
From Abstract to Executable BPEL Processes with Continuity Support

Zeina Azmeh, Marianne Huchard

LIRMM, CNRS & UM2
34095, Montpellier cedex 5, France
{firstname.lastname}@lirmm.fr

Fady Hamoui

LIG & UPMF
38041, Grenoble cedex 9, France

fady.hamoui@imag.fr

Naouel Moha

UQAM - CP 8888,
Montréal, H3C 3P8, Canada

moha.naouel@uqam.ca

Abstract—The real value of Web services under the SOA
paradigm lies in their ability to be assembled to obtain a new
functionality. Assembling Web services can be achieved through
a standard called BPEL, which creates executable processes
by orchestrating Web service invocations. The problem with
BPEL is the inability to separate the process description from
its realization. In other words, it requires a prior retrieval of
concrete Web services, which can be very challenging regarding
the issues surrounding service discovery and selection.

In this paper, we propose to separate a BPEL process de-
scription from its realization. We extend the notion of abstract
BPEL processes, in order to enable developers to describe their
desired orchestrations abstractly without identifying concrete
services, according to three levels: the needed functionality,
the expected QoS levels, and the composition flow. Then, the
abstract BPEL process is realized by a selection framework that
automatically discovers, classifies, and selects suitable services
to render the process executable. Backup services are also
discovered to assure the continuity of the realized process.

Keywords-SOA; Web service; abstract BPEL; QoS; Rela-
tional Concept Analysis (RCA).

I. INTRODUCTION

Web services represent an important realization of

Service-Oriented Architectures (SOA) [1]. Their real value

lies in their ability to interoperate and be assembled together

to obtain new composite services. Assembling Web services

together can be achieved by orchestrating their invocations

through a standard language, called BPEL [2]. BPEL is

an XML-based language that defines a new Web service

by orchestrating a set of existing services according to

a desired functionality. The resulting service is called a

business process, the involved services are called partners,

and the message exchange is referred to as an activity.
Constructing an executable BPEL process consists of:

- first, determining the needed functionality that cannot

be satisfied by a single Web service and dividing this

functionality into smaller pieces;

- then, discovering a set of services for each needed piece

of functionality;

- finally, selecting the needed services and orchestrating

them according to some flow logic to achieve the

process overall functionality.

The previous steps impose two principal problems: The

first problem is the inability to separate the process descrip-

tion from its realization. Consequently, it requires a prior

retrieval of concrete Web services, which can be very chal-

lenging. Current discovery mechanisms –embodied mainly

in Web service search engines like Seekda [3] and Service-

Finder [4]– limit the developer’s expression capability to

only keywords. They may return a large list of services

that may not be all related to the used keywords, and

thus might not match the searched functionality. We notice

that depending only on the syntactic information inside

the WSDL description may not be sufficient for guiding a

developer to select a suitable service. The textual description,

inside a WSDL interface, may not be enough to index a

service sufficiently. Thus, several irrelevant services may be

retrieved. This requires the developer to filter the services

by hand to check their functionality. Moreover, an important

factor for service selection is to take into consideration its

quality of service (QoS) values [5]. The QoS plays a crucial

role in determining a process quality.

According to the literature, the selection of a pertinent

Web service can sometimes depend on a shared knowledge

between the provider and the consumer (an ontology). This

kind of solution may solve the problem of selection, but

under the condition of having a unique ontology. If several

ontologies were used, ontology mapping must be carried out,

which is yet another challenge.

The second problem occurs after realizing the process.

If one of the involved services disappears, an equivalent

service must be identified to replace the missing piece of

functionality and to maintain the process continuity. This

may lead to the repetition of all the steps of constructing an

executable BPEL process, which we described earlier.

In this paper, we present an extension of a previous

work [6]. We propose a framework for achieving a separation

of concerns: a process description from its realization.

Process Description: enables a developer to describe his

desired business process abstractly, without identifying the

needed concrete services in advance.

Process Realization: is an extension and improvement of

what we presented in [6]. It enables the automatic realiza-

tion of an executable process that satisfies the developer’s

provided process description. It works according to three

main steps:

Discovery: including analyzing the process description,

searching, retrieving and filtering Web services, in addition

2012 IEEE 19th International Conference on Web Services

978-0-7695-4752-7/12 $26.00 © 2012 IEEE

DOI 10.1109/ICWS.2012.92

368

2012 IEEE 19th International Conference on Web Services

978-0-7695-4752-7/12 $26.00 © 2012 IEEE

DOI 10.1109/ICWS.2012.92

368

to parsing their WSDL descriptions.

Classification: according to functionality, composability,

and QoS. In order to have a better view of the services,

and so to make a better selection, especially when having

comparable services.

Selection: of suitable services to realize the desired pro-

cess. In addition to selecting backup services to support the

continuity of a process, by recovering the missing piece of

functionality of a broken service.

The paper is organized as follows: in the next section, we

describe our proposed solution. In Section III, we present our

conducted experiments to verify the validity of our solution.

In Section IV, we list the related work and compare between

them. Finally, in Section V, we conclude the paper with a

summary of our contributions and perspectives.

II. APPROACH

Our framework works according to two stages: process de-

scription and process realization. It transforms automatically

an abstract BPEL process into executable, by identifying

suitable Web services. It works also on supporting the real-

ized process with backup services, to ensure its continuity,

in case of service failures.

During the process description stage, a developer can

specify his process abstractly, without concrete services.

It can be described using an abstract specification of the

needed services. This specification indicates their function-

ality and their expected QoS. Then, the composition flow

between these specified services is expressed inside the

process description.

During the process realization stage, the specification of

the needed services is analyzed. Then, concrete services are

discovered and classified, in order to select the suitable ones.

Finally, an executable BPEL process is generated, by filling

the gaps inside the process description.

In the following, we describe in details each of the process

description and realisation.

A. Process Description

A developer works on providing an abstract description

of his desired BPEL process. We extend the notion of an

abstract BPEL that is proposed by the BPEL standard. We

define it as a process that is built on an abstract specification

of the needed services. While, in BPEL standard, an abstract

process specifies the external message exchange between

parties only. It does not contain the internal details of the

process flow, and it is not executable [2].

Thus, a developer starts by dividing the global needed

functionality into smaller pieces. Each small piece of func-

tionality requires a Web service to satisfy it. The set of

required Web services must be specified by the developer

inside an abstract WSDL interface (AWSDL). He uses this

abstract interface afterwards to describe an abstract BPEL

process (ABPEL).

Figure 1. Abstract WSDL structure.

1) Abstract WSDL Interface (AWSDL): An AWSDL in-

terface represents an utilization of the WSDL standard to

specify one or more needed services abstractly. It may spec-

ify several abstract services (PortTypes) by their functional

properties as well as their QoS properties, without speci-

fying concrete parts (bindings and endpoints). We exploit

the documentation tags, which can be defined for each

element inside a WSDL interface, in order to describe these

functional and QoS properties. AWSDL interface structure

is illustrated in Figure 1.

Functional properties for each service are characterized

by the operation it offers. We consider that a needed op-

eration can be characterized by its input/output parameters

and their types, but not by the operation name. We argue

that an operation name can be as much a good indicator

for the offered functionality as it can be bad. For exam-

ple, if someone is searching for an operation that returns

the capital city for a given country, an operation named

getCapital or getCapitalForCountry would be exactly

the required one. On the other hand, an operation named

getCountryInformation would be misleading. It may

even get discarded if we only consider its name, although it

returns the capital city among its outputs. Furthermore, we

give the developer the option to say whether the parameters

names are strict or flexible. If they are strict, this means that

we should only search for an exact match of the provided

parameters names. In the case of flexible names, we can

search for synonyms or names that semantically match the

requested ones (using WordNet for example). Hence, in case

of a strict matching, a developer is allowed to provide several

possible alternative names for each parameter name. For

example, if the requested parameter was city with strict

matching, a developer may also provide words like town
and/or metropolis. The same thing is done for the parameter

type. For example, if a developer is searching of a date

parameter, he can specify its type to be Date and/or String.

Expected QoS properties may also be expressed for each

needed service inside an AWSDL interface, inside its docu-

mentation tag. We propose to represent the space of actual

QoS numerical values by levels, ranging from V eryBad

369369

QoS value to V eryGood QoS value. These levels are

calculated using a statistical technique called BoxP lot1 [7].

The benefits of using such levels are two: first, it avoids

developers from understanding the real meaning of a QoS

value. For example: the performance of a service is better

when it is lower, while the availability is better when it

is higher. Second, a developer might not be aware of the

actual values. He might request a service that is available

100%, while the best assured availability among the retrieved

services might be 90%. Using the QoS levels, a developer

can specify that he needs a certain service to have a

V eryGood level for a certain QoS property.

We also believe that specifying the expected QoS per service

is better than specifying a global QoS for the whole process.

This is because QoS properties vary in their importance

according to the service functionality. Therefore, developers

must be able to make a compromise between the QoS levels

according to each service. For example: a printing service

may have a bad availability and still be acceptable, unlike

a bank account service, which should have a very good

availability to be accepted.

Once all of the needed services are specified by their

functionality and QoS levels, a developer can define his

ABPEL process.
2) Abstract BPEL Process (ABPEL): An ABPEL

process can be built exactly like a BPEL process and

using any available development tool that supports Web

service orchestration using BPEL (like NetBeans 6.7.1,

for example). The only difference is that it is built using

abstract services defined in an AWSDL interface (Figure 2).

Figure 2. Abstract BPEL process.

Invoking an operation of a Web service begins by assign-

ing values to its input parameters. This is expressed in BPEL

language by the structures <assign> <copy> <from .. />
<to .. /> and then <invoke .. operation=”..” .. />. Parsing

these structures enables us to identify the composition links

between the services. Hence, we can identify two possible

composition modes, saying that service-A (source service)

and service-B (target service) are either:
Fully-Composable: when (some or all) of the output param-

eters of an operation (in service-A) are linked to all of the

input parameters of an operation (in service-B); or,

Partially-Composable: when the input parameters of an

operation (in service-B) are not only linked to output

parameters of an operation (in service-A), but also to others.

1Available online: http://www.lirmm.fr/∼azmeh/tools/boxplot.html

As soon as the ABPEL process is defined, the framework

starts searching and retrieving concrete services to instantiate

the process, in order to render it executable.

B. Process Realisation

Services will be retrieved, filtered, classified, and selected

(details in [6]), in order to instantiate the specified ABPEL

process and make it executable. Moreover, services that

are equivalent to the selected ones (backups) will also be

retrieved and kept, in order to support the continuity of the

process.

This stage starts functioning once it receives the AWSDL

interface and according to the three steps that we have iden-

tified in Section I: Discovery, Classification and Selection.

1) Discovery: the AWSDL interface is analyzed and the

set of requirements is extracted, including the needed func-

tionality (parameters names and types) and the expected QoS

for each specified service. The extracted words (parameters

names) for each needed service are used to query a Web

service search engine. Then, the returned set of services

is retrieved together with the QoS values for each service.

Each set is filtered, in order to identify the services that are

compatible with the needed functionality and discard the

rest. Therefore, each service WSDL description is parsed in

order to extract the operation signatures (input and output

parameters with their types). A service is functionally com-

patible if it offers an operation having the exact requested

signature. It is adaptable compatible if it has a matching

signature, but the types are not exactly the same. We use

rules for deciding adaptability, for example: an int value can

be converted to String but not the inverse.

2) Classification: the sets of filtered services are classi-

fied using a classifying method called Relational Concept

Analysis (RCA) [8], according to their QoS properties and

values, as well as the composability between them. In the

simplest case, the input of RCA can be one table of services

described by the QoS they provide. We remind here that we

calculate QoS levels from actual numerical values, using the

BoxPlot technique, as we explained earlier in Section II-A1.

For example, in Table I, four services of a set WS1 (possible

candidates for an abstract service) are described by their

availability (A) and performance (P) levels. We can notice

that when a service has a good level of QoS, it also has

medium and bad. The explanation is very simple if we take

back the numerical values that these levels represent. For

example: if a BadA represents an availability that is higher

than 10%, MedA higher than 40%, and GoodA higher than

90%, then a service’s availability that is higher than 90%

is also higher than 40% and higher than 10%. An RCA-

based classification is represented by a concept lattice that

organizes services by their QoS, as illustrated in Figure 3.

In this lattice (generated using ConExp [9]), we can have a

general view of the services and the relations between them.

In order to interpret it, we have to follow some simple rules:

370370

Table I
A TABLE OF SERVICES WS1 DESCRIBED BY THEIR QOS LEVELS.

WS1 BadA MedA GoodA BadP MedP GoodP
ws1.1 × × × × ×
ws1.2 × × × ×
ws1.3 × × × × × ×
ws1.4 × × ×

The nodes inside a lattice are called concepts. Each

concept represents a group of services sharing some QoS

levels. In our figures, the services appear in the white labels,

while QoS levels appear in the gray ones. Concepts have

generalization relations between them, represented by the

edges between them. We read the lattice from top to bottom.

Higher concepts are more general than lower ones. An edge

between two concepts means that the lower concept is a

sub-concept of the higher one. For example, in Figure 3, the

concept c5 is a super-concept for all the other concepts in the

lattice. They all inherit BadP and BadA. If we consider c0,

we notice that it is a sub-concept of c4 and a super-concept

of c1. So, the service ws1.1 is better than ws1.4, because

it inherits its properties and has better ones. Furthermore,

ws1.3 is the best service of all, because it is located at

the bottom concept (inheriting all the properties including

GoodA and GoodP). Choosing between ws1.2 and ws1.1
requires doing a compromise between GoodA and GoodP .

Figure 3. The concept lattice for the services in Table I.

In our case, since we have several sets of services,

we have to link the tables by the composability relations

existing between the services of different sets. Evaluating

the composability is done by checking how the services

can be linked, compared to the composition modes extracted

from the ABPEL file, as we described in II-A2. So, if in the

ABPEL file, a service-A is supposed to be orchestrated with

service-B, then the set of services retrieved for service-A
will be checked for its composability with the set of services

retrieved for the service-B (Fully-Composable or Partially-

Composable). A table of services versus services will be

constructed for each composition mode. These tables are

then used by the RCA method to generate the classification

of services by both their QoS levels and composability

modes. For example, if we consider another set of services,

let us say WS2. In Table II, we find the services in WS2,

described by their QoS levels.

Table II
A TABLE OF SERVICES WS2 DESCRIBED BY THEIR QOS LEVELS.

WS2 B
a
d
A

M
e
d
A

G
o
o
d
A

B
a
d
P

M
e
d
P

G
o
o
d
P

′ w
s
2
.1

′

′ w
s
2
.2

′

′ w
s
2
.3

′

′ w
s
2
.4

′

′ w
s
2
.5

′

′ w
s
2
.6

′

ws2.1 × × × × ×
ws2.2 × × × × × × ×
ws2.3 × × × × × × ×
ws2.4 × × × × ×
ws2.5 × × ×
ws2.6 × × × ×
query2 × × × × ×

We notice that we added an attribute per service, for

example: ′ws2.1′. This attribute is considered as an identifier

that helps in having a concept per service, for the simplifying

lattice interpretation. We also added these attributes for the

services in the set WS1. We also notice an object called

query2, in the last line of this table. It is used to express

the expected QoS levels for the needed service (specified in

the AWSDL interface), which in our case, is MedA, MedP
for WS2 (we add also query1: MedA, GoodP into Table I

for WS1). This is further detailed in the selection step.

Moreover, considering that the needed composition mode

is fully-composable, having WS1 as the source and WS2
as the target, we express this relation between the two

sets of services in Table III. For example, ws1.1 is fully-

composable with ws2.2 and ws2.3.

Table III
THE FULLY-COMPOSABLE (FC) RELATION BETWEEN THE SERVICES OF

WS1 AND WS2.

FC ws2.1 ws2.2 ws2.3 ws2.4 ws2.5 ws2.6
ws1.1 × ×
ws1.2 ×
ws1.3 × ×
ws1.4 × ×

Consequently, RCA takes these three tables: WS1, WS2,

and FC, then generates the two lattices in Figure 4.

Figure 4. The concept lattices of WS1 and WS2 classifying services
by QoS levels and FC composability (calculated by Galicia [10] &
ConExp [9]).

3) Selection: is performed on the generated lattices, by

identifying the services that have the expected QoS levels.

These expected QoS levels are expressed as queries that

371371

are classified into the lattices (by adding them into the

corresponding tables as new services), as we can notice in

the two previous lattices, query1 and query2 (Figure 4).

These queries help in navigating into the lattices, according

to an algorithm introduced in [11]. It extracts the most

suitable services that are composable and have the expected

QoS levels. This is especially important when considering

real business processes scenarios, where several lattices of

larger sizes are generated. In short, this algorithm works

on identifying a set of services for each lattice, in respect

to the requested query and the composition relations. These

services are located at the sub-concepts of the concept where

a query appears. For example: for query1 in the left lattice,

we can identify ws1.1 and ws1.3. Correspondingly, for

query2 in the right lattice, we can identify ws2.3, ws2.2,

and ws2.4, in the concepts c5, c3, and c8 respectively.

These services have the expected QoS levels or better. In

order to verify their composability, we have to follow their

relational attributes, appearing in the gray labels as FC : ci.
In our example: ws1.1 can be fully-composed with ws2.2
(FC : c3) and ws2.3 (FC : c5). Similarly, ws1.3 is fully-

composable with ws2.2 (FC : c3). In contrast, ws1.3 can be

fully-composed with ws2.5 (c10) but ws2.5 does not satisfy

query2. Moreover, ws2.4 (c8) satisfies query2, but can not

be fully-composed neither with ws1.1 not ws1.3.
Thus, the set of possible service selections can be for

example: either ws1.1 with ws2.3, having ws2.2 as a backup

for ws2.3. Or else, ws1.3 with ws2.2, having ws1.1 as a

backup for ws1.3.

III. VALIDATION

We carried out our experiments according to two parts: de-

scribing an abstract BPEL process called WeatherProcess,

which works on finding the weather information of a given

ip address; then realizing an executable copy of this process

using concrete Web services.

A. Describing the WeatherProcess
We divided the process functionality into three pieces:

getting the city corresponding to the given ip, getting the zip

code of this city, and finally, getting the weather information

for the obtained zip code.

We constructed an AWSDL interface and described three ab-

stract services (PortTypes): CityService, ZipcodeService,

and WeatherService. Each service of them provides

an operation: getCityByIP , getZipcodeByCity, and

getWeatherByZipcode, respectively. We specified for each

operation its input and output parameters together with their

types, in addition to possible alternative names. We also

specified the expected QoS levels2 for each service, as we

can see in Table IV3.

2We set our Web service search engine to be Service-Finder [4]. It
provides two QoS properties for each service, availability (A) & response
time (RT).

3More details can be found on: http://www.lirmm.fr/∼azmeh/icws/

In Figure 5, we can see the corresponding AWSDL inter-

face. We expand the messages description for the operation

getWeatherByZipcode. We can see that for the input pa-

rameter (zipcode), the user provided a list of four equivalent

keywords, which are listed in the WSDL source code. They

are as follows: zipcode, zip, postal, and postalcode. The

parameter type is specified to be String. For the output

parameter, we can notice that its name is specified as

any. This means that the user is not asking for a specific

parameter name, but he is interested by the complex type,

which is in our case Weather. In this case, the user provided

a list of 5 equivalent keywords for the Weather type.

They are as follows: Weather, WeatherInfo, Forecast,
WeatherForecast, and WeatherReport.

Figure 5. The abstract WSDL describing the needed services for the
scenario WeatherProcess.

Afterwards, we defined our abstract process, the

WeatherProcess, by orchestrating the three abstract ser-

vices with fully-composable composition links.

B. Realizing the WeatherProcess

Using each set of keywords, we retrieved a corresponding

set of services (WSDL interfaces), after omitting repeated

and invalid endpoints. Then, we parse each WSDL inter-

face and filter by the requested functionality, to determine

whether it is compatible, adaptable, or has to be discarded.

In Table V, we can see the number of services for each set

and at each step.

372372

Table IV
THE SPECIFICATION OF EACH ABSTRACT SERVICE NEEDED FOR THE WEATHERPROCESS DESCRIPTION.

Abstract WS Operation Input Output QoS

parameter alternatives type(s) parameter alternatives type(s) A RT

CityService (WS1.i) getCityByIP ip ipAddress String city cityName String Good Good

ZipcodeService (WS2.j) getZipcodeByCity city cityName String zipcode zip, postal, postalcode String Good Good

WeatherService (WS3.k) getWeatherByZipcode zipcode zip,postal, String any – Weather, WeatherInfo, Forecast, Good Good
postalcode WeatherForecast, WeatherReport

Table V
THE NUMBER OF FILTERED SERVICES FOR EACH SET.

WS1.i WS2.j WS3.k
Retrieved from Service-Finder 94 768 39

Filter1 (Valid) 94 748 37

Filter2 (Functionally-Compatible) 16 96 21

We calculated afterwards the QoS levels for the remaining

services of each set. We organized the services into tables

with their QoS levels, including the three QoS queries,

resulting into three tables (a table per set of services).

Then, we extracted the composition links from the ABPEL

file, and evaluated the composition modes between each

pair of services. This resulted into tables, showing the

composability between the services. The collection of tables

are finally used by the RCA method, and three concept

lattices are generated, as we can see in Figure 6.

Using the lattices navigation algorithm in [11], we extracted

the (highlighted) services in Table VI to be the best choices.

Table VI
INFORMATION ABOUT THE SERVICES SATISFYING THE QUERIES AND

THE SELECTED ONES (HIGHLIGHTED).

WS Name Operation A(%) RT(ms)

1.59 Ip2LocationWebService IP2Location 100 257
(in) IP:string
(out) CITY:string,..

1.5 GeoCoder IPAddressLookup 100 328
(in) ipAddress:string
(out) City:string,..

1.3 IP2Geo ResolveIP 100 798
(in) ipAddress:string
(out) City:string,..

2.198 MediCareSupplier GetSupplierByCity 85 304
(in) City:string
(out) Zip:string,..

2.8 ZipcodeLookupService CityToLatLong 100 439
(in) city:string
(out) Zip:string,..

3.1 USWeather GetWeatherReport 85 384
(in) ZipCode:string
(out) WeatherReport:string

3.23 Weather GetCityForecastByZIP 100 237
(in) ZIP:string
(out) ForecastReturn:complex

When selecting a service from an extracted set of services,

the other services in the set can play the role of backups.

For example, if we select the service WS1.59 for the first

abstract service, WS1.5 and WS1.3 will be backups for it.

In case it disappeared, one of them can replace it to fill the

missing functionality and assure the process continuity.

Finally, the selected services are used to generate the

desired executable BPEL process, and the backup services

are kept to be used when needed.

IV. RELATED WORK

In this section, we study the state of the art of Web

service composition, according to two categories: manual

and automatic composition. We conclude the section by a

comparison of the studied works.

A. Manual Composition

We may cite several graphical tools (Triana [12],

CAT [13], SWORD [14], WSTK [15], ZenFlow [16],

BPEL2B [17], which help users visually in building their

desired compositions. We describe only three of them.

In Triana [12], a composite service is created by dragging the

services and connecting them. Composed applications may

be written as BPEL4WS graphs. They may be executed from

within Triana or any Web services choreography engine or

published to the network.

CAT [13], which takes existing WSDL descriptions and

extends them with off-the-shelf domain ontologies. It uses

these ontologies in examining a user’s solution and generat-

ing suggestions about how to proceed.

SWORD [14] defines its own simple world model based

on defining for each Web service logic rules. A composite

service can be realized according to an execution plan.

B. Automatic Composition

In [18], the authors present an approach that extends the

heuristic-based approach proposed by [19] by adding QoS

constraints. The algorithm receives as input a request, which

consists of the provided input concepts, required output

concepts and QoS constraints. Each concept is defined in

a domain ontology. It produces as output a set of services.

In [20], the authors propose a semantic-based framework for

the automatic composition of Web services. They generate

composite services from high-level declarative descriptions.

The Web Services Composition Platform, StarWSCoP [21],

is introduced with several modules, in particular: a ser-

vice registry and a discovery engine, a composition en-

gine, a wrapper to achieve interoperability of heterogeneous

services and a QoS estimation. It focuses on QoS-based

dynamic Web services composition by extending WSDL

descriptions with QoS attributes.

In [22], Agflow is presented as a QoS-aware middleware

supporting quality-driven Web service compositions. A com-

posite service is specified as a collection of generic service

tasks described in terms of service ontologies and combined

according to a set of control and data flow dependencies.

373373

c19

c29

c21c27

c26

c29

c0

c7

WS1.i WS2.j WS3.k

Figure 6. The concept lattices for the compatible sets of services with Good A, Good RT queries, and FC mode.

Very similar to the previous, [23] presents a broker-based

architecture to facilitate the selection of QoS-based ser-

vices. The objective of service selection is to maximize an

application-specific utility function under QoS constraints.

The problem is modeled in two ways: the combinatorial

model and the graph model.

Another similar work is presented in [24]. It proposes

an approach for achieving dynamic semantic Web service

composition. It is based on the METEOR-S WS composition

framework with an added-on constraint analyzer module.

C. Discussion
In the manual composition building, users can search by

keywords and retrieve services. They still have to check for

the composability manually. Such works do not provide QoS

information, nor enable searching by a required QoS level.

In the automatic composition building, the works we

presented are all based on semantics (which imposes other

issues, as we mentioned earlier). Furthermore, they assume

that Web services are annotated with semantic information

(beyond WSDL). Such semantic information might not be

available for current Web services, although it might become

available in the future [25]. Some of these works calculate

the global QoS value for the whole composition. Users

(meaning developers) are not allowed to specify a needed

QoS for a certain service. Moreover, QoS is specified by

only numeric values.

The manual and automatic composition approaches do not

support service backups. However, some of the automatic

composition works support dynamic reconfiguration for the

business process, when a service changes (disappear or have

different QoS values). This reconfiguration can cause an

overhead if a backup is needed, because of the several

remote interactions with the service registry.

We summarize the presented works in Table VII, accord-

ing to the following criteria: manual or automatic composi-

tion, using semantics, achieving service discovery, checking

the functional compatibility, identifying composable ser-

vices, considering QoS, discovering backup services.

V. CONCLUSION

In this paper, we discussed the problem of building a

business process using BPEL and the challenges surrounding

it. We proposed to separate a process description from

its realization. Process description is defined abstractly by

developers via an AWSDL interface and an ABPEL pro-

cess. An AWSDL specifies all the needed services by their

functionality and QoS, while an ABPEL defines their orches-

tration. Process realization is achieved automatically through

a framework for Web service discovery, classification (based

on RCA), and selection. We validated our proposition using

real Web services for a WeatherProcess scenario.

374374

Table VII
WORKS COMPARISON ACCORDING TO THE SPECIFIED CRITERIA.

Work M
an

u
al

A
u

to
m

at
ic

S
em

an
ti

c
W

S

D
is

co
v
er

y

F
u

n
ct

io
n

al
it

y

C
o

m
p

o
sa

b
il

it
y

Q
o

S
(p

er
W

S
)

Q
o

S
(g

lo
b

al
ly

)

B
ac

k
u

p
s

Triana [12] � × × � × × × × ×
CAT [13] � × � � × × × × ×

SWORD [14] � × � × × × × × ×
Oliveria et al. [18] × � � × × � × � ×

Medjahed et al. [20] × � � � � � × � ×
StarWSCoP [21] × � � × × � × � ×

AgFlow [22] × � � × × � � � ×
QoS-Broker [23] × � � × × � × � ×
METEOR-S [24] × � � × × � × � ×
Our Framework × � × � � � � × �

We studied the related work, by listing two kinds of

works, manual and automatic. When dealing with the manual

technique, the user must apply a functional filtration and

must check for the composability between two services.

Considering the automatic composition techniques, the re-

sulting compositions suffer from inflexibility because the

QoS is calculated globally for the whole composition and

they do not support backups identification.

In a future work, we plan to enrich the specification of

the needed functionality with semantic descriptions. We also

intend to realize dynamic Web service substitution and to

conduct further experiments on more complex scenarios.

REFERENCES

[1] E. Newcomer and G. Lomow, Understanding SOA with Web
Services. Addison-Wesley Professional, 2004.

[2] “Web Services Business Process Execution Language Version
2.0”, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[3] “Seekda, WS search engine”, http://webservices.seekda.com

[4] D. Cerizza, A. Funk, A. Turati, A. Beffani, E. D. Valle,
H. Lausen, I. Celino, N. Steinmetz, S. Brockmans,
W. Schoch: “D1.4: Service-finder refined design of service-
finder as a whole”, Tech. Rep., April 2009. [Online].
Available: http://www.service-finder.eu/attachments/D1.4.pdf

[5] D. A. Menascé, “Qos issues in web services.” IEEE Internet
Computing, vol. 6, no. 6, pp. 72–75, 2002.

[6] Z. Azmeh, M. Driss, F. Hamoui, M. Huchard, N. Moha,
and C. Tibermacine, “Selection of composable web services
driven by user requirements.” In Proceedings of ICWS’11.
IEEE Computer Society, 2011, pp. 395–402.

[7] W. A. Larsen and J. Tukey, “Variations of box plots,” vol. 32,
1978, pp. 12–16.

[8] M. Huchard, M. R. Hacene, C. Roume, and P. Valtchev,
“Relational concept discovery in structured datasets.” Ann.
Math. Artif. Intell., vol. 49, no. 1-4, pp. 39–76, 2007.

[9] Conexp. [Online]: http://conexp.sourceforge.net/

[10] GaLicia, “Galois lattice interactive constructor,” 2002,
http://www.iro.umontreal.ca/ galicia.

[11] Z. Azmeh, M. Huchard, A. Napoli, M. Rouane Hacene,
and P. Valtchev, “Querying Relational Concept Lattices,”
in CLA’11: The 8th International Conference on Concept
Lattices and their Applications, France, 2011, pp. 377–392.

[12] S. Majithia, M. S. Shields, I. J. Taylor, and I. Wang, “Triana:
A graphical web service composition and execution toolkit.”
In Proceedings of ICWS’04. IEEE, 2004, pp. 514–.

[13] J. Kim and Y. Gil, “Towards interactive composition of
semantic web services.” National Conference on Artificial
Intelligence, 2004.

[14] S. R. Ponnekanti and A. Fox, “Sword: A developer toolkit
for web service composition’,’ in Proceedings of the 11th
International WWW Conference (WWW2002), Honolulu, HI,
USA, 2002.

[15] “The web services toolkit (wstk)”,
http://www.alphaworks.ibm.com/tech/webservicestoolkit.

[16] A. Martı́nez, M. Patiño-Martı́nez, R. Jiménez-Peris, and
F. Pérez-Sorrosal, “Zenflow: A visual web service composi-
tion tool for bpel4ws,” Visual Languages and Human-Centric
Computing, IEEE Symposium on, vol. 0, pp. 181–188, 2005.

[17] I. Aı̈t-Sadoune and Y. A. Ameur, “Stepwise design of
bpel web services compositions: An event-b refinement
based approach.” in SERA (selected papers), ser. Studies
in Computational Intelligence, R. Y. Lee, O. Ormandjieva,
A. Abran, and C. Constantinides, Eds., vol. 296. Springer,
2010, pp. 51–68.

[18] F. G. A. de Oliveira Jr. and J. M. P. de Oliveira, “Qos-based
approach for dynamic web service composition.” J. UCS,
vol. 17, no. 5, pp. 712–741, 2011.

[19] T. Weise, S. Bleul, D. E. Comes, and K. Geihs, “Different
Approaches to Semantic Web Service Composition.” in
Proceedings of The Third International Conference on
Internet and Web Applications and Services (ICIW’08),
A. Mellouk, J. Bi, G. Ortiz, K. W. D. Chiu, and M. Popescu,
Eds. IEEE Computer Society Press: Los Alamitos, CA,
USA, 2008, pp. 90–96.

[20] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid,
“Composing Web services on the Semantic Web.” The VLDB
Journal, vol. 12, no. 4, Springer-Verlag, pp. 333–351, 2003.

[21] H. Sun, X. Wang, B. Zhou, and P. Zou, “Research and
implementation of dynamic web services composition.” in
APPT, ser. Lecture Notes in Computer Science, X. Zhou,
S. Jähnichen, M. Xu, and J. Cao, Eds., vol. 2834. Springer,
2003, pp. 457–466.

[22] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang, “Qos-aware middleware for
web services composition.” IEEE Trans. Software Eng.,
vol. 30, no. 5, pp. 311–327, 2004.

[23] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for web
services selection with end-to-end qos constraints.” TWEB,
vol. 1, no. 1, 2007.

[24] R. Aggarwal, K. Verma, J. A. Miller, and W. Milnor,
“Constraint driven web service composition in meteor-s.” in
IEEE SCC. IEEE Computer Society, 2004, pp. 23–30.

[25] M. D. Ernst, R. Lencevicius, and J. H. Perkins, “Detection of
web service substitutability and composability.” in WS-MaTe
2006: International Workshop on Web Services — Modeling
and Testing, Palermo, Italy, June 9, 2006, pp. 123–135.

375375

