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Abstract—In a service-oriented online social network con-
sisting of service providers and consumers as participants, a
service consumer can search trustworthy service providers
via the social network between them. This requires the
evaluation of the trustworthiness of a service provider
along a potentially very large number of social trust paths
from the service consumer to the service provider. Thus,
a challenging problem is how to identify K optimal social
trust paths that can yield the K most trustworthy evaluation
results based on service consumers’ evaluation criteria.

In this paper, we first present a complex social network
structure and a concept, Quality of Trust (QoT). We then
model the K optimal social trust paths selection with multi-
ple end-to-end QoT constraints as the Multiple Constrained
K Optimal Paths (MCOP-K) selection problem, which is
NP-Complete. For solving this challenging problem, based
on Dijkstra’s shortest path algorithm and our optimization
strategies, we propose a heuristic algorithm H-OSTP-K with
the time complexity of O(m+Knlogn). The results of our
experiments conducted on a real dataset of online social
networks illustrate that H-OSTP-K outperforms existing
methods in the quality of identified social trust paths.

Keywords: trust, social networks, K paths selection, service
provider selection

I. INTRODUCTION

Online social networking sites have been attracting a large
number of participants and are being used as the means for a
variety of rich activities. For example, according to a survey
on 2600 hiring managers in June 2009 by CareerBuilder1

(a popular job hunting website), 45% of them used social
networking sites to investigate potential employees. In January
2010, the ratio increased to 72%. In such an activity, trust
is one of the most important factors for decision making by
the participants, creating a great demand for approaches and
mechanisms for evaluating the trustworthiness between two
unknown participants. In service-oriented environments, social
networks can be used as the means for service consumers
to look for trustworthy service providers who are unknown
to them prior to invoking services, with the assistance of
information from other participants. For example, if a social
network consists of lots of buyers and sellers, it can be used
by a buyer to find the most trustworthy/reputable seller who
sells the product preferred by the buyer [11].

In social network models, each node represents a participant
and each link between participants corresponds to real-world
interactions or online interactions between them (e.g., A → B

1http://www.careerbuilder.com/

Figure 1. Social network

in Fig. 1). One participant can give a trust value to another
based on their past interactions. As each participant usually
interacts with many other participants, multiple social trust
paths may exist between two participants who have no direct
links with each other, such as the trust path A → B → E → H
and A → C → F → H in Fig. 1, each of which is called
a social trust path [8, 10]. Along a social trust path linking
two nonadjacent participants, such as A (termed as the source
participant) and H (termed as the target participant) in Fig.
1, the source participant can evaluate the trustworthiness of
the target one based on the trust information between the
intermediate participants along the path. This process is called
trust propagation [8, 10].

In large-scale social networks, there are usually over tens
of thousands of social trust paths between two unknown
participants [14]. Evaluating the trustworthiness of the target
participant based on all these social trust paths can lead to
huge computation time [2]. A challenging problem is how to
select those paths yielding the most trustworthy results of trust
propagation based on the source participant’s trust evaluation
criteria.

In the literature, there are some studies [10, 17] for address-
ing the path selection problem in social networks. However,
in [17], the trust information between participants is neglected
in path selection. In addition, the social relationships between
adjacent participants (e.g., the relationship between a buyer and
a seller) and the recommendation roles of a participant (e.g.,
a supervisor as a referee in his postgraduate’s job application)
have significant influence on trust propagation [1, 26] and can
be obtained by using data mining techniques in social networks
[22]. However, these factors have not been considered in the
models of [10] and [17]. Furthermore, a source participant
may have different purposes in evaluating the trustworthiness
of a target participant, such as hiring employees, buying or
introducing products. Therefore, a source participant may have
different social trust path selection criteria and should be able to
set certain constraints on the above factors in trust evaluation.
However, such a feature is not supported by the above methods.

An optimal social trust path selection model has been



proposed in our previous studies [19, 20], where the above
three factors and constrains are considered. But all the existing
methods including our previous studies focus on selecting only
one social trust path between a source participant and a target
participant. As illustrated in cognitive science [13], people are
willing to believe what they have been told most often and by
the possibility of the greatest number of different of sources.
Therefore, in order to obtain a more reasonable trust evaluation
result of a target participant, a source participant need to refer
to multiple social trust paths from the source participant to the
target one. This requires to identify K (K ≥ 2) optimal social
trust paths, yielding the K most trustworthy trust propagation
results based on the constraints specified by the source partic-
ipant. Since the selection of any one of the K optimal social
trust paths based on multiple constrains is the classical MCOP
selection problem, which has been proved to be NP-Complete
[12], the Multiple Constrained K Optimal Social Trust Paths
(MCOP-K) selection is also an NP-Complete problem. But
existing algorithms [5, 21, 24] for K paths selection attempt
to find the K shortest paths without any end-to-end constrains,
and this is not an NP-Complete problem. Thus, they can not
be used for the MCOP-K selection problem.

To solve the MCOP-K selection problem in complex social
networks, we first present the structure of complex social
networks taking trust information, social relationships and
recommendation roles of participants into account. We then
introduce a concept, Quality of Trust (QoT), which is used to
illustrate the ability to guarantee a certain level of trustworthi-
ness in trust propagation along a social trust path, taking the
above three factors as attributes (see Section III and Section
IV).

In addition, since a source participant can have different
social trust path selection criteria, he/she can set multiple
constrains for QoT attributes in the K optimal social trust
paths selection. To address the NP-Complete MCOP-K prob-
lem, based on Dijkstra’s shortest path algorithm [4] and our
optimization strategies, we propose a new efficient Heuristic
algorithm for the K Optimal Social Trust Path selection, called
H-OSTP-K (see Section V).

Furthermore, we have conducted extensive experiments on
a real online social network dataset, the Enron email dataset2.
Experimental results demonstrate that H-OSTP-K outperforms
existing methods in the quality of identified social trust paths
(see Section VI).

II. RELATED WORK

A. Social Network Analysis

The studies of social network properties can be traced back to
1960’s when the small-world characteristic in social networks
was validated by Milgram [25], through illustrating that the
average path length between two Americans was about 6 hops
in an experiment of mail sending. In recent years, Mislove
et al. [27] analyze several popular social networks including
Facebook3, MySpace4 and Flickr5, and validate the small-world
and power-law (i.e. in a social network, the probability that a
node has degree k is proportional to k−r, r > 1) characteristics
of online social networks by using data mining techniques.

2http://www.cs.cmu.edu/enron/
3http://www.facebook.com
4http://www.myspace.com
5http://www.flickr.com

B. Trust in Online Social Networks

Several trust management methods have been proposed in the
field of online social networks. Golback et al. [8] propose a trust
inference mechanism for trust relation establishment between a
source participant and the target one based on averaging trust
values along the social trust paths. In addition, Guha et al. [9]
propose a trust propagation model, where the number of hops
in trust propagation is considered in calculating the propagated
trust values between a source participant and the target one.
Furthermore, in the model of [11], a buyer performs several
random walks with a fixed number of hops along a path from
this buyer in the social network to find the ratings of the ending
participant to a seller. The degree of confidence of the seller is
calculated based on the number of random walk hops, ratings
and the number of random walk paths.

The above trust propagation strategies are only based on trust
ratings given by participants. As pointed out in social science
theories [1, 26], social relationships (e.g., the relationship be-
tween a buyer and a seller, or the one between an employer and
an employee) and recommendation roles (e.g., the supervisor
as a referee in a job application) [30] have significant influence
on participants’ decision making. However, the existing models
discussed above have not considered these factors.

C. Social Trust Path Selection

In the literature, there are only a few studies addressing the
path selection problem, which might be used for the social
trust path selection. SmallBlue [17] is an online social network
constructed for IBM staff. In this system, between a source
participant and a target participant, up to 16 social paths with
no more than 6 hops are selected and the shortest one is taken as
the optimal path without taking trust between participants into
consideration. Hang et al. [10] further take the trust between
participants into consideration in path selection. In their model,
the path with the the maximum of propagated trust values is
selected as the optimal one. In these methods, some significant
influence factors including recommendation roles and social
relationships between participants are not taken into account
in path selection. In [19, 20], we have proposed a multiple
constrained optimal social trust path selection model, where
the impact factors and constraints are considered. However,
all existing methods including our previous model focus on
selecting only one social trust path between two participants. To
obtain a realistic trust evaluation result of a target participant,
a source participant needs to refer to K optimal social trust
paths, yielding the K most trustworthy trust propagation results
based on the source participant’s trust path selection criteria,
which is still an NP-Complete problem [12]. Therefore, in this
paper, we propose a heuristic algorithm, H-OSTP-K to solve
this challenging NP-Complete problem.

III. COMPLEX SOCIAL NETWORKS

The complex social network structure depicted in Fig. 2,
comprises the attributes of three impact factors. They are trust,
social intimacy degree and role impact factor [19, 20], which
influence the trustworthiness of trust propagation and hence the
decision making of a source participant.

1) Trust: In social networks, trust is the belief of one
participant in another, based on their interactions, in the extent
to which the future action to be performed by the latter will
lead to an expected outcome. Let TAB∈ [0, 1] denote the trust
value that participant A assigns to participant B. If TAB = 0,
it indicates that A completely distrusts B while TAB = 1



Figure 2. Complex social network

indicates A completely believes B’s future action can lead to
the expected outcome.

2) Social Intimacy Degree: As illustrated in social psychol-
ogy [26], a participant can trust the participants with whom
he/she has more intimate social relationships more than those
with whom he/she has less intimate social relationships. Let
rAB ∈ [0, 1] denote the Social Intimacy Degree (SID) between
participant A and participant B in social networks. rAB = 0
indicates that A and B have the least intimate social relation-
ship while rAB =1 indicates they have the most intimate social
relationship.

3) Role Impact Factor: Rich activities of participants in
social networks can be categorized into different domains (e.g.,
hiring employees or product sale) based on their characteristics.
As illustrated in social psychology [1], in a certain domain
of interest, recommendations from a domain expert are more
credible than that from a beginner. Let ρA ∈ [0, 1] denote the
Role Impact Factor (RIF), illustrating the impact of participant
A’s recommendation role on trust propagation in a certain
domain. ρA = 1 indicates that A is a domain expert while
ρA =0 indicates that A has no knowledge in the domain.

Though it is difficult to build up social relationships and
comprehensive role hierarchies in all domains, it is feasible to
build them up in a particular application. For example, in the
work by Mccallum et al. [22], through mining the subjects and
contents of emails in Enron Corporation2, the social relation-
ship between each email sender and receiver can be discovered
and their roles can be known. Then the corresponding SID and
RIF values can be calculated based on probabilistic models. In
addition, in academic social networks formed by large databases
of Computer Science literature (e.g, DBLP or ACM Digital
Library), the social relationships between two scholars (e.g., co-
authors, supervisor and his/her students) and the role of scholars
(e.g., professor in the field of data mining) can be mined from
publications or their homepages. The SID and RIF values can
be calculated by applying the PageRank model [28].

IV. QUALITY OF TRUST AND QOT ATTRIBUTES
AGGREGATION

In this section, we first present a general concept called
Quality of Trust (QoT) and then propose a novel K optimal
social trust paths selection model with end-to-end Quality of
Trust (QoT) constraints.

A. Quality of Trust (QoT)
In Service-Oriented Computing (SOC), QoS consists of a

set of attributes, used to illustrate the ability of services to
guarantee a certain level of performance [7]. Similar to the
QoS, we present a new concept, Quality of Trust [18].
Definition 1: Quality of Trust (QoT) is the ability to guarantee
a certain level of trustworthiness in trust propagation along a
social trust path, taking trust (T ), social intimacy degree (r),
and role impact factor (ρ), as attributes.

In service invocations, users can set multiple end-to-end
constraints for the attributes of QoS to satisfy their requirements
(e.g., cost, delay and availability) of services. Different require-
ments have different constraints (e.g., total cost<$20, delay<5s
and availability>70%). In our model, to satisfy different trust
evaluation criteria, a source participant can specify different
multiple end-to-end constraints of QoT attributes (i.e., T , r and
ρ) for social trust path selection in different domains. Qµ

vs,vt

(µ ∈ {T, r, ρ}) denotes the end-to-end QoT constraint for the
QoT attribute µ between vs and vt. Throughout this paper,
vs denotes the source participant and vt denotes the target
participant in a social network between them.

B. QoT Attribute Aggregation
To specify the end-to-end QoT constrains, we need to know

the aggregated value of each QoT attribute in a certain social
trust path.

1) Trust Aggregation: The trust values between a source
participant and the target participant in a social path can be
aggregated based on trust transitivity (i.e., if A trusts B and
B trusts C, then A trusts C to some extent) [8]. Since trust is
discounted with the increase of the number of transitivity hops
[3], in our model, we adopt the strategy proposed in [16, 29];
if there are n participants a1, ..., an in order in a social trust
path (denoted as p(a1, ..., an)), the aggregated trust value is
calculated as in Eq. (1).

Tp(a1,...,an) =
∏

ai,ai+1∈p(a1,...,an)

Tai ai+1 (1)

This aggregated trust value will be combined with the social
intimacy degree and the role impact factor in the following
context to select K optimal social trust paths.

2) Social Intimacy Degree Aggregation: Firstly, social inti-
macy between participants decays with the increasing number
of hops between them in a social trust path [15]. In addition,
the intimacy degree decays fast when it is approaching one. In
contrast, the intimacy degree decays slowly when it is approach-
ing zero [26]. Namely, the decay speed of the social intimacy
degree is non-linear in social networks. The aggregated r value
in path p(a1, ..., an) can be calculated by Eq.(2) whose function
image is a hyperbolic curve, fitting the characteristic of social
intimacy attenuation.

rp(a1,...,an) =
∏

ai,ai+1∈p(a1,...,an)

rai ai+1 (2)

3) Role Impact Factor Aggregation: As illustrated in social
psychology [23], a social role (e.g., a professor in the field of
data mining) is the position of an individual in a given society.
Therefore in the same society, the role impact factor of an agent
does not decay with the increase of transitivity hops. Thus, the
aggregated ρ value of path p(a1,...an) can be calculated by Eq.
(3), the characteristic of a social role.

ρp(a1,...,an) =
∑n−1

i=2 ρai

n− 2
(3)

C. Utility Function
In our model, we define the utility (denoted as F ) as the

measurement of the trustworthiness of social trust paths. The
utility function takes the QoT attributes T , r and ρ as arguments
in Eq. (4)

Fp(a1,...,an) =ωT ∗ Tp(a1,...,an)+ωr ∗ rp(a1,...,an)+ωρ ∗ρp(a1,...,an)

(4)



where ωT , ωr and ωρ are the weights of T , r and ρ respectively;
0 < ωT , ωr, ωρ < 1 and ωT + ωr + ωρ = 1.

In MCOP-K selection, a feasible solution is the path, where
the aggregated QoT attributes of that path can satisfy multiple
end-to-end QoT constraints. The goal of K optimal social trust
path selection is to select K social trust paths which are feasible
and can yield the K best utilities with the weights specified by
the source participant [12].

V. K OPTIMAL SOCIAL TRUST PATHS SELECTION

In this section, we first analyze some existing algorithms
for K shortest paths selection and then propose an efficient
heuristic algorithm H-OSTP-K for the NP-Complete MCOP-K
selection in complex social networks.

A. Existing Algorithms

K shortest paths selection has been used in many applica-
tions, such as power transmission route selection, automatic
translation between natural languages, and biological sequence
alignment [5]. In the literature, several algorithms have been
proposed to solve the K shortest paths selection problem,
including (1) algorithms to find K general shortest path (paths
allowing loops), and (2) algorithms to find K simple shortest
paths (paths without loops) [5]. As a social trust path may
contain loops [8], we introduce some existing algorithms for
finding K general shortest paths as follows.

The algorithms for finding K general shortest paths can be
classified into two categories. They are (1) K general paths
selection based on Dijkstra’s shortest algorithm [4], and (2) K
general paths selection based on A∗ algorithm.

In Category 1, Fox [6] proposes a K paths selection algo-
rithm, where each intermediate node vk, (vk 6= vs) records up
to K minimal path lengths from vs to vk. At each step, up to
K nodes are selected from a priority queue as the expansion
nodes based on the maximal path length record at the nodes.
If a node is selected, the algorithm counts the number of times
it has been visited. If all the nodes have been visited K times,
the K shortest paths from vs to each node of the sub-network
are selected. Miaou [24] proposes a similar algorithm by using
a binary heap to store the priority queue, which improves the
efficiency of K path selection. The time complexity of this
type of algorithm is O(m + Knlogn). Throughout this paper,
K (K ≥ 2) stands for the number of selected paths, m for the
number of links, and n for the number of nodes.

In Category 2, Yen proposes a classic K general shortest
paths selection algorithm based on the A∗ algorithm [31]. This
algorithm first computes the shortest path from vs to vt. Then
it regards each node of the newly discovered shortest path as a
deviation node. For each deviation node, this algorithm executes
a single-source shortest path algorithm from the deviation node
to vt, forming a candidate deviation path. The next shortest
path is chosen from all the candidates deviation paths with the
minimal path length. This process continues until K different
shortest paths are finally determined. In addition, Martins
[21] improves the runtime performance of Yen’s algorithm by
ordering the deviation node based on deviation paths’ length.
Furthermore, Eppsten [5] proposes a well-known K general
shortest paths selection algorithm. This algorithm builds a
shortest path tree rooted at the target node first, then selects
certain links outside the shortest path tree, forming the paths
to be discovered. The time complexity of Eppsten’s algorithm
reaches O(m + nlogn + K), which is also the lowest bound
of the K general paths selection problem.

The above algorithms address the K general shortest path
selection problem well. However, they are all deterministic
and thus can not be used to solve the NP-Complete MCOP-
K selection problem [2].

B. Our Proposed H-OSTP-K
In this section, we propose a novel heuristic algorithm H-

OSTP-K, for the K optimal social trust path selection with
end-to-end QoT constraints in complex social networks. In
H-OSTP-K, we first adopt the Backward K-Search procedure
from vt to vs to (1) investigate whether there exists a feasible
solution in the sub-network, (2) indicate the number of feasible
solutions when this number is less than K (K ≥ 2), and (3)
record the aggregated QoT attributes (i.e., T, r and ρ) of the
identified K paths from vt to each intermediate node vk. If
there exists at least one feasible solution, we then adopt the
Forward K-Search procedure to search the network from vs to
vt to deliver the near-optimal solutions (see Algorithm 1).

In MOCP-K selection, if a path satisfies multiple QoT
constraints, it means that each aggregated QoT attribute of that
path should be larger than the corresponding QoT constraint.
Based on this observation, we propose an objective function in
Eq. (5) to investigate whether the aggregated QoT attributes of
a path can satisfy the QoT constraints. From Eq. (5), we can
see that δ(p) ≤ 1, if and only if each aggregated QoT attribute
of a social trust path satisfies the corresponding QoT constraint.
Otherwise δ(p) > 1.

δ(p) , max{( 1− Tp

1−QT
vs,vt

), (
1− rp

1−Qr
vs,vt

), (
1− ρp

1−Qρ
vs,vt

)} (5)

Backward K-Search: Assume there exist at least K social
trust paths in the sub-network. In the backward search from vt

to vs, H-OSTP-K identifies K social trust paths from vt to vs

(denoted as pB1
vs→vt

to pBK
vs→vt

) with the K minimal δ based on
Dijkstra’s shortest path algorithm [4]. In the searching process,
at vk, the aggregated QoT attributes of K paths from vt to vk

with the K minimal δ are recorded. According to the results in
our previous work [20], the Backward K-Search procedure can
investigate whether there exists a feasible solution in the sub-
network. In addition, according to Theorem 1 given below, this
procedure can also indicate the number of feasible solutions
when there exist less than K feasible solutions in the sub-
network (see Algorithm 2).

Theorem 1: In the Backward K-Search procedure, the pro-
cess of identifying K paths with the K minimal δ can indicate
the number of feasible solutions when there exist less than K
feasible solutions in a sub-network.

Proof: Let pB1
vs→vt

, ..., pBK
vs→vt

be the K paths identified by
the Backward Search procedure from vt to vs with the K
minimal δ value, and S is the number of feasible solutions
in the subnetwork between vs and vt. In the identified K paths
from vs to vt, if there exists G (0 < G < K) paths (denoted as
pB1

vs→vt
, ..., pBG

vs→vt
), where δ(pB1

vs→vt
) ≤ 1, ..., δ(pBG

vs→vt
) ≤ 1,

then based the theorems in [20], there exist at least G feasible
solutions in the sub-network between vs and vt (i.e., S ≥ G). In
addition, the Backward Search procedure can always identify
K paths with K minimal δ value [24]. Therefore, there exist
no more than G feasible solutions in the sub-network between
vs to vt (i.e., S ≤ G). Then S = G. ¤

Without loss of generality, we assume there are at least K
social trust paths in the sub-network, though not all of them are
feasible solutions. The Backward K-Search can always identify
K paths with the K minimal δ. In all the identified K paths,
if δmin > 1, it indicates there is no feasible solution in the



Algorithm 1: H-OSTP-K
Data: M , QT

vs,vt
, Qr

vs,vt
, Qρ

vs,vt
, vs, vt, K

/* M is an adjacency matrix that
represents the sub-network between vs and vt */
Result: F(pF1

vs→vt
)...F(p

FG
vs→vt )

begin1
ps = ∅, pt = ∅2
Backward K-Search (M , QT

vs,vt
, Qr

vs,vt
, Qρ

vs,vt
, vs, vt, K)3

if Min δ(pB1
vs→vt

)...δ(p
BK
vs→vt ) > 1 then4

return no feasible solution5

else6
return G,BAQoT (v).T , BAQoT (v).r, BAQoT (v).ρ7
/* G is the number of feasible solution identified by the
Backward K-Search procedure, and BAQoT records the aggregated
QoT attributes in the backward search. */
Forward K-Search (M , BAQoT (v).T , BAQoT (v).r,8
BAQoT (v).ρ, QT

vs,vt
, Qr

vs,vt
, Qρ

vs,vt
, vs, vt, G)

return F(pF1
vs→vt

), ...,F(p
FG
vs→vt )9

end

sub-network. If δmin ≤ 1, it indicates there exists at least one
feasible solution. In addition, if there exist G (0 < G < K)
paths, where the δ values of these paths are no more than one,
it means there are G feasible solutions in the sub-network.

Forward K-Search: Assume there exist at least K (K ≥ 2)
feasible solutions in the sub-network. In the Forward K-Search
procedure, the aggregated QoT attribute values recorded at
each vk is adopted to identify whether there exist futher K
paths pF1

vs→vt
, ..., pFK

vs→vt
, each of which is better than the

corresponding path of pB1
vs→vt

, ..., pBK
vs→vt

(i.e.,F(pF1
vs→vt

) >
F(pB1

vs→vt
), ...,F(pFK

vs→vt
) > F(pBK

vs→vt
) (see Algorithm 3).

In this procedure, H-OSTP-K first searches the path with
the K maximal F value from vs. Assume node vm ∈
{neighboring nodes of vs} is selected based on Dijkstra’s
shortest path algorithm in the ith path (i ∈ [1, K]). H-OSTP-
K calculates the aggregated QoT attribute values of the path
from vs to vm (denoted as path pFi

vs→vm
). Then K foreseen

paths from vs to vt via vm (denoted as fpFi+Bσ
vs→vm→vt

=
pFi

vs→vm
+ pBσ

vm→vt
(σ ∈ [1,K])) are formed. Depending

on whether fpFi+Bσ
vs→vm→vt

is feasible, H-OSTP-K adopts the
following searching strategies.

Situation 1: If each aggregated QoT attribute of one of the
foreseen paths from vs to vt via vm, (i.e., fpFi+Bσ

vs→vm→vt
(σ ∈

[1,K]) satisfies the corresponding end-to-end QoT constraint,
then vm is put into the priority queue for the next search step.

Situation 2: If all the foreseen paths fpFi+Bσ
vs→vm→vt

(σ ∈
[1,K]) are infeasible, vm is not put into the priority queue.
Subsequently, H-OSTP-K performs the Forward K-Search pro-
cedure to search the path from vs in the sub-network without
taking the link vs → vm into consideration.

Theorem 2: If vt is selected from the priority queue, then a
social trust path from vs to vt is identified (denoted as pt). If
any of the K optimal social trust paths has not been identified,
pt is one of the K optimal social trust paths.

Proof: Let pF∗
vs→vt

denote the path from vs to vt that
is selected from the priority queue at the J th step. Let
pF1

vs→vt
, ..., pFK

vs→vt
denote the K optimal social trust paths

from vs to vt identified by the Forward K-Search procedure.
If pF∗

vs→vt
/∈ {pF1

vs→vt
, ..., pFK

vs→vt
}, then F(pF∗

vs→vt
) is less

than any of {F(pF1
vs→vt

), ...,F(pFK
vs→vt

)}. At the J th step, in
addition to vt, there are K−1 nodes selected from the priority
queue. Thus, at least one node in paths {pF1

vs→vt
, ..., pFK

vs→vt
}

is not selected at the J th step. Then F(pF∗
vs→vt

) is greater than
one of {F(pF1

vs→vt
), ...,F(pFK

vs→vt
)}, which contradicts that

F(pF∗
vs→vt

) is less than any of {F(pF1
vs→vt

), ...,F(pFK
vs→vt

)}.

Algorithm 2: Backward K-Search
Data: M , QT

vs,vt
, Qr

vs,vt
, Qρ

vs,vt
, vs, vt, K

Result: BAQoT (v).T , BAQoT (v).r, BAQoT (v).ρ
begin1

set vx.δ = ∞ (vx 6= vt), vt.δ = 0, Sx = ∅, vx.bvisit = 0, G = 02
add vt into Sx3
while Sx 6= ∅ do4

ST opK = K min(v∗a.δ) (v∗a ∈ Sx)5
/* Sx is the priority queue in the backward search, and ST opK is a
set that contains the K minimal δ values. */
for each va ∈ ST opK do6

if va == vs and va.δ ≤ 1 then7
G = G + 18

for each vb ∈ adj[va] do9
/* adj[va] are all neighboring nodes of va */
pb = vb to vt via va10
if vb /∈ Sx then11

put vb into Sx12

else if δ(pb) < max(vb.δ) then13
update BAQoT (vb).T , BAQoT (vb).r,14
BAQoT (vb).ρ
put vb into Sx15

va.bvisit = va.bvisit + 116
/* the visited times of va plus one */
if va.bstatus == K then17

remove va from Sx18

return G, BAQoT (v).T , BAQoT (v).r, BAQoT (v).ρ19
end

Algorithm 3: Forward K-Search
Data: M , BAQoT (v).T , BAQoT (v).r, BAQoT (v).ρ, QT

vs,vt
, Qr

vs,vt
,

Qρ
vs,vt

, vs, vt, G

Result: F(pF1
vs→vt

), ...,F(p
FG
vs→vt )

begin1
set F ′ = 1/F , vy.F ′ = ∞ (vy 6= vs), vs.F ′ = 0, Sy = ∅,2
vy.fvisit = 0
add vs into Sy3
J = G4
/* J is the number of unidentified paths from vs to vt. */
while Sy 6= ∅ do5

ST opJ (F ′) = K min(v∗i .F ′) (v∗i ∈ Sy)6
/* Sy is the priority queue in the forward search, and ST opJ is a
set that contains the J minimal F ′ values. */
for each vi ∈ ST opJ (F ′) do7

if vi == vt and va.δ ≤ 1 then8
J = J − 19
/* Only J − 1 paths need to be identified in the following
search. */

for each vj ∈ adj[vi] do10
/* adj[vi] are all neighboring nodes of vi */
pj = vs to vj via vi11
if ∃fp

Fi+Bj
vs→vj→vt (i, j ∈ [1, G]) is feasible then12

if vj /∈ Sy then13
put vj into Sy14

else if F ′(pj) < Max(vj .F ′) then15
update FAQoT (vb).T , FAQoT (vb).r,16
FAQoT (vb).ρ
/* FAQoT records the aggregated QoT attributes
in the forward search. */
put vj into Sy17

vi.fvisit = vi.fvisit + 118
/* the visited times of vi plus one */
if vi.fvisit == K∗ then19

remove vi from Sx20

return F(pF1
vs→vt

), ...,F(p
FG
vs→vt )21

end

Therefore, Theorem 2 is correct. ¤
Based on Theorem 1 and Theorem 2, we propose two

optimization strategies to improve the efficiency of the Forward
K-Search procedure.

Optimization Strategy 1: The Forward K-Search procedure
is to identify up to K optimal social trust paths which are feasi-



ble. if there exist G (0 < G < K) feasible solutions identified
by the Backward K-Search procedure based on Theorem 1 in
a sub-network, the Forward K-Search procedure does not need
to search K paths but G paths from vs to vt.

Optimization Strategy 2: If vt has been selected J (1 ≤
J < K) times from the priority queue, in the following process,
H-OSTP-K only needs to search K − J optimal social trust
paths from vs to vt.

Then, if there exist l (1 ≤ l ≤ K) feasible solutions, the
Forward K-Search procedure can identify them all, and they
are the l optimal social trust paths. Otherwise, this procedure
can identify K feasible solutions which are not worse than
those identified by the Backward K-Search procedure. Namely,
Theorem 1 and Theorem 2 can guarantee the effectiveness of
our algorithm.

Since H-OSTP-K adopts Dijkstra’s shortest path algorithm
based K general social trust paths selection method twice, it
has the same time complexity of O(m + Knlogn) as that of
the algorithms in Category 1.

VI. EXPERIMENTS

A. Experiment Settings

The Enron email dataset2 has been proved to possess the
small-world and power-law characteristics of social networks
and thus it has been widely used in the studies of social
networks [19, 20, 22, 32]. In addition, as we explained in
Section III, the social intimacy degree between participants
and the role impact factor of participants can be calculated
through mining the subjects and contents of emails in the
Enron email dataset [22]. Therefore, in contrast to other real
social network datasets (e.g., Epinions6 and FilmTrust7), the
Enron email dataset fits our proposed complex social network
structure better. Thus, to validate our proposed algorithm, we
select the Enron email dataset2 with 87,474 nodes (participants)
and 30,0511 links (formed by sending and receiving emails) as
the dataset for our experiments.

Firstly, in order to study the performance of our proposed
heuristic algorithm in sub-networks of different scales and
structures, we first randomly select 100 pairs of source and
target participants from the Enron email dataset2. We then
extract the corresponding 100 sub-networks between them by
using the exhaustive search method. Among them, the maximal
length of a social trust path varies from 4 to 7 hops following
the small-world characteristic. These sub-networks are grouped
by the number of hops. In each group they are ordered by the
number of nodes in them. In the simplest case, the sub-network
has 33 nodes and 56 links (4 hops), while in the most complex
case, the sub-network has 1695 nodes and 11175 links (7 hops).

Secondly, as we have analyzed in Section V-A, existing K
general shortest paths selection algorithms are all deterministic
algorithms, and can not be used for solving the NP-Complete
MCOP-K problem [2]. Therefore, to study the performance of
our heuristic H-OSTP-K, we first compare the maximal utility
of the identified K social trust paths with that of our previously
proposed H OSTP, which so far outperforms the other existing
algorithms for the NP-Complete Multiple Constrained Optimal
social trust Path (MCOP) selection problem in complex social
networks [20]. In addition, since existing methods are not
suitable for the NP-Complete MCOP-K selection problem, in
order to study the efficiency of our proposed optimization

6http://epinions.com/
7http://trust.mindswap.org/FilmTrust/
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strategies, we compare the execution time of H-OSTP-K with
that of the modified version of H-OSTP-K without our proposed
optimization strategies (denoted as H-WOP-K) (see Section
VI-B).

Finally, to investigate the performance of H-OSTP-K in
social trust path selection with different QoT constraints, four
groups of QoT constraints are set and listed in Table I. In
addition, the three QoT attributes are given the same weights
in the utility function. Furthermore, since the detailed mining
method of QoT attributes values are out of scope of this paper,
these QoT attributes values are randomly generated by using
rand() in Matlab.

Each of H-OSTP-K, H-WOP-K and H OSTP is implemented
using Matlab R2008a running on an IBM ThinkPad SL500
laptop with an Intel Core 2 Duo T5870 2.00GHz CPU, 3GB
RAM, Windows XP SP3 operating system and MySql 5.1.35
database. The results are plotted in Fig. 3 to Fig. 8, where
the execution time of each of H-OSTP-K and H-WOP-K is
averaged based on 3 independent runs.

B. Experiment Results
Comparison of Path Utility: Fig. 3 plots the path utilities

of the identified social trust path by H OSTP and the maximal
path utility of the identified K optimal social trust paths by H-
OSTP-K in sub-networks in 4 groups. From these figures, we
can observe that in some sub-networks (i.e., 32 out of 100 sub-
networks), if there is no feasible solution, both H-OSTP-K and
H OSTP can investigate the infeasibility (e.g., S1 in Fig. 3),
and thus the path utilities in these sub-networks are zero. This
is because that H OSTP also computes δmin in the backward
search from vt to vs based on Dijkstra’s shortest path algorithm
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[20]. Therefore, based on the theorems in [20], both of them can
always investigate whether there is a feasible solution existing
in a sub-network.

In addition, from Fig. 3, we can see that in some cases (i.e.,
49 out of 100 sub-networks), H-OSTP-K can deliver the same
path utilities with those of H OSTP (e.g., S3 in Fig. 3). This
is because that firstly, in a sub-network, if the path with the
maximal path utility in the K paths identified by H-OSTP-K
and the path identified by H OSTP are selected based on the
same foreseen path formed at each of the intermediate nodes
of these paths, according to the searching strategies in [20],
the two paths are the same. Secondly in a sub-network, if there
exists only one feasible solution, both H-OSTP-K and H OSTP
can identify it, and thus they deliver the same path utility.

Furthermore, from Fig. 3, we can also see that H-OSTP-K
can deliver better social trust paths than H OSTP (e.g., S2 in
Fig. 3) in some cases (i.e., 19 out of 100 sub-networks). In
addition, as depicted in Fig. 4, given the same constraint ID,
the larger the K value, the greater the sum of the utility of
these sub-networks. Table II lists the sum of utilities computed
by H-OSTP-K and H OSTP in these sub-networks, where we
can see that the sum of utilities computed by our proposed
heuristic algorithm is 49.66% higher than that of H OSTP in 4
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hops sub-networks, 20.24% higher in 5 hops, 13.39% higher in
6 hops. On average, the path utility computed by H-OSTP-K
is 20.29% higher than that of H OSTP. This is because that
in H-OSTP-K, it is to form K foreseen paths rather than only
one foreseen path in H OSTP, and thus H-OSTP-K have more
chances to deliver a better social trust path.

Comparison of Execution Time: Since H-WOP-K has the
same functionality as H-OSTP-K, they both deliver the same
path utilities of K paths in a sub-network. Therefore, we
only compare the difference in their execution time, and the
experiment results are plotted in Fig. 5 to Fig. 8.

From Fig. 5 to Fig. 8, we can observe that the execution
time of H-OSTP-K is the same as that of H-WOP-K in some
sub-networks (e.g., S4 in Fig. 5 to Fig. 8). This is because
if there is no feasible solution in a sub-network, H-OSTP-K
only performs the Backward K-Search procedure which has the
same search strategy with H-WOP-K. Therefore, they have the
same execution time.

In addition, from these figures, we can also observe that the
execution time of H-OSTP-K is less than that of H-WOP-K
in other sub-networks (e.g., S5 in Fig. 5 to Fig. 8). The total
execution time of each of H-OSTP-K and H-WOP-K in each
group of hops is listed in Table III, where we can see that



Table I
THE SETTING OF QOT CONSTRAINTS

Constraint ID QT
vs,vt

Qr
vs,vt

Q
ρ
vs,vt

#1 0.05 0.05 0.05
#2 0.1 0.05 0.05
#3 0.05 0.1 0.05
#4 0.05 0.05 0.1

Table II
THE COMPARISON OF PATH UTILITY

Algorithms The sum of utility
4 hops 5 hops 6 hops 7 hops total

H-OSTP-K 2.5461 17.9369 8.0839 0 28.5669
H OSTP 1.7012 14.9174 7.1295 0 23.7481
difference 49.66% higher 20.24% higher 13.39% higher 0 20.29% higher

the total execution time of our proposed heuristic algorithm
is only 41.86% of that of H-WOP-K in 4 hops sub-networks,
70.60% in 5 hops, 89.51% in 6 hops and 51.03% in 7 hops.
On average, H-OSTP-K is 37.22% faster than H-WOP-K. From
the above results, we can see that H-OSTP-K is much more
efficient than H-WOP-K. The reasons are twofold. Firstly based
on Theorem 1, if there exist G (0 < G < K) feasible solutions,
then H-OSTP-K searches only G optimal social trust paths
from vs to vt, significantly saving execution time (see details
in Optimization Strategy 1). Secondly, based on Theorem 2,
assuming there exist K (K ≥ 2) feasible solutions and vt has
been selected J (0 < J < K) times from the priority queue,
then in the following searching steps, H-OSTP-K searches only
K − J optimal social trust paths from vs to vt, and thus saves
execution time (see details in Optimization Strategy 2).

Through the above experiments conducted in sub-networks
with different scales and structures, we can see that H-OSTP-K
is an effective and efficient algorithm for MCOP-K selection in
complex social networks.

VII. CONCLUSIONS

In this paper, we have presented a complex social network
structure that takes trust information, social relationship and
recommendation roles into account, reflecting the real-world
situations better. For selecting the K optimal social trust paths
with end-to-end QoT constraints in complex social networks,
which is an NP-Complete problem, we have also proposed
an efficient heuristic algorithm H-OSTP-K. The results of our
experiments conducted on a real dataset of social networks
demonstrate that H-OSTP-K significantly outperforms existing
methods in the quality of identified social trust paths.

In our future work, we plan to develop a new trust-oriented
social service search engine, which maintains a database of
participants and the complex social network containing them. In
this system, our proposed method will be applied, for instance,
to help a buyer identify the most trustworthy seller from all
sellers selling the product preferred by the buyer.
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