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Abstract—Web service compositions run in complex computing
infrastructures where arising events may affect the quality of
the system. However, crucial Web service compositions cannot
be stopped to apply changes to deal with problematic events.
Therefore, the trend is moving towards context-aware Web
service compositions, which use context information as a basis
for autonomic changes. Under the closed-world assumption, the
context and possible adaptations are fully known at design time.
Nevertheless, it is difficult to foresee all the possible situations
arising in uncertain contexts. In this paper, we leverage models
at runtime to guide the dynamic evolution of context-aware Web
service compositions to deal with unexpected events in the open
world. In order to manage uncertainty, a model that abstracts the
Web service composition, self-evolves to preserve requirements.
The evolved model guides changes in the underlying WS-BPEL
composition schema. A prototype and an evaluation demonstrate
the feasibility of our approach.

Keywords-Uncertainty, Web service compositions, models at
runtime, dynamic evolution, open world.

I. INTRODUCTION

Today’s systems run in complex and heterogeneous com-
puting infrastructures in which a diversity of events may
arise (e.g. security threats and server failures). Therefore, it is
desirable to count on self-adjusting mechanisms to solve these
situations. A good example of systems that require adjusting
themselves are the ones based on Web service compositions
(hereafter, service compositions). In an ideal scenario, Web
service operations would do their job smoothly. However, sev-
eral exceptional situations may arise in the changing contexts
where they run. For example, the response time of a Web
service operation may have greatly increased. Therefore, it is
appropriate to count on context-aware service compositions
that dynamically change to keep service-level agreements
(SLAs), offer extra functionality, protect the system, or make
the system more usable. Dynamic adaptation refers to the
act of changing the software behavior as it executes, without
stopping it. This type of adaptation is specially important
in critical service compositions that cannot be stopped to
implement adaptations.

Although current research works have paved the way to-
wards the dynamic adaptation of service compositions, they
have two main drawbacks: 1) most solutions have tended
to implement dynamic adaptations with variability constructs
at the language level [1], [2], [3], [4] (e.g. by extending
WS-BPEL code). However, this approach makes it harder to

understand and communicate autonomic behavior decisions
among stakeholders. This may result in error-prone systems.
Moreover, any change in the platform or the application may
require to change low-level platform-specific scripts that are
tightly coupled with the application code. This process may
become tedious and time-consuming; 2) dynamic adaptations
are carried out in the closed world, in which the boundary
between system and context is known ahead and unchanging
[5]. In this scenario, a set of adaptation actions is predefined
for fully foreseen context events [6], [7], [8]. However, in the
unpredictable open world, service compositions should react
to continuous and unanticipated changes in the context.

In the open world, uncertainty is caused by how the
service composition should deal with unknown context events.
Unknown context events are those situations in the context that
have not been foreseen at design time [9].

In this paper, we try to manage some situations of uncer-
tainty in the open world by self-evolving service compositions
through models at runtime. Models at runtime are causally
connected self-representations of the associated system that
emphasize the structure, behavior, or goals of the system
from a problem space perspective [10]. At the time unknown
context events arise during execution, our approach triggers
the dynamic evolution of the service composition to manage
these events properly. To this end, easy-to-understand and
technology-independent models are used to describe self-
adjusting actions that preserve the expected requirements.
The evolved models guide changes in the underlying WS-
BPEL composition schema, which orchestrates the service
composition. As a result, dynamic evolutions move the service
composition to new versions, which cannot be supported by
predefined dynamic adaptations. Since we are interested in
managing uncertainty that arises from the context in which
the service composition is deployed, our approach is related
to external uncertainty [11].

The remainder of this paper is structured as follows: Section
2 describes a running example. Section 3 summarizes the
dimensions of dynamic adaptation and dynamic evolution
in service compositions. Section 4 presents an overview of
our approach for dynamic evolution of service compositions.
Section 5 describes the models that guide evolutions. Section 6
summarizes the mechanisms that support evolution. Section 7
describes a prototype that realizes our approach and evaluation
results. Section 8 presents related work. Section 9 presents



conclusions and future work.

II. RUNNING EXAMPLE

In order to illustrate the need for dealing with uncertainty
in the open world, we introduce a critical service composition
for online book shopping. The example is specified with
the Business Process Model and Notation (BPMN) in Figure
1. BPMN tasks express Web service operations (e.g. UPS
Shipping); and BPMN subprocesses express composite service
operations (e.g. Barnes & Noble Books).
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Figure 1. A BPMN model that represents a composite service for online
book shopping

The business process (BP) starts when a customer looks
for a book on the store’s website. The first thing the customer
wants to do is to identify the books to purchase. The searching
operation is provided by the Search Book Web service, which
is part of the Barnes & Noble Books composite service. When
a book is found, then the book information is returned to the
customer by the Show Book Info Web service while at the
same time the information for other related books is listed by
the Show Related Titles Web service. If no book is found, then
the customer must refine the search, e.g. using supplementary
or different search criteria, or undertaking another search. In
the next step, the customer adds books into the shopping cart
through the Barnes & Noble Shopping Cart Web service. The
process can start over again until the customer is satisfied with
his or her selection. When the customer is ready to checkout,
he or she has to be authenticated by the Google Authentication
Web service. Then, the in-house Payment Calculator Web
service calculates the total amount to be paid. The payment
is done through the Bank of America Credit Card Payment
Web service. Finally, if the credit card information is valid,
the in-house E-mail Invoice Web service sends an e-mail to
the customer with the invoice while the UPS Shipping Web
service is invoked to deliver the book. Otherwise, the process
terminates.

A set of adaptation actions have been created for foreseen
context events. For instance, if the Barnes & Noble Books
composite service operation is unavailable, then other service
operations can be invoked instead. Nevertheless, if there are no
predefined adaptation actions for unknown context situations
(e.g. any third-party Web service operation fails or performs
below required SLAs), then no adaptation is carried out. As
a result, the whole system quality may be harmed. We argue
that despite unknown context events, the service composition
has to keep offering expected requirements.

III. DIMENSIONS OF DYNAMIC ADAPTATION AND
DYNAMIC EVOLUTION IN SERVICE COMPOSITIONS

In order to introduce our approach, first it is necessary to
describe the dimensions of dynamic adaptation and dynamic
evolution in service compositions. Figure 2 summarizes these
dimensions. The two dimensions in the lower section are about
what should be changed according to information retrieved
from the context. In the dimension of dynamic adaptation
of running instances, only the instance that has triggered the
adaptation is adapted. In contrast, the dimension of dynamic
evolution of the composition schema modifies the composition
schema (e.g. described in WS-BPEL), and therefore all future
instances. These two dimensions have been widely described
in literature [12], [13].

Service
Compositions

Dynamic Adaptation 
in the Closed World 

Dynamic Evolution 
in the Open World 

Dynamic Adaptation 
of Running Instances 

Dynamic Evolution 
of the Composition Schema

Context of Execution

What Should be Changed

our focus

Figure 2. Dimensions of dynamic adaptation and dynamic evolution in
service compositions

On the other hand, the two dimensions in the top of Figure
2 are related to the context of execution. The dimension of dy-
namic adaptation in the closed world is focused on the closed-
world assumption, in which all context events are foreseen at
design time. Predefined actions guide adaptations according to
known context events (for example, through event-condition-
action – ECA – rules). There are several research works that
focus on this dimension [6], [7], [8]. However, predefined
adaptation actions for known context events are not enough
in the open world where several unknown context events can
arise (e.g. sudden security attacks). Despite the recognized
need for handling unexpected events in self-adaptive systems
[14], [15], the dimension of dynamic evolution in the open
world of service compositions is still an open and challenging
research topic. Our work focuses on this dimension.

IV. FACING UNCERTAINTY WITH DYNAMIC EVOLUTION

In our previous work [8], we described a model-driven
approach to support the dimension of dynamic adaptation of
service compositions in the closed world. In order to support
the dynamic evolution of service compositions in the open
world, we extend this dimension with a dynamic evolution
layer. Highly abstract tactics are the main components to
face uncertainty in service compositions that run in the open
world. The use of tactics is common in sports, war, or even
in daily matters to accomplish an end. For example, the most
important goal during a battle is to win. However, unknown or
unforeseen events, such as surprise assaults, may arise. These
events may negatively affect the expected goal. Therefore, it
is necessary to choose among a set of tactics to reach the goal
(e.g. to escape vs. to do a frontal attack).



We define tactics as last resort surviving actions or strategies
to preserve the requirements (i.e., goals) that can be negatively
impacted by unknown context events [9]. Therefore, tactics
can trigger the dynamic evolution of a service composition to
preserve its requirements, which were defined at design time1.
During dynamic evolutions, requirements and tactics need to
be known beforehand. Otherwise, it will be impossible to face
uncertainty in a controlled way. However, they are not attached
to any context event or specific reconfiguration actions (as
dynamic adaptations do [8]). Therefore, our approach manages
known unknowns: tactics are known beforehand, but we do not
know to which specific arising unknown context events they
will be applied.

In the open world, our approach tries to reduce the impact of
unknown context events with a group of tactics. Therefore, the
open world can be seen as: Open world = (∑unknown context
events that can be handled by tactics)

⋃
(∑unhandled

unknown context events).
Figure 3 shows the architecture of the dynamic evolution

layer to face uncertainty in the open world. This architecture
has three building blocks: 1) the Evolution Planner constantly
looks for unknown context events in the open world. If there
is an unknown context event, then it looks for a requirement
that can be affected by this event. Afterwards, it looks for
a surviving tactic to preserve the requirement; 2) the Re-
configuration Engine performs the necessary evolution in
two main steps. First, it merges the discovered tactic into a
composition model, which abstracts the service composition.
This evolved composition model supports the tactic’s function-
ality to preserve the affected requirement. Second, it evolves
the WS-BPEL composition schema according to the evolved
composition model; and 3) the Execution Engine deploys the
evolved WS-BPEL composition schema.
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Figure 3. Architecture of the dynamic evolution layer to face uncertainty

1There is a main difference between tactics and compensations mechanisms.
On one hand, compensation mechanisms try to reverse actions performed in a
transaction when failures are faced. On the other hand, tactics try to preserve
expected requirements that may be affected by arising problematic unknown
context events.

V. SUPPORTING MODELS FOR DYNAMIC EVOLUTION

Our approach requires pieces of knowledge during execu-
tion to reach dynamic evolution of service compositions. These
pieces are defined as abstract models, which are described as
follows (see Figure 4).
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Figure 4. Supporting models for dynamic evolution of service compositions

Composition Model: The composition model abstracts the
underlying service composition (e.g. the model in Figure 1).
A BPMN model was chosen to represent the elements in a
service composition because BPMN is suitable to express se-
quences and dependencies among Web services and composite
services.

Requirements Model: The requirements model is leveraged
at runtime to count on the representation of the requirements
that the service composition has to preserve at runtime (despite
arising unknown context events). Since our running example is
particularly interested in keeping non-functional requirements
(NFRs) at runtime, the Goal-oriented Requirements Language
(GRL) [16] has been used for requirements modeling because
it is focused on NFRs. Figure 5 shows the requirements model
for our running example. Softgoals describe the NFRs to be
kept by the service composition in order to reach the top-
level goal, and tasks specify particular surviving tactics to
reach softgoals. There is a one-to-many relationship between
a requirement (expressed as a softgoal in our case) and tactics
that can preserve it. A large set of available generic tactics can
be found in related work [17].
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Figure 5. Fragment of the requirements model for the running example

Conflicts may exist between tactics and softgoals. For
example, the application of the Deception tactic that preserves
the High Security softgoal can negatively impact the High
Performance softgoal (more computational resources are re-
quired). In order to solve conflicts, we define claims, which



indicate assumptions about operationalizations’ satisfaction of
softgoals [18]. Tactics specified in claims use an ordinal scale,
ranging from complete denial (- -) to complete satisfaction (+
+) to express softgoals satisfaction. If a claim states that a
tactic operationalization has a negative impact on a softgoal,
then another tactic can be tried. For example, Figure 5 shows
two claims. At runtime, if an unknown context event affects
the High Security softgoal, the Evolution Planner chooses
the Deception tactic first according to C1 because it has a
better impact on this softgoal. If this tactic does not solve the
problem, then the Temporal Separation tactic can be triggered.
In a more complex scenario, if an unknown context event
affects the High Security and High Performance softgoals at
the same time, C2 is checked to decide the best tactic to choose
from. In this case, the Temporal Separation and Introduce
Concurrency are chosen because they have the most positive
impact on these softgoals.

Tactic Models: Tactic models express the tactical function-
ality to be triggered on the service composition to preserve
affected requirements. Therefore, tactic models are causally
connected to software (e.g. Web services) that implement the
tactics. Tactic models are merged into the composition model
at runtime to include the tactical functionality in the evolved
service composition. The only merging prerequisite is that
these two models conform to the same metamodel. Figure
6 shows a tactic model in our running example. Since the
composition model is implemented as a BPMN model, this
tactic model is also expressed as a BPMN model to merge
it at runtime. There are not limits for the length or depth
of model elements used in tactic models. For example, the
collapsed Log Intruder’s Activities subprocess in Figure 6
contains the BPMN activities that describe the invocation of
service operations for writing in the network and data logs.

Deception Tactic

Log Intruder's 
Activities

Manage 
Sensors

+ Send E-mail to
System Administrator+

+

Figure 6. Deception tactic model

VI. MECHANISMS FOR DYNAMIC EVOLUTION

The models created at design time are used to manage
external uncertainty when facing unknown context events.
The Evolution Planner and the Reconfiguration Engine are in
charge of guiding the dynamic evolution of service composi-
tions. They are described in the following subsections.

A. Evolution Planner

The main objective of the Evolution Planner is to look
for surviving tactics to protect the requirements that can be
affected by problematic unknown context events. Therefore,
the first two steps to trigger a dynamic evolution are as follows:

1. To Observe the Context: In order to collect context
information, a context monitor [8] periodically observes the
context. It leverages the OWL Web Ontology Language to
periodically insert new facts in an ontology that abstracts
the context. Individuals in this ontology represent service
operations. Each individual has datatype properties that are
used to represent the current context state (e.g. the isAvailable
datatype property indicates if a service operation is currently
available).

2. To Look for Unknown Context Events from the Collected
Information: In order to look for unknown context events, the
Evolution Planner periodically checks the updated ontology.
An observed context event is considered as unknown when
there are not predefined context conditions to deal with it.
Context conditions are Boolean expressions that work as SLAs
[8]. If a context condition is accomplished (i.e., an SLA is
violated), then an adaptation is triggered on the service com-
position to deal with the arising situation (e.g. UPSShipping,
HasResponseTime, > 2,000 ms). Our approach only observes
changes in datatype properties of the ontology. In other words,
we do not currently consider discovered service operations in
the open world that may affect the structure of the ontology.

In order to face unknown context events, the Evolution
Planner carries out the following steps:

1. Search Affected Requirement(s): In order to find the
requirement(s) that can be affected by unknown context
events, the Evolution Planner uses forward chaining. This
method evaluates arising context facts (i.e., context events)
against general rule premises in a knowledge base. A
key advantage of forward chaining in the open world is
that new context events can trigger new inferences. The
knowledge base is implemented as a rule file, which in-
cludes RDFS rules (e.g. [rule1: (?f pre:serviceOperation
?a) (?u pre:rapidIncreaseResponseTimeInThreeMin ?f) -> (?u
pre:underAttack ?a)]). For simple service compositions, rules
can be obtained from human experts by: 1) collecting empir-
ical data from the current service composition; 2) analyzing
collected data to discover the symptoms of problematic situa-
tions; and 3) defining general situations in the context that can
affect requirements. In complex service compositions, these
steps can be extended with methods for generating rules from
data (e.g. with heuristics or neural networks).

Figure 7 shows a basic example when the unknown context
event F1 (a fact) is detected. In this case, rule R1 has a
condition that matches this new fact (step 1). Then, the forward
chaining method fires the new fact F2 (step 2). The process
continues until the fact F3 is fired (step 4). F3 indicates that
the Barnes & Noble Books service operation can affect the
High Security softgoal. This example shows that evolutions
are only triggered when requirements are negatively impacted.

2. Search Surviving Tactics: The objective of this step is
to discover a tactic to preserve a requirement that can be
negatively impacted by an unknown context event. To this
end, the Evolution Planner carries out the following steps: 1)
it looks for the affected softgoal in the requirements model; 2)
it checks the claims associated to the affected softgoal and the
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Figure 7. Forward chaining inference example

set of tactics that depend on this softgoal; and 3) according to
claims, it chooses the tactic with the most positive impact on
the softgoal. For example, when the Evolution Planner finds
that the Barnes & Noble Books service operation can affect the
High Security softgoal, it looks for the High Security softgoal
in the requirements model. According to claim C1 in Figure
5, the Evolution Planner chooses the Deception tactic, with
the most positive impact on this softgoal.

B. Reconfiguration Engine

The main objective of the Reconfiguration Engine is to
evolve the composition model with the tactic that has been
found by the Evolution Planner. The Reconfiguration Engine
carries out the following steps during evolution:

1. Merge a Tactic Model into the Composition Model:
In order to inject the functionality of the discovered tactic
into the service composition, it is necessary to: 1) identify
a tactic model that describes the tactic to be triggered for
preserving an affected requirement; and 2) to merge the
required tactic model into the composition model to count
on an enriched composition model that guides changes in the
service composition. The merging operation was inspired by
the insert process fragment pattern described in [13].

The set of steps that are carried out in the merging operation
are as follows (see Figure 8): 1) the activity (e.g. subprocess
or task) describing the service operation that can negatively
affect a requirement is put into a new subprocess; 2) the
discovered tactic is put into the created subprocess; 3) a
parallel relationship is created between the problematic activity
and the tactic. As a result, the tactic’s functionality will be
executed when the problematic service operation is invoked;
4) the sequence flows that come in and go out from the
problematic activity are redirected to the created subprocess. If
subsequently, an activity that has been preserved with a tactic
needs to be removed (i.e., in case of a triggered predefined
dynamic adaptation), then the tactic is also removed. Figure
8 shows the evolved composition model after discovering the
Barnes & Noble Books service operation can affect the High
Security softgoal.

2. Evolve the WS-BPEL Composition Schema: The evolu-
tion of the WS-BPEL composition schema is guided by the
information contained in the evolved composition model. In
our previous work, we used the BABEL Java tool2 to translate

2http://www.bpm.scitech.qut.edu.au/research/projects/oldprojects/babel/tools/:
Babel.
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Figure 8. Evolved composition model in our running example

BPMN models into WS-BPEL code [19]. However, we discov-
ered that model-to-model and model-to-text transformations in
BABEL are unfeasible at runtime because they take around
95% of the total time required for adjustments.

We propose the following steps to reflect the changes in the
evolved composition model into the WS-BPEL composition
schema (see Figure 9): 1) the Reconfiguration Engine looks
for the tactic that has been added into the composition model;
2) with this information, the Reconfiguration Engine looks
for the WS-BPEL code fragment that invokes the tactical
functionality. Each tactic model maps to a WS-BPEL code
fragment, which is stored in a repository (i.e., a directory).
Each code fragment has an associated WSDL, which is used
to invoke the tactic’s Web service; and 3) the Reconfiguration
Engine injects the WS-BPEL code fragment that invokes
the tactic into the composition schema. A parallel flow is
dynamically created between the code that invokes the affected
service operation and the code that invokes the tactic’s Web
service.

In each evolution, the Reconfiguration Engine puts the
evolved composition schema and other required artifacts (e.g.
WSDL files) into a deployment directory. This directory is
hot deployed by the Execution Engine. Each new directory
has a higher version to prevent the Execution Engine from
deleting all the running instances with new deployments. New
instances run according to the evolved composition schema.
Therefore, our approach also covers the dimension of dynamic
evolution of the composition schema. Existing approaches,
such as Weber et al. [13], offer a solution to migrate run-
ning instances to cope with the evolved composition schema.
Finally, instead of extending the functionality of the Execution
Engine, our approach offers a transparent solution: it can be
plugged/unplugged from the the Execution Engine without
modifying it.

VII. PROTOTYPE AND EVALUATION

In our prototype, the models were specified in the XML
Metadata Interchange (XMI) format to be queried at runtime.
The composition model and the set of tactic models were
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created using the metamodel provided by the Eclipse BPMN
Modeler3. SALMon [20] inserts new facts into the ontology
that represents the context. The Evolution Planner uses Jena
24 for forward chaining. The Evolution Planner and the
Reconfiguration Engine use the Eclipse Modeling Framework
(EMF) Model Query5 to carry out operations on models.
The Reconfiguration Engine is implemented with our Model-
based Reconfiguration Engine for Web Services (MoRE-WS)
[8]. The Execution Engine was implemented with Apache
ODE6. Apache ODE was chosen because it offers mature
hot-deployment support. Our prototype provides a graphical
IDE to facilitate the creation and visualization of models (see
Figure 10). A demonstration of our prototype and the models
that were used in the running example can be found on our
website7.

We carried out the following set of experiments to evaluate
the feasibility of our approach. These experiments were per-
formed on a PC with an Intel Core 2 Duo 2.0 GHz processor
and 4 GB RAM with Ubuntu version 10.04 and Kernel Linux
version 2.6.32-36-generic. All the Web services ran on the
same computer.

1) Searching Affected Requirements: We evaluated the ac-
curacy and performance of the inferences that look for the
requirements that can be affected by unknown events. To
this end, we purposely injected a set of events that were
not predefined at design time to simulate uncertainty in the
open world. We simulated some security attacks (e.g. DoS
attacks), performance decrease in some service operations (by
manually modifying the response times in the execution log),

3http://projects.eclipse.org/projects/soa.bpmnmodeler: BPMN Modeler.
4http://incubator.apache.org/jena/: Jena.
5http://www.eclipse.org/modeling/emf/: EMF Model Query.
6http://ode.apache.org/: Apache ODE.
7http://www.harveyalferez.com/dynamicevolutionservcomp/: Prototype.

and the unavailability of other operations (by stopping some
services). Figure 11 summarizes the results of 16 runs with
increasing rules in the knowledge base and unknown events.
Our approach found the affected requirements in 83.9% cases.
The number of discovered affected requirements is directly
proportional to the number of rules. This operation took 57
milliseconds in average.
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Figure 11. Number of discovered affected requirements

2) Searching Surviving Tactics: We measured the response
time when looking for surviving tactics in the requirements
model. Since the response time to find a tactic in our running
example took seven milliseconds in average, we decided to
scale up the number of tactics in the requirements model. For
183 tactics, the response time was 63 milliseconds. In general,
the response time of this operation is linear as the number of
elements in the requirements model increases (see Figure 12).
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Figure 12. Response time when searching surviving tactics

3) Model-based Evolution: We measured the response time
of three key operations that are carried out on models during
dynamic evolutions. In order to demonstrate that our approach
scales well for large models, we randomly generated large
composition models (see Figure 13).

First, the searching problematic service operation exhaus-
tively navigates the composition model to look for an activity
that describes a problematic service operation. Second, the
adding tactic into the composition model operation looks for
the activity that represents the affected service operation, adds
the necessary model elements, and updates the composition
model. Therefore, it took longer than the first operation. Third,
the removing tactic from the composition model operation
got a better response time because it only deletes the tactic-
related elements and updates the model. Overall, even with
a model population of 30,000 elements in the composition
model, model operations had a good time response (< 300
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Figure 10. Screenshots of the prototype

milliseconds). It can be considered fast in the domain that we
are addressing. Finally, our approach works well under stress
circumstances. When several unknown events are achieved in
tight time frames, the Reconfiguration Engine executes the
required evolutions in the order in which events arrive.
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Figure 13. Response time of model operations during dynamic evolutions

4) Discussion: The evaluation demonstrated that model-
driven dynamic evolution of service compositions has good
performance and scales well. In order to increase the effec-
tiveness of our approach in the open world, the number of rules
in the knowledge base, and their related abstract requirements
and surviving tactics have to be proportional to the complexity
of the context of execution. Although our approach does not
solve uncertainty completely, it is an important step towards
uncertainty management.

VIII. RELATED WORK

Several research works related to autonomic service com-
positions have tended to implement variability constructs at
the language level to guide dynamic adaptations in the closed
world. For example, SCENE [1] extends WS-BPEL with ECA
rules that define consequences for conditions to guide the
execution of binding and rebinding self-reconfiguration oper-
ations. VxBPEL [2] is an adaptation of WS-BPEL that allows

variation points, variants, and configurations to be defined for
a process in a service-centric system. In [3], monitoring direc-
tives are expressed in the Web Service Constraint Language,
and recovery strategies, which follow the ECA paradigm,
are stated in the Web Service Recovery Language. Also,
Aspect-Oriented Programming has been proposed to guide
self-adaptive service compositions [4]. However, implement-
ing and managing dynamic adjustments at the language level
can become complex as mentioned before. Our solution uses
easy-to-understand models at runtime to guide the dynamic
evolution of service compositions in the open world.

Traditional attempts to manage context-aware service com-
positions with models at runtime focus on dynamic adapta-
tion in the closed world, not on dynamic evolution in the
open world. For example, DySOA [6] offers components
for monitoring and reconfiguring Web service-centric systems
using models. QoSMOS [21] combines formal specification
of quality-of-service (QoS) requirements, model-based QoS
evaluation, monitoring and parameter adaptation of the QoS
models, and planning and execution of system adaptation.
SASSY [7] is a model-driven framework that provides runtime
adaptation of service compositions in response to changing
operating conditions.

There are several approaches that deal with modeling vari-
ability in service compositions that support BPs [22], [23],
[24]. Although these works have inspired ours, they integrate
all possible process variants in a single model. It results in
large and difficult-to-understand models. On the contrary, we
propose to reason about variable tactics separately and to
leverage models at runtime to guide dynamic evolutions.

Recently, the community of models at runtime has shown
interest on using models during execution to face uncertainty
in the open world [25]. However, just a small group of works,
which are not focused on service compositions, deal with



uncertainty by means of models at runtime [26], [27], [28].
Moreover, the models that are proposed by these approaches
do not evolve at runtime. Therefore, the capacity of reaction to
manage unknown context events decreases because the initial
models are unable to support them.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a tool-supported approach
that leverages models at runtime to guide the dynamic evolu-
tion of context-aware service compositions in the open world.
Our approach can be used to manage uncertainty produced by
unknown context events. The use of models at runtime has
the following benefits: 1) the modeling effort made at design
time also provides a rich semantic base for autonomic behavior
during execution; 2) since models are causally connected to
the underlying service composition, they provide up-to-date
information to drive subsequent evolutions; and 3) technolog-
ical bridges are avoided because the model representations that
are used at design time are kept at runtime. An evaluation
demonstrated that model-driven dynamic evolution of service
compositions has good performance and scales well. As future
work, we are going to use Constraint Programming to verify
the evolved models and check that generated configurations
respect the constraints imposed by the models. Also, we
are going to verify that the introduction of tactics does not
negatively affect other expected goals. In addition, we are
going to propose a methodology to build and collect generic
tactics.
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