible usages of Web
services, and thus the executed tests are inadequate. On the
other hand, the service consumers have very little
documentation and cannot access source codes of Web
services. In this situation, MT provides an appropriate
testing technique which can help service consumers test a
third-party Web services without the need of oracles.
 Figure 1 depicts a framework of MT for Web services.
Within the framework, metamorphic relationships (MRs)
play a key role because they determine the selection of test
cases and the evaluation of test results. Note that with the
framework, we assume that the service consumers can
derive the metamorphic property specification from the
limited documentation of Web services, and service
description may record the tests already executed on the
web service being tested.

When the framework is employed to test a Web service,
the consumers first derive metamorphic property
specifications from the description or WSDL of the Web
service. Before the test starts, the consumers need to specify
the options with the configuration, and select MRs to
conduct tests. The consumers can employ the test case
generator to construct test cases according to the selected
MR. The executor is then employed to run test cases and get
their outputs. Finally, the evaluator assesses the tests and
judges whether the MR is satisfied or violated. Next, we
examine individually how the components of the MT
framework work and how they are collaborated to test Web
services without the need of oracles.

 (1) Test Case Generator (TCG). This component is
responsible for generating test cases according to the
selected MRi. TCG first needs to parse the WSDL to decide

the format of test cases. For generating source test cases,
there are two ways. One is to randomly generate them from
scratch; the other is to extract them from the service
description that has recorded the previously executed tests.
Next, the TCG construct the follow-up test cases TCx’ by
transforming the source test case TCx based on the MRi.
Furthermore, the TCG may generate test cases in either the
batch mode or the one-by-one mode. If the batch mode is
adopted, it needs to know where to store the generated test
cases. Both the mode and the storage location are specified
through the Configuration.

 (2) Executor. This component executes Web services
with test cases generated by the TCG via the SOAP message,
and intercepts the output Oi from the execution. If the
source test case TCx is extracted from the service
description, and the corresponding output Ox is also
recorded in the previously executed tests in its service
description, we can skip the execution of TCx, and directly
run the Web service with TCx’ and intercepts its output Ox’.

(3) Evaluator. This component compares the outputs Ox
and Ox’, and makes decision whether they satisfy or violate
MRi. If MRi is violated, a fault is detected; otherwise, this
test is passed.

 (4) Configuration. This component is responsible for
specifying the options during the MT process.

• Firstly, we can derive a set of MRs from the
metamorphic property specification. The configuration
component must specify which MR is selected before
the test.

• Secondly, for the given MRi, the configuration
component specifies how many test cases should be
selected by the TCG.

• Thirdly, the configuration component must specify the
mode for the TCG to generate test cases. For the batch
mode, it also needs to further specify the file of the
generated test cases.

• Finally, if the evaluator detects a fault, the testing stops.
However, the testing may not detect any fault although
all the generated test cases have been executed. In such a

Test Case
Generator

(TCG)

Executor

Evaluator

WSDL

Implementation Metamorphic
Relation (MRi)

Metamorphic
Property

Specification

Select

Configuration Service
Description

Web Service Metamorphic Testing

(TCx, TCx’)

(Ox, Ox’)

parse

TCi

SOAP, TCi

Oi

Figure 1. The Framework of Metamorphic Testing for Web Services

invoke

data flow

return

reference

compose

situation, the configuration component will specify an
option whether the testing should stop or continue by
trying another MR.

Currently, we have implemented a prototype which

partially automates the framework. We apply the framework
to a real-life Web service, validate its feasibility, and
evaluate the effectiveness of MT for Web services.

IV. A CASE STUDY
In this section, we describe a case study to validate the

MT framework for testing Web services, and report the
effectiveness of MT. The electronic payment service is
selected as the subject program because of the test oracle as
discussed before. Mutation analysis is used to evaluate the
effectiveness of MT. The results of the case study show that
MT can detect about 80% mutants.

A. Subject program
A general ATM (Automatic Teller Machine) system is

implemented as Web service and deployed in the Tomcat
server. The user and business data are stored in a MySQL
database. The system offers several features, such as
withdrawal, deposit, transfer, query, and each of them is
encapsulated as a service port. Among these features, we
select the transfer feature for the case study because it is
widely practised in the electronic payment and the oracle
problem arises when testing such a feature.
 Figure 2 shows a segment of WSDL for the transfer
feature. The implementation consists of 136 lines of Java
codes, and executes the connection to relevant database,
SQL statements, and numerical computing on the transfer
amount and commission fee. For the commission fee
charging criterion, we refer to Agricultural Bank of China
for the calculation rules as shown in Table I. Transfer types
I-IV refer to the transfer between two accounts in the same
bank and city, in the same bank but different cities, in the
same city but different banks, in different cities and

different banks, respectively. From Table I, one can see that
the commission fee varies a bit with different types of
transfers. When transferring the money between two
accounts, the user may not know the precise amount of
commission fees because details of the recipient account
may not be fully known. In other word, the oracle is not
always available when testing such a Web service.

TABLE I. COMMISSION FEE CALCULATION

 I II III IV
Charge Percentage 0% 0.5% 0.5% 1%

Min(￥) 0 1 1 1

Max(￥) 0 50 50 50

Limit Per Transfer (￥) 50000 50000 50000 50000

B. Applying MT to Test the Transfer Interface
We describe how MT can be used to effectively test Web
services without the need of oracles.

 (1) Inputs and Outputs. By analyzing the WSDL of the
Web service, we can derive the input of the transfer
operation, and it is represented as a 4-tuple integer vector (A,
B, P, M), where

• A and B denote the sender and recipient account
numbers for the transfer transaction, respectively.
They consist of 10 digits.

• P denotes the transfer type. Its value ranges from 0 to
3, corresponding to type I to IV in Table I. Note that
the transfer type can be deduced from A and B. For
simplicity, we explicitly specify the type by P.

• M denotes the amount of a transfer transaction,
ranging from 0 to 50000, inclusive.

For example, an input (1000000000, 2000000000, 3,
5000) means that the sender account number is 1000000000,
the recipient account number is 2000000000, ￥5000 is
transferred from the sender account to the recipient account,
and these two accounts are in different cities and different
banks.

Similarly, we can derive the output of the transfer
operation. For simplicity, it is represented as a 2-tuple
positive real vector (△A, △B), where

• △A denotes the difference between the balances of
account A before transaction and after transaction.

• △B denotes the difference between the balances of
account B after transaction and before transaction.

Note that both △A and △B must be positive after a
transaction. We notice that the commission fee may be
charged from either the sender account (i.e. A) or the
recipient account (i.e. B). Here, we assume the former in
order to follow the policy of Agricultural Bank of China.

 (2)Deriving Metamorphic Relations (MRs). The

selection of MRs is a key issue during the application of MT

<wsdl:operation name="transfer">
<wsdl:input message="tns:transferRequest"></wsdl:input>
<wsdl:output message="tns:transferResponse"> </wsdl:output>
<wsdl:fault name="fault01" message="tns:InvalidAccountID">

</wsdl:fault>
<wsdl:fault name="fault03" message="tns:InvalidAmount">

</wsdl:fault>
</wsdl:operation>
…
<xsd:element name="transferRequest">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="from" type="xsd:string"></xsd:element>
<xsd:element name="to" type="xsd:string"></xsd:element>
<xsd:element name="amount" type="xsd:int"></xsd:element>
<xsd:element name="mode" type="xsd:int"></xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="transferResponse" type="xsd:string">

</xsd:element>

Figure 2. A segment of WSDL for the transfer interface

[12]. Some guidelines are available for selecting MRs from
the specification. In particular, Chen et al. [9-10, 12]
discover that (1) good MRs are relations which involve the
execution of the core functionality; (2) good MRs should be
those that can make the multiple executions of the program
as different as possible.

According to the guidelines, we derive a set of MRs for
the transfer and they are listed in Table II. In this study, all
the selected MRs can be decomposed such that each MR is a
pair of R and Rf, where R denotes the relation between
source and follow-up test cases (inputs) and Rf denotes the
relation between their outputs. From MR1 to MR5, the
follow-up test cases are derived from their source test cases
via changing only one tuple once. Considering MR1, if one
source test case is (a, b, p, m), its follow-up test case should
be (a’=a, b’=b, p’=p, m’=2m). For MR6, the follow-up test
cases are derived from their source test cases via exchanging
the sender account with the recipient account.

TABLE II. A SET OF MRS FOR THE THE TRANSFER FEATURE

MR R Rf
MR1 M’=2M △A’≤2△A and △B’=2△B
MR2 P= 1 and P’= 2 △A’- △B’=△A- △B
MR3 P= 0 and P’≠ 0 △A’- △B’>△A-△B
MR4 P= 3 and P’≠ 3 △A’- △B’≤△A-△B
MR5 M’>M △A’> △A and △B’>△B
MR6 A’=B and B’=A △A’=△B

Note that the derivation of these MRs is based on the

specification shown in Table I, and is completely
independent of the implementation. This means that MT
does not need to access the coding and hence is widely
applicable to SOA-based applications.

(3)Test case generation based on MRs. In order to

execute MT, test cases are produced based on the MRs. For
the source test cases, one can employ traditional test case
generation techniques, such as the special test value
generation, the random test value generation and the
iterative test value generation. Among them, the random test
value generation is more favorable and efficient for MT,
because it can generate a large amount of test cases at a low
cost, and the randomly-generated test cases can cover the
test domain without any bias [9, 28]. Thus we employ the
random test value generation to generate source test cases in
our case study. For the follow-up test cases, they are
accordingly constructed from their source test cases using
MRs defined in Table II.

(4) Test Execution. With the test cases generated above,

we now can execute and test the transfer feature. In order to
make the testing efficient, we develop a platform prototype
supporting the MT framework for Web services discussed
above. Figure 3 shows a snapshot of the platform. With the
platform, one can select one or more MRs to test the transfer
feature. The platform supports both the one-by-one mode
and the batch mode. Test cases can be automatically
generated or manually input, or imported from a file.

C. Evaluation and discussions
We here describe several experiments where mutation

analysis is used to evaluate the effectiveness of MT.
Firstly, we seed faults into the implementation at the

level of methods by mutation operators. This is done
automatically by MuJava [21], and we hereby have a total of
139 mutants. Among them, 10 mutants are equivalent
mutants and thus are excluded from experiments. Secondly,
we employ the platform to generate test suites which are
based on MRs in Table II. Finally, these test suites are used
to test the subject program. A fault is said to be detected
(that is, a mutant is killed) when an MR is violated (that is,
the source and follow-up test cases satisfy R, while their
outputs do not satisfy Rf).

We use mutation score (MS) and fault discovery rate
(FDR) as metrics to measure the performance of MT. MS
indicates the adequacy of a test suite ts against the program
under test, while FDR indicates the detection capability of a
test suite ts against a mutant m, namely

FDR (m, ts) =
iNtsN

fN
− , (2)

where Nf refers to the number of test cases that can kill the

TABLE III. A SUMMARY OF AVERAGE FDR OF 129 MUTANTS USING MT

 MR1 MR2 MR3 MR4 MR5 MR6
Size=50 30.4% 31.7% 31.5% 20.3% 15.4% 13.8%

Size=100 30.2% 32.8% 31.3% 20.3% 15.3% 13.8% FDR
Size=200 30.6% 31.8% 30.8% 20.3% 15.3% 13.8%

Figure 3. The snapshot of MT platform prototype

mutant m, Nts refers to the total number of test cases in ts,
and Ni refers to the number of invalid test cases. Invalid test
cases are referred to those that do not work properly for a
given MR. In the experiment, it is possible to derive some
invalid follow-up test cases, because source test cases are
randomly and automatically generated. Consider the MR1 in
Table II, if one source test case is (1000000000,
2000000000, 3, 5000), its follow-up test case should be
(1000000000, 2000000000, 3, 10000). However, such a
follow-up test case violates the rules given in the Table I.
These invalid test cases should not be included in our
experiments.

(1) FDR evaluation results. Table III summarizes the

average FDRs of all 129 distinct mutants. In the
experiments reported here, we set the size of valid test cases
(namely Nts-Ni) to 50, 100, and 200, in order to make the
experimental results more conclusive and stable. We
observe that MR2, MR3 and MR1 are more effective
compared with other MRs, and thus should have higher
priority when MT is employed.

We further select ten mutants from 129 distinct mutants
for a detailed analysis of the FDR with respect to each MR.
These ten mutants are selected in order to cover all types of
mutation operators supported by MuJava, and at the same
time we believe the associated faults with these mutants are

very typical. Table IV summarizes the mutation description
of these mutants. Table V reports the FDRs on the ten

mutants when MT is used to test the transfer. Each cell of
Table V shows the FDR of a test suite generated by an MR
on a mutant. For example, the right-bottom cell represents
that the test suite with the size of 200 test cases generated by
MR6 has an FDR of 100% on M133. We can observe from
Table V that

TABLE V. A SUMMARY OF FDR FOR TEN MUTANTS WHEN THE SIZE OF VALID TEST CASES IS 50, 100 AND 200

ID MR1 MR2 MR3 MR4 MR5 MR6
M004 100% 0% 0% 0% 0% 0%
M007 30% 0% 0% 0% 0% 0%
M021 38% 0% 100% 24% 14% 26%
M055 0% 0% 0% 0% 0% 0%
M057 0% 100% 0% 0% 0% 0%
M069 100% 100% 100% 100% 100% 100%
M093 0% 0% 100% 0% 0% 0%
M096 0% 0% 52% 72% 0% 0%
M116 0% 18% 28% 74% 0% 0% Si

ze
 o

f v
al

id
 te

st
 c

as
es

=5
0

M133 100% 100% 100% 100% 100% 100%
M004 100% 0% 0% 0% 0% 0%
M007 31% 0% 0% 0% 0% 0%
M021 32% 0% 100% 35% 24% 26%
M055 0% 0% 0% 0% 0% 0%
M057 0% 100% 0% 0% 0% 0%
M069 100% 100% 100% 100% 100% 100%
M093 0% 0% 100% 0% 0% 0%
M096 0% 0% 42% 65% 0% 0%
M116 0% 27% 38% 69% 0% 0%

Si
ze

 o
f v

al
id

 te
st

 c
as

es
=1

00

M133 100% 100% 100% 100% 100% 100%
M004 100% 0% 0% 0% 0% 0%
M007 20% 0% 0% 0% 0% 0%
M021 39% 0% 100% 35% 27% 16%
M055 0% 0% 0% 0% 0% 0%
M057 0% 100% 0% 0% 0% 0%
M069 100% 100% 100% 100% 100% 100%
M093 0% 0% 100% 0% 0% 0%
M096 0% 0% 36% 70% 0% 0%
M116 0% 19% 32% 65% 0% 0%

Si
ze

 o
f v

al
id

 te
st

 c
as

es
=2

00

M133 100% 100% 100% 100% 100% 100%

TABLE IV. A SUMMARY OF MUTATION DESCRIPTION OF TEN
MUTANTS

ID Mutation Description
M004 Line 88: money => money++
M007 Line111: money => --money
M021 Line 123: commission_charge => --commission_charge

M055 Line 149: EXCEPTION_DATABASE_ERROR
=> -EXCEPTION_DATABASE_ERROR

M057 Line 111: money * rate2 => money / rate2

M069 Line 88: money > maxTransferAmount_Once
=> !(money > maxTransferAmount_Once)

M093 Line 126: commission_charge<1 && commission_charge>0
 => commission_charge < 1^commission_charge > 0

M096 Line 110: same_bank == false && same_location == false
=> same_bank == false ^ same_location == false

M116 Line 110: same_bank == false => same_bank != false

M133 Line 88: money > maxTransferAmount_Once
=> money <= maxTransferAmount_Once

• Each MR has a varying sensitivity to different mutants.
For instance, MR1 is sensitive to M004 while not
sensitive to M057; MR3 is sensitive to M021 and M093,
while not sensitive to M007 and M004. Such
observations imply that different MRs have different
effectiveness on different types of faults. It is not
surprising, as MRs are just necessary conditions of the
specification which reflect specific aspects of the
software. Tester should identify the properties that are
the most important for the consumers of the software
under test, and thus identify effective MRs based on
these important properties.

• Among the ten mutants, M069 and M133 can be killed
by all MRs, M055 cannot be killed by any MR, and
other mutants were killed by some MRs with varying
FDRs but cannot be killed by other MRs. By further
analysis of the implementation of M055, we found that
this mutant cannot be killed because the seeded fault is
related to exception processing while our MRs do not
involve the feature of exception processing. This
indicates that some MRs related to exception process
may be able to detect such kinds of faults.

• Those FDRs that are neither 0% nor 100% vary a bit
with the changing size of valid test cases. That is, when
the size of valid test cases satisfying the same MR
changes, the FDR may change even for the same mutant.
This shows the dependency of source test cases in MT.

(2) MS evaluation results. Table VI summarizes the test

adequacy of MT with respect to MS when each MR or their
composite is used to generate test suites. The “Nk” row
shows the number of mutants killed by a MR, and the “MS”
row shows the mutation score of each MR (= Nk /129). The
“Total” column shows the performance when the composite
of six MRs is used to generate test suites (namely, all test
suites generated by these six MRs). We repeat the
experiments with the size of valid test cases covering 50,
100 and 200, and find the results are the same. It can be
observed from Table VI that

• The MS of each MR can be used to compare their
effectiveness. Among these MRs, MR1, MR2, and
MR3 are more effective, while MR4, MR5 and M6 are
less effective. For instance, the MS of MR1 (45.0%) is
larger than that of MR6 (17.8%), we can say that MR1
is more effective than MR6 to some extent.

• The composite of the six MRs can kill up to 77.5% of
all mutants. The MS of the composite is larger than that
of any single MR. That is to say, the composite of MRs
should be used to generate test suites provided that

there is no concern with testing costs. Otherwise, taking
into account the results in Table IV, the priority order
of these MRs should be MR1>MR3>MR2>MR4>MR5
>MR6.

(3) Summary. Through this case study, we have

validated the feasibility of the MT framework for Web
services, and evaluated the effectiveness of MT. No oracles
are needed when MT is employed to test the transfer
implemented in a Web service. This greatly alleviates the
more prominent oracle problem when testing Web services
under SOA. Furthermore, the experimental results show that
up to 77.5% mutants are killed, which demonstrates a high
fault detection capability of MT. In a word, the proposed
MT framework is an effective and efficient testing
technique without the need of oracle for Web services.

V. RELATED WORK
As pointed out in Section II.A, there are various

techniques for the testing of Web services in the literature.
However, most of these techniques are focused on the
selection of test cases for Web services. It is often assumed
that there exists an oracle. The effectiveness of these testing
techniques is greatly limited when the oracle is absent. The
MT technique used in this paper can conduct effective
testing without the need of oracles. MT has been used to
alleviate the oracle problem of fault-based testing [8]. It is
interesting to study how MT can be integrated with other
Web service testing techniques, aiming at effective testing
in the absence of oracles.

Several researchers have conducted studies on the oracle
problem in Web services. Tsai et al.[26] proposed a
technique called adaptive service testing and ranking with
automated oracle generation and test case ranking
(ASTRAR), where a set of Web services with the same
specification are executed, and a voting algorithm is applied
to the outputs of these Web services to find the majority
output, which will be used to form the oracle. Such an
approach is effectively N-version programming [18].
ASTRAR is applicable when there are a large number of
Web services with the same specification. In addition, it is
well known that N-version programming is not always a
reliable method to the oracle problem. Our MT method can
test a single Web service, and provide a reliable test output
verification mechanism alternative to the oracle. Chan et al.
[6] have proposed to use MT in the online testing of service-
oriented software applications. Their method takes the
successful test cases for offline testing as the source test
cases for online testing. However, they have assumed the

TABLE VI. A SUMMARY OF MUTATION SCORE (MS) OF 129 MUTANTS USING MT

 MR1 MR2 MR3 MR4 MR5 MR6 Total
Nk 58 54 56 38 25 23 100
MS 45.0% 41.9% 43.4% 29.5% 19.4% 17.8% 77.5%

existence of an oracle during the offline testing. Our method
never has such an assumption.

VI. CONCLUSIONS AND FUTURE WORK
We have presented a novel testing technique for Web

services to address the challenge of testing SOA
applications. Using metamorphic testing technique, one can
effectively test Web services without the need of oracles. A
framework of metamorphic testing was proposed which
combines the principle of metamorphic testing with the
unique features of SOA. A case study has been conducted
where the proposed framework was used to test a
representative Web service. The results of the case study
showed the feasibility of the framework, and demonstrated
the effectiveness of metamorphic testing. The work
presented in the paper alleviates the test oracle problem
when testing Web services under SOA.

In our future work, we would enhance the automation
capability of the metamorphic testing platform prototype
developed in this study. Another work is to conduct more
empirical studies to further evaluate the effectiveness of
metamorphic testing for Web services in practice.

ACKNOWLEDGMENT
This research is supported by the National Natural

Science Foundation of China (Grant No. 60903003), the
Beijing Natural Science Foundation of China (Grant No.
4112037), the Research Fund for the Doctoral Program of
Higher Education of China (Grant No.2008000401051), and
a discovery grant of the Australian Research Council (Grant
No.DP0771733).

REFERENCES
[1] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an

appropriate tool for testing experiments?”, Proceedings of the 27th
International Conference on Software Engineering (ICSE2005), 2005,
pp402-411.

[2] X. Bai, S. Lee, W.-T. Tsai, Y. Chen, “Ontology-based test modelling
and partitioning testing of web services”, Proceedings of the 6th
International Conference on Web Services, 2008, pp465-472.

[3] C. Bartolini, A. Bertolino, S. Elbaum, E. Marchetti. “Whitening SOA
Testing”, Proceedings of ESEC-FSE’09, ACM Press, 2009, pp161-
170.

[4] C. Bartolini, A. Bertolino, E. Marchetti, A. Polini, “WS-TAXI: A
WSDL-based testing tool of web services”, Proceedings of the 2nd
International Conference on Software Testing Verification and
Validation (ICST2009), 2009, pp326-335.

[5] G. Canfora, M. Di Penta. “Service Oriented Architecture Testing: A
Survey”, LNCS 5413, Springer, 2009, pp78–105.

[6] W. K. Chan, S. C. Cheung, K. R. P. H. Leung, “A metamorphic
testing approach for online testing of service oriented software
applications”. International Journal of Web Services Research, 2007,
4(2):61-81.

[7] T.Y. Chen, S.C. Cheung, S.M. Yiu. “Metamorphic testing: A new
approach for generating next test cases”, Technical Report HKUST-
CS98-01, Hong Kong University of Science and Technology, 1998.

[8] T. Y. Chen, T. H. Tse, Z. Q. Zhou, “Fault-based testing without the
need of oracle”, Information and Software Technology, 2003, 45(1):1-
9.

[9] T.Y. Chen, F.C. Kuo, Y. Liu, A. Tang, “Metamorphic Testing and
Testing with Special Values”, Proceedings of SNPD2004, 2004,
pp128-134.

[10] T.Y. Chen, D.H. Huang, T.H. Tse, Z. Q. Zhou, “Case studies on the
selection of useful relations in metamorphic testing”, Proceeding of
the 4th lbero-American Symposium on Software Engineering and
Knowledge Engineering(JIISIC 2004), 2004, pp569-583.

[11] T. Y. Chen, J. W. K. Ho, H. Liu, X. Xie, “An innovative approach for
testing bioinformatics programs using metamorphic testing”. BMC
Bioinformatics, 2009, vol. 10, Article 14.

[12] T.Y. Chen, “Metamorphic Testing: A Simple Approach to Alleviate
the Oracle Problem”. Proceedings of Fifth IEEE International
Symposium on Service Oriented System Engineering, 2010, pp1-2.

[13] R. A. DeMillo, R. J. Lipton, F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer”, IEEE Computer,
1978, 1(4):31-41.

[14] G. W. Dong, B.W. Xu, L. Chen, C.H. Nie, L.L. Wang, “Survey of
Metamorphic Testing”, Journal of Frontiers of Computer Science and
Technology, 2009, 3(2):130-143.

[15] A. Farooq, K. Georgieva, R. R. Dumke. “Challenges in Evaluating
SOA Test Processes”, LNCS 5338, Springer, 2008, pp107–113.

[16] H. Haas, A. Brown, “W3C, Web Services Glossary”,
http://www.w3.org/TR/ws-gloss/, 2004.

[17] R. Heckel, M. Lohmann, “Towards contract-based testing of web
services”, Proceedings of the 2004 International Workshop on Test
and Analysis of Component Based Systems (TACoS2004), 2004,
pp145-456.

[18] J. C. Knight, N. G. Leveson, “An experimental evaluation of the
assumption of independence in multi-version programmings”, IEEE
Transactions on Software Engineering, 1986, 12(1):96-109.

[19] C. Murphy, G. Kaiser, L. Hu, L. Wu, “Properties of machine learning
applications for use in metamorphic testing”, Proceedings of the 20th
International Conference on Software Engineering and Knowledge
Engineering (SEKE2008), 2008, pp867-872.

[20] C. Lenz, J. Chimiak-Opoka, R. Breu, “Model driven testing of SOA-
based software”, Proceedings of the Workshop on Software
Engineering Methods for Service-Oriented Architecture
(SEMSOA2007), 2007, pp99-110.

[21] J. Offutt, Y.S. Ma, Y.R. Kwon, “An Experimental Mutation System
for Java”, ACM SIGSOFT Software Engineering Notes, Workshop
on Empirical Research in Software Testing, 2004, 29(5): 1-4.

[22] J. Offutt, W. Xu, “Generating test cases for web services using data
perturbation”, ACM SIGSOFT Software Engineering Notes, 2004,
29(5):1-10.

[23] M. Papazoglou. P. Traverso, S. Dustdar, F. Leymann. “Service-
Oriented Computing: a Research Roadmap”, International Journal on
Cooperative Information Systems (IJCIS), 2008, 17(2): 223-255.

[24] C. Peltz. “Web services orchestration: a review of emerging
technologies, tools, and standards”. Technical Report, 2003, Hewlett-
Packard Company, http://devresource.hp.com/drc/

[25] M. Ruth, S. Tu, “A safe regression test selection technique for web
services”, Proceedings of the 2nd International Conference on Internet
and Web Application and Services (ICIW2007), 2007, pp47.

[26] W. T. Tsai, Y. Chen, R. Paul, H. Huang, X. Zhou, X. Wei, “Adaptive
testing, oracle generation, and test case generation for web services”,
Proceedings of the 29th International Computer Software and
Applications Conference (COMPSAC2005), 2005, vol. 2, pp101-106.

[27] E. J. Weyuker. “On testing non-testable programs”, The Computer
Journal, 1982, 25(4):465-470.

[28] P. Wu, X.C. Shi, J.J. Tang, H.M. Lin, T.Y. Chen, “Metamorphic
Testing and Special Case Testing: A Case Study”, Journal of
Software, 2005. 16(7):1210-1220.

