
An Architecture for Decentralised Orchestration of Web Service Workflows

Ward Jaradat, Alan Dearle, and Adam Barker
School of Computer Science, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SX, United Kingdom

{ward.jaradat, alan.dearle, adam.barker}@st-andrews.ac.uk

Abstract—Service-oriented workflows are typically executed
using a centralised orchestration approach that presents sig-
nificant scalability challenges. These challenges include the
consumption of network bandwidth, degradation of perfor-
mance, and single-points of failure. We provide a decentralised
orchestration architecture that attempts to address these chal-
lenges. Our architecture adopts a design model that permits
the computation to be moved “closer” to services in a workflow.
This is achieved by partitioning workflows specified using our
simple dataflow language into smaller fragments, which may
be sent to remote locations for execution.

Keywords-Web Service Workflows, Decentralised Orchestra-
tion Architecture, Dataflow Specification Language

I. INTRODUCTION

Service-oriented workflows are typically executed using
a centralised orchestration approach. This approach allows
workflows to be specified using an orchestration language,
and executed on a central workflow engine. It provides
process automation, and permits the workflow logic to be
encapsulated and modified at a central location. However,
this approach presents significant scalability challenges in
high-performance and data-intensive workflows such as
those seen in scientific applications [1]. The required input
data to execute these workflows can be large in size, and
it can increase gradually as more data becomes available
from services during the workflow execution. This can
cause a performance bottleneck as all the data pass through
the central engine across the services in the workflow [2].

Decentralised orchestration is an alternative approach
for executing service-oriented workflows. In this approach,
distributed orchestration engines can collaborate together to
execute the workflow, and each engine is responsible for
executing part of the workflow specification. This permits
intermediate data to be forwarded directly to the services
that require it. Our research hypothesis states that this
approach decreases the network traffic and improves the
performance and execution time of workflows.

The main contributions of our work include a decen-
tralised architecture that attempts to address the scalability
challenges in service orchestration. Our architecture adopts
a design model that permits the computation to be moved
“closer” to services in a workflow. It executes workflows
based on our high-level dataflow specification language.

II. DECENTRALISED ORCHESTRATION ARCHITECTURE

Our architecture presents an approach for distributing
web service workflow specifications to remote locations at
which their execution takes place. This is achieved through
partitioning a workflow specification into smaller fragments
that may be transmitted to remote orchestration services for
execution. The locus of control in centralised orchestration
is represented by the central orchestration engine, which
contains the decision logic for the workflow execution.
However, the notion of a single locus of control does not
exist in our architecture. The decision logic can be found at
one or several orchestration services at any moment during
the workflow execution.

O
rc

h
es

tr
at

io
n

 a
n

d
 P

ro
xy

Se
rv

ic
es

 In
te

ra
ct

io
n

s

O
rc

h
es

tr
at

io
n

 a
n

d
 P

ro
xy

Se
rv

ic
es

 In
te

ra
ct

io
n

s

Proxy Services
Interactions

Orchestration Services
Interactions

Services

Proxy Service

Interface

Mediator

Executor

Orchestration
Service

Proxy Service

Orchestration
Service

Interface

Compiler

D
ep

lo
y

Manager

Invocations and Responses

Services

Invocations and Responses

Input Output

Figure 1. Decentralised Orchestration Architecture

Figure 1 provides an architecture overview diagram that
shows the architecture components, and the interactions
between them. These components consist of orchestration
and proxy services. The orchestration service is responsible

ar
X

iv
:1

30
5.

18
42

v1
 [

cs
.D

C
]

 8
 M

ay
 2

01
3

æ

æ

æ

æ

æ

à

à
à

à

à

æ Centralisation

à Decentralisation

10 20 30 40 50
0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
Hm

sL

Pipeline Dataflow Pattern

æ

æ

æ

æ

æ

à

à

à

à

à

æ Centralisation

à Decentralisation

10 20 30 40 50
0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

Total Data Size HMbL
E

x
ec

u
ti

o
n

T
im

e
Hm

sL

Data Aggregation Pattern

æ

æ

æ

æ

æ

à

à

à

à

à

æ Centralisation

à Decentralisation

10 20 30 40 50
0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
Hm

sL

Data Distribution Pattern

Figure 2. Experimental Results

for analysing and partitioning the workflow specification
into smaller fragments for execution at remote locations. It
uses a compiler component to ensure the correctness of the
workflow specification before executing it, and a manager
component to interact with proxies. Proxy services are
responsible for executing the workflow fragments. These
proxies exploit connectivity to services in the workflow,
and perform service invocations and compositions, data
collection, retrieval, and mediation tasks on behalf of the
orchestration services. Each proxy maintains state and data
related to the workflow execution, and interacts with other
proxies that may request its data to complete the execution
of the overall workflow.

Our architecture executes web service workflows based
on our dataflow specification language [3]. This language
provides high-level abstractions that define a set of services
and coordinate the dataflow between them. It separates
between the workflow logic and its execution, supports
implicit parallelism, and provides a data-driven execution
model. It supports the specification of common dataflow
patterns that can be combined together to create complex
workflows, these include the pipeline, data aggregation and
data distribution patterns [1].

III. EVALUATION

We have conducted a set of experiments that aim to evalu-
ate the performance of our architecture during the execution
of workflows. In these experiments, web service workflows
based on common dataflow patterns were executed by our
architecture in centralised and decentralised configurations
on Amazon EC2. The mean speedup rates for executing
these workflows based on the pipeline, data aggregation, and
data distribution patterns are 1.37, 1.30, and 1.41. For further
information about these experiments please refer to [3].

Figure 2 displays a set of graphs that provide the total
size of data communicated in each workflow, and the work-
flow execution time for each experiment. The performance
analysis verifies our research hypothesis, and shows that our
approach reduces the workflow execution time, and scales
accordingly with the increasing size of data sets.

IV. CONCLUSION AND FUTURE WORK

This paper has presented our decentralised architecture
that attempts to address the scalability challenges in service
orchestration. In our approach, workflows based on our sim-
ple dataflow language can be executed by distributed orches-
tration services, which rely on proxies to exploit connectivity
to web services in the workflow. Future work will include
the investigation of workflow partitioning mechanisms, and
providing execution policies to accommodate performance
optimisation and resource utilisation requirements. It is our
intention to address security requirements by providing
information-flow policies to regulate the dissemination of
confidential data in workflows. Further information about
our work is available at http://bigdata.cs.st-andrews.ac.uk/.

REFERENCES

[1] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. H.
Su, K. Vahi, Characterization of Scientific Workflows, 3rd
Workshop on Workflows in Support of Large-Scale Science
(WORKS08), 2008.

[2] Adam Barker, Jon B. Weissman, and Jano van Hemert. 2008.
Eliminating the middleman: peer-to-peer dataflow. In Proceed-
ings of the 17th international symposium on High performance
distributed computing (HPDC ’08). ACM, New York, NY,
USA, 55-64.

[3] Ward Jaradat, Alan Dearle and Adam Barker. A Dataflow
Language for Decentralised Orchestration of Web Service
Workflows. To appear in Proceedings of the IEEE 2013 7th
International Workshop on Scientific Workflows.

http://bigdata.cs.st-andrews.ac.uk/

	I Introduction
	II Decentralised Orchestration Architecture
	III Evaluation
	IV Conclusion and Future Work
	References

