
Spatio-Temporal Composition of Sensor-Cloud Services

A thesis submitted for the degree of

Doctor of Philosophy

Azadeh Ghari Neiat

School of Science (Computer Science and Information Technology),

College of Science, Engineering, and Health,

RMIT University,

Melbourne, Victoria, Australia.

26 June, 2017

Lifelong gratitude to my family,

and my late grandma Kokab.

ii

Declaration

I certify that except where due acknowledgement has been made, the work is that of the

author alone; the work has not been submitted previously, in whole or in part, to qualify

for any other academic award; the content of the thesis is the result of work which has been

carried out since the official commencement date of the approved research program; and, any

editorial work, paid or unpaid, carried out by a third party is acknowledged.

Azadeh Ghari Neiat

School of Science (Computer Science and Information Technology)

RMIT University

26 June, 2017

iii

Acknowledgments

First and foremost, I would like to express my special appreciation and thanks to my principal

supervisor, Prof. Athman Bouguettaya whose knowledge, energy and enthusiasm was critical

to this effort. I would like to thank him for tirelessly encouraging, guiding and supporting

my research and for allowing me to grow as a research scientist. I sincerely appreciate

all his invaluable contributions of time, ideas and funding to make my PhD experience

productive and stimulating. I would like to offer my substantial gratitude to my co-supervisor,

Prof. Timos Sellis who has been a tremendous mentor for me. I am grateful for his great

patience, continuous support and insightful feedback on my academic and even personal

development. I am also thankful to Assoc. Prof. Mohamed F. Mokbel who has provided me

with helpful and practical suggestions on my research and future career. I believe that I am

tremendously fortunate to have worked with three outstanding truly humbel individuals and

deeply knowledgeable scholars.

I would like to express my gratitude to the members of the SCSLab group, in particular,

Sajib Mistry and Dr. Hai Dong for their great feedbacks and comments. I would like to thank

friendly administrative staff members of the school of CSIT who have been kind enough to

advise and help in their respective roles. I wish to name and thank Dora Poulakis, Louise

Russell-Craven, Tania Piraino and Rebecca Kessler.

My time at RMIT was made enjoyable in large part due to the many gorgeous Iranian

friends that became a part of my life. I owe special thanks to my lovely friend, Mohsen

Laali. He is the one who helped me a lot during my PhD. I would like to thank him

for the countless hours we spent together discussing research issues and for the sleepless

nights we were working together before deadlines. I wish to express my sincere love and

appreciation to my friends Mohammad Nabi Omidvar, Sargol Sadeghi, Reza Soltanpoor,

Borhan Kazimipour, Shaahin Madani, Bahar Salehi, Shiva Madani, Nooshin Torabi, Sadegh

Kharazmi, Nazila Haj Seyedjavadi and Asad Mohammadi. My sincere thanks also goes to

my best teacher and friend, Azam Hajmirzaali who has made all the difference in my life.

Lastly, I wish to express my sincerest love, thanks and deep appreciation to my family

for their unconditional love and support. My mom and dad, Fereshteh and Aliakbar, who

have played an important role in the development of my identity and shaping the individual

that I am today. They always believed in me and inspired me to follow my dreams. For

continuous encouragement and support, my sister, Zari, receives my everlasting thanks. She

pushed me to study PhD here and without her help and sacrifice, I could not have completed

iv

this thesis. I am indebted to my lovely brother, Armin for his practical support in all those

things of life beyond doing a PhD. My gorgeous sister and brother, Parisa and Arash, who

are my dearest friends. My only brother-in-law, Amir who is my true brother. They are my

life.

v

List of Publications

Parts of the work presented in this thesis have been appeared in the following publications:

• A. Ghari Neiat, A. Bouguettaya, T. Sellis, S. Mistry, Crowdsourced Coverage as a Ser-

vice: Two-Level Composition of Sensor Cloud Services, IEEE Transactions on Knowl-

edge and Data Engineering (TKDE), 29(7), pp. 1384-1397, IEEE, 2017.

• A. Bouguettaya, M. Singh, M. Huhns, Q.Z. Sheng, H. Dong, Q. Yu, A. Ghari Neiat,

S. Mistry, B. Benatallah, B. Medjahed, M. Ouzzani, F. Casati, X. Liu, H. Wang, D.

Georgakopoulos, L. Chen, S. Nepal, Z. Malik, A. Erradi, Y. Wang, B. Blake, S. Dustdar,

F. Leymann, M. Papazoglou, A Service Computing Manifesto: The Next Ten Years,

Communications of the ACM (CACM), 60(4), pp.64-72, ACM, 2017.

• A. Ghari Neiat, A. Bouguettaya, T. Sellis, Spatio-Temporal Composition of Crowd-

sourced Services, The 13th International Conference on Service-Oriented Computing

(ICSOC 2015), pp. 373-382, Springer, November 2015.

• A. Ghari Neiat, A. Bouguettaya, T. Sellis, H. Dong, Failure-proof Spatio-Temporal

Composition of Sensor Cloud Services, The 12th International Conference on Service-

Oriented Computing (ICSOC 2014), pp. 368-377, Springer, November 2014.

• A. Ghari Neiat, A. Bouguettaya, T. Sellis, Z. Ye, Spatio-Temporal Composition of Sen-

sor Cloud Services, The 21st IEEE International Conference on Web Services (ICWS

2014), pp. 241-248, IEEE, July 2014.

• A. Ghari Neiat, A. Bouguettaya, S. Mistry, Incentive-Based Crowdsourcing of Hotspot

Services, ACM Transaction on Internet Technology (TOIT) (submitted).

Contents

Abstract 1

1 Introduction 2

1.1 Motivation . 2

1.2 Problem Statement . 3

1.3 Research Objectives . 6

1.4 Contributions . 8

1.4.1 A QoS-aware framework for spatio-temporal selection and composition

of sensor-cloud services . 8

1.4.2 Coverage as a Service: Two-Level Composition of Crowdsourced Sensor-

Cloud Services . 8

1.4.3 A Novel Spatio-Temporal Incentive-Based Framework for Crowdsourced

Services . 9

1.5 Thesis Organization . 10

2 Background 12

2.1 Sensor-Cloud Architecture . 12

2.1.1 Wireless Sensor Networks . 13

2.1.2 Cloud Computing . 14

Cloud Services . 15

2.1.3 Sensor-Cloud . 16

2.1.4 Sensor-Cloud Service Framework . 20

2.2 Service Composition . 22

2.2.1 Traditional Service Composition . 22

2.2.2 Mobile Service Composition . 23

vi

CONTENTS vii

2.2.3 Timed Service Composition . 24

2.3 Spatio-Temporal Crowdsourced Services . 25

2.3.1 Spatio-Temporal Crowdsourcing . 25

2.3.2 Crowdsourced Service Composition . 26

2.4 Incentive Models . 27

2.5 Chapter Summary . 29

3 Spatio-Temporal Linear Composition of Sensor-Cloud Services 30

3.1 Introduction . 30

3.2 Background . 33

3.2.1 Spatio-Temporal Travel Planning . 33

3.2.2 Spatio-Temporal Index Methods . 33

3.2.3 Dynamic Reconfiguration . 34

3.2.4 Dynamic Replanning . 34

3.3 Spatio-Temporal Model for Sensor-Cloud Services 35

3.3.1 Spatio-Temporal Model for Atomic Sensor-Cloud Services 35

3.3.2 Spatio-Temporal Model for Composite Sensor-Cloud Service 37

3.4 Spatio-Temporal Selection of Sensor-Cloud Services 39

3.4.1 Spatio-Temporal Candidate Service Search Graph 39

3.4.2 Spatio-Temporal Index Data Structure for Sensor-Cloud Services . . . 40

3.4.3 Spatio-Temporal Selection Algorithm 41

3.5 Spatio-Temporal Quality Model for Line Segment Services 43

3.5.1 Quality Model for Atomic Line Segment Services 43

3.5.2 Quality Model for Linear Composite Service 44

3.6 Spatio-Temporal Linear Composition of Sensor-Cloud Services 45

3.7 Failure-Proof Spatio-Temporal Composition of Sensor Cloud Services 47

3.8 Performance Study . 53

3.8.1 Experiment Setup . 53

3.8.2 Experimental Results . 54

Linear Composition Approach . 54

Failure-proof Composition Approach 57

3.9 Chapter Summary . 57

CONTENTS viii

4 Crowdsourced Coverage as a Service: Two-Level Composition of Sensor-

Cloud Services 59

4.1 Introduction . 59

4.2 Coverage as a Service (CaaS) . 62

4.2.1 Spatio-Temporal Model for Atomic Crowdsourced Services 63

4.2.2 Spatio-Temporal Model for Composite Crowdsourced Services 64

4.2.3 An Extensible Quality Model for Crowdsourced Region Services . . . 66

Quality Model for Atomic Crowdsourced Region Services 66

Quality Model for Overlay Composite Service 69

4.3 Double-Layered Crowdsourced Sensor-Cloud Service Composition 69

4.3.1 One Path at a Time . 70

Step 1. Crowdsourced Region Service Filtering 70

Step 2. Decomposition . 71

Step 3. Local Spatio-Temporal Overlay Composition 71

Step 4. Global overlay Composition 74

4.3.2 One Segment at a Time . 75

4.4 Experimental Results . 78

4.4.1 Experiment Setup . 78

4.4.2 One path at a time approach . 79

4.4.3 One segment at a time approach . 80

4.5 Chapter Summary . 82

5 Incentive-Based Crowdsourcing of Hotspot Services 84

5.1 Introduction . 84

5.2 Background . 86

5.3 System Model and Problem Formulation . 87

5.4 Spatio-Temporal Incentive-Based Approach 91

5.4.1 Coverage Equilibrium of Hotspot Providers 91

5.4.2 Incentive Model . 92

5.4.3 Participation Probability Model . 95

5.4.4 Greedy Network Flow Algorithm for Crowdsourced Service Coverage

Balancing Using the Incentive Model 98

Initial assignment module . 99

Refinement module . 101

CONTENTS ix

Assignment module . 103

5.5 Experiment Results . 104

5.5.1 Experiment Setup . 104

5.5.2 Reaching Equilibrium using the incentive model 108

5.5.3 The scalability of the proposed approach 109

5.5.4 The effectiveness of the proposed approach 110

5.5.5 Effect of weights . 111

5.6 Chapter Summary . 111

6 Conclusion 113

6.1 Research Objectives Revisited . 113

6.2 Future Research . 116

6.2.1 Leveraging Crowdsourced Sensors for Real-Time Spatio-Temporal Lin-

ear Composition . 116

6.2.2 Designing QoS-aware Frameworks for Spatio-Temporal Selection and

Composition of Transient Crowdsourced Services 117

6.2.3 Developing Dynamic Incentive Models 118

Bibliography 119

List of Figures

2.1 Overview of Sensor Applications . 13

2.2 The Three Layers of Cloud Computing . 15

2.3 A Layered Sensor-Cloud Architecture . 19

2.4 Overview of Sensor-Cloud Infrastructure . 21

3.1 Public Transport Scenario . 32

3.2 Line Segment Sensor-Cloud Service Model 37

3.3 Linear Composite Sensor-Cloud Service . 39

3.4 Spatio-Temporal Graph . 40

3.5 Example of a 3D R-tree for Line Segment Services 41

3.6 Example of a 3D R-tree Query . 43

3.7 Example of Spatio-Temporal Linear Composition Algorithm 49

3.8 Illustrative Example of Failure-proofComposition Algorithm 53

3.9 Computation Time vs. Number of Line Segment Services 54

3.10 Optimality of LinearComposition Algorithm in terms of Utility Score 55

3.11 Impact of the Parameter r on Utility Score 56

3.12 Computation Time vs. Fluctuation Ratio . 57

4.1 Motivating Scenario . 61

4.2 Crowdsourced Region Service Model . 63

4.3 Overlay Composite Service . 65

4.4 Strength QoS Model . 67

4.5 Linear Composition Plan Set P . 70

4.6 Example of the Coordinates of an Enclosing MBB 71

4.7 Crowdsourced 3D R-tree . 74

4.8 The Coverage Heuristic . 76

x

LIST OF FIGURES xi

4.9 The Effect of Projection . 77

4.10 Computation Time vs. Number of Region Services 79

4.11 Optimality in terms of Computation Time . 80

4.12 Execution Time vs. Number of Line Segment Services 81

4.13 Execution Time vs. Number of Region Services 82

4.14 Optimality and Accuracy . 83

5.1 WiFi Hotspot Sharing Scenario . 86

5.2 The Proposed System Architecture . 89

5.3 The Number of Hotspot Providers among Each Subregion Histogram in the

Time Slot ti . 92

5.4 An Example of Subregion Entropy (SRE) . 94

5.5 An Example of Participation Model in the Time Slot ti 97

5.6 Snapshots of a Simple Flow Network for Several Iterations in the Time Slot ti 100

5.7 Refinement Phase of Figure 5.6 . 101

5.8 The Number of Suuplied or Demanded Hotspot Providers in Each Subregion

After Applying the Incentive-based Approach 102

5.9 Distributions Reaching Equilibrium in Undersupplied Subregions 106

5.10 Not Reaching Equilibrium in Undersupplied Subregions 107

5.11 Execution Time vs. Edge Density . 108

5.12 No. of Time Slots vs. Edge Density . 110

5.13 Execution Time vs. Weights . 111

5.14 No. of Time Slots vs. Weights . 111

List of Tables

3.1 Summary of Notations . 35

3.2 QoS Aggregation Functions . 45

4.1 Summary of Notations . 62

4.2 QoS Aggregation Functions . 68

5.1 Summary of Notations . 90

5.2 Total Number of Completed Run . 109

5.3 Execution Time vs. Edge Density . 109

xii

Abstract

This research focuses on the design and development of a crowdsourced sensor-cloud frame-

work with special emphasis on spatio-temporal service selection and composition. We pro-

pose a new, two-level composition model for crowdsourced sensor-cloud services based on

dynamic features including spatio-temporal aspects. The proposed approach is based on a

formal sensor-cloud service model that abstracts the functional and non-functional aspects

of sensor data in the cloud in terms of spatio-temporal features. A spatio-temporal indexing

technique is proposed that is based on the 3D R-tree, enabling fast identification of appro-

priate sensor-cloud services. Our novel quality model considers dynamic features of sensors

to select and compose sensor-cloud services. This model introduces a new QoS as a service

which is formulated as a composition of crowdsourced sensor-cloud services. We present new

QoS-aware spatio-temporal composition algorithms to select the optimal composition plan.

We present a novel, heuristic failure-proof service composition algorithm for real-time reac-

tion to sensor-cloud services which become unavailable because they are no longer spatially

or temporally available. We also provide a greedy redistribution algorithm that offers incen-

tives to crowdsourced service providers to achieve optimal balanced crowdsourced coverage

within an area. Experimental results validate the performance and effectiveness of these

composition approaches. The results show that our algorithms have a satisfying scalability

as the number of services becomes larger.

Chapter 1

Introduction

Sensor-cloud services provide a framework where sensors, clouds and services need to deliver

useful information from a vast amount of sensor data. The premise is that sensors are the

vehicle to collect that data. The cloud is the medium of sensor data storage. The service is

the paradigm that allows the transformation of data into useful information. In this chapter,

we first discuss the motivation behind this research. We then explain the problem statements.

Thirdly, we highlight the research objectives. Finally, we discuss the contributions of this

thesis and finish the chapter by introducing the subsequent chapters.

1.1 Motivation

Wireless Sensor Networks (WSNs) consist of a set of spatially distributed autonomous tiny

sensing devices, called sensor nodes, to monitor the locality and fetch sensor data about

the surroundings [1, 5]. Each sensor node is equipped with one or more sensors, storage,

a microprocessor, a transceiver and, in some cases, an actuator. The sensors are capable

of sensing physical or environmental phenomena including thermal, optic, acoustic, seismic

and acceleration events. On-board microprocessors can program sensor nodes to accomplish

complex tasks such as analysing raw data rather than transmitting only what they observe.

The transceiver provides wireless connectivity to communicate the observed phenomena of

interest [1, 6]. WSNs are being developed to serve a variety of purposes, e.g., health, energy

crisis, safety issues, smart cities and life comfort [7].

Storing, processing and managing continuous streams of sensed data pose key chal-

lenges, particularly when WSNs are used for large-scale applications. Because of avail-

ability, low-cost and fast access to cloud services, the integration of sensors with the cloud

CHAPTER 1. INTRODUCTION

(i.e., sensor-cloud) provides a unique opportunity to address challenges related to using sensed

data [8]. The sensor-cloud is a potential key enabler for storing and accessing large-scale data.

A sensor-cloud is formally defined by MicroStrains1 as “ a platform for sensor data storage,

remote management and visualization that leverages powerful cloud computing technologies

to provide data scalability, user programmable analysis and rapid visualization ” [5, 9]. The

virtualization technique also enables dynamic resource management, which, in turn, increases

resource utilization. According to IntelliSys2, a sensor-cloud is “an infrastructure that allows

truly pervasive computation using sensors as an interface between physical and cyber worlds,

the data-computed clusters as the cyber backbone and the internet as the communication

medium” [5].

A key challenge in the sensor-cloud is the efficient and real-time delivery of refined sensor

data to end-users. We propose to harness the power and simplicity of the service paradigm

with its functional and non-functional components as a key mechanism to turn sensor data

into useful information. The service paradigm is a powerful abstraction that hides data-

specific information which focuses on how data is to be used. In the case of sensor data

shared in the cloud, the functionality and non-functional aspects are abstracted as sensor-

cloud services. As a result, they become easily accessible irrespective of the distribution of

sensor data sources. We propose a service-oriented sensor-cloud architecture that provides an

integrated abstract view of the sensor data shared on the cloud and delivered as sensor-cloud

services.

The ubiquity of mobile devices such as smartphones has also elicited the emergence of the

important domain of crowdsourced sensor data. Mobility is an intrinsic part of the functional

and non-functional aspects of sensor-cloud services because of the nature of sensors such as

smartphones. Therefore, the position and time of sensed data are of paramount importance,

reflecting the spatio-temporal characteristics. In this regard, we focus on spatio-temporal

aspects as key parameters to query the sensor-cloud.

1.2 Problem Statement

In the setting of the sensor-cloud, existing service selection and composition approaches

mostly assume a static data environment. We identify the following research challenges.

1http://sensorcloud.com
2http://www3.ntu.edu.sg/intellisys

3 (June 26, 2017)

CHAPTER 1. INTRODUCTION

• Spatio-temporal dependency constraints between different sensor-cloud services. Ser-

vices are usually modelled as function calls focusing on their input and output

types [10]. However, to model sensor-cloud services, we should consider spatio-temporal

dependency constraints between services. These constraints may require that the in-

vocation of a sensor-cloud service only occurs in the spatio-temporal domain of other

sensor-cloud services. Therefore, a new spatio-temporal model for sensor-cloud services

needs to be defined to answer a query by considering all spatio-temporal dependency

constraints of sensor-cloud services.

• Spatio-temporal composition model. The composition provides an elegant means to ag-

gregate sensor-cloud services to provide a value-added sensor-cloud service. The com-

position of sensor-cloud services is different from classical service composition [11–13]

because of the distributed, volatile and dynamic aspects including spatio-temporal de-

pendencies. Spatio-temporal dependency constraints between component sensor-cloud

services need to be considered in order to compose sensor-cloud services. These spatio-

temporal constraints may require that the invocation of a sensor-cloud service only

occurs in the spatio-temporal domain of its dependent sensor-cloud services. As a

result, a new composition model is required to use the spatio-temporal features of

sensor-cloud services.

• A quality model for sensor-cloud services. What distinguishes services from other com-

puting paradigms is their ability to work in a competitive environment where the key

parameter to distinguish between similar services is their quality. Knowledge in it-

self is not sufficient, but needs to be acted upon to bring about benefits. In the case

of services, it is the ability to use Quality of Service (QoS) as a key discriminant to

choose between services that provide the ”action” on knowledge about services [14–

16]. Consequently, non-functional (i.e., QoS) properties need to differentiate candidate

sensor-cloud services during selection. Existing QoS approaches are not usually based

on dynamic environments such as those found in sensed environments. Therefore, we

require an extensible QoS model for sensor-cloud services that takes into account dy-

namic features of sensors, especially spatio-temporal characteristics.

• Spatio-temporal indexing of sensor-cloud services. Indexing available sensor-cloud ser-

vices enables rapid selection of services. Since the underlying sensor-cloud services rely

on real-time sensor data, a key challenge in indexing is considering the real-time changes

4 (June 26, 2017)

CHAPTER 1. INTRODUCTION

of sensor-cloud services’ behaviour. In addition, indexing sensor-cloud services based

on spatio-temporal attributes is of paramount importance. Therefore, there needs to

be a spatio-temporal index data structure for the efficient access and organization of

sensor-cloud services.

• Dynamic reconfiguration of sensor-cloud service composition. Failures need to be ad-

dressed since a previously selected sensor-cloud service may no longer be available.

As a result, the composed service would now be formally deemed to have failed. In

such a case, the initial composition plan would need to be replanned to deal with the

rising exception. Classical dynamic service reconfiguration approaches [17–19] do not

consider spatio-temporal dependencies among sensor-cloud services. Consequently, we

need to devise a spatio-temporal replanning approach for real-time reaction to unavail-

able sensor-cloud services; ”unavailable” in the sense they are no longer spatially or

temporally available.

• Spatio-temporal crowdsourcing. The ubiquity of sensor-enabled mobile devices such

as smartphones enables users contributing as multi-modal sensors to collect, analyse

and share sensor data [20, 21]. Crowdsourcing [22] is an emerging trend that utilizes

contributions from users and the collective wisdom of the crowd [23]. It is important to

build a service-based approach to make these crowdsourced sensor-cloud data available.

This can also be an effective means to enable the crowd to provide a service sharing

community within a geographical area by using their smartphones [24]. Users can

take advantage of services from their neighbourhood users through this crowdsourced

service community. Since the crowd (i.e., service providers) is mobile, the availability

of crowdsourced services to users is limited to its spatio-temporal adjacency, i.e., both

service providers and users should be within a spatial region at the particular time.

A key issue is selecting and composing services from such a large number of ever-

changing crowdsourced sensor-cloud services to fulfill users’ requirements in a real-time

fashion and based on spatio-temporal features. As a result, new spatio-temporal service

selection and composition technologies are key approaches to leverage spatio-temporal

crowdsourcing as a service provisioning platform.

• Incentivizing crowdsourced providers. While mobility provides great opportunities to

dynamically extend crowdsourced service coverage, it also presents fundamental chal-

lenges in terms of service availability to provide users with the best quality of experience

5 (June 26, 2017)

CHAPTER 1. INTRODUCTION

when it comes to coverage while on the move in space and time. To achieve desired

coverage of services, there is a need to motivate the crowd toward greater participation.

Since crowdsourcing is more likely to be used if there are financial rewards and other

incentives, an appropriate incentive model is required to motivate service providers to

form various types of environment-demanded crowdsourced service distributions.

1.3 Research Objectives

This thesis investigates and develops a novel framework which effectively and efficiently

provide cloud-based crowdsourced sensor data to users in the form of services taking into

account the users’ spatio-temporal context and QoS requirements. It aims to provide service

users the best Quality of Experience (QoE) with a set of composed crowdsourced sensor

data-based services. The specific aims of this thesis are as follows.

• To design and develop a service framework for cloud-based sensor data. This

thesis designs and develops a service-oriented architecture that provides an integrated

view of sensor data shared in the cloud and delivered as sensor-cloud services. In this

regard, we further identify three secondary aims:

– To build a spatio-temporal model for sensor-cloud services. The first task is to

model the sensor-cloud services which are the building blocks of service archi-

tecture. Our spatio-temporal features model these sensor-cloud services. The

collected cloud-based sensor data will be analysed and abstracted as sensor-cloud

services to develop the spatio-temporal service model.

– To devise a new real-time index model to access sensor-cloud services. There is

also a need to manage the real-time sensor data exposed as services in the cloud.

The second task applies spatio-temporal index data structures for efficient access

and organization of sensor-cloud services.

– To develop a quality model for sensor-cloud services. Given the diversity of ser-

vice offerings, an important challenge for users is to discover the ‘right’ service

satisfying their requirements. In this regard, the third task focuses on a new

quality model having the dynamic aspects of sensor-cloud services. Quality crite-

ria are part of describing the non-functional aspects (QoS) of sensor-cloud services.

6 (June 26, 2017)

CHAPTER 1. INTRODUCTION

• To devise QoS-aware spatio-temporal composition of sensor-cloud services.

Composition is a means to aggregate sensor-cloud services to provide new function-

alities. This research designs a set of spatio-temporal composition frameworks for

sensor-cloud services. We investigate the following two secondary aims:

– To design an approach for sensor-cloud service selection and composition. This

task aims to develop a set of spatio-temporal composition algorithms. Specifically,

we first identify the composability model to determine whether two component

sensor-cloud services are spatio-temporally composable. We then focus on inves-

tigating techniques for composing sensor-cloud services.

– To design a failure-proof model for sensor-cloud service composition. Failures

may occur as users follow their optimal composition plans. For example, the QoS

of sensor-cloud services may fluctuate and a component service may no longer

fulfil expectations. As a result, the initial composition plan needs to be repaired.

We propose to devise a new incremental replanning algorithm to re-execute the

composition at midway when new information about the environment is received.

• To design a crowdsourcing platform for real-time and adaptive service provi-

sioning. Crowdsourcing is a cost-effective means for sensor-cloud deployment through

collecting sensor data from pervasive sensing devices such as smartphones. We aim to

leverage crowdsourcing of sensors (e.g., smartphones) as a key mechanism for

providing this sensor-cloud service. This research objective focuses on modelling the

crowdsourced sensor-cloud services based on spatio-temporal features. It also includes

designing a novel technique to compose crowdsourced services based on users various

functional and QoS requirements. We also explore the use of some heuristics to optimise

the selection and composition process.

• To devise an incentive model to drive coverage of crowdsourced sensor-

cloud services: The incentive is a driving mechanism to induce the spatio-temporal

movement of crowdsourced sensor-cloud service providers to attain the desired coverage.

We design and develop a spatio-temporal incentive-based technique to promote the

service crowdsourcing and achieve demanded coverage of crowdsourced sensor-cloud

services within a region.

7 (June 26, 2017)

CHAPTER 1. INTRODUCTION

1.4 Contributions

The specific aim of this research is a novel QoS-based crowdsourced sensor-cloud service

selection and composition framework using the power of the service paradigm. The details

of the contributions are discussed on chapter-by-chapter basis in the following subsections.

1.4.1 A QoS-aware framework for spatio-temporal selection and composition of

sensor-cloud services

We present a spatio-temporal selection and composition framework for sensor-cloud services.

We first define a new line segment sensor-cloud service model. Spatio-temporal features will

be the focal aspects of the service model. In this model, a sensor-cloud service consists of a

number of functional attributes and associated QoS. In particular, new spatio-temporal QoS

attributes are proposed to evaluate sensor-cloud services based on spatio-temporal properties

of the services. We develop a service organization to efficiently discover sensor-cloud services.

We propose a spatio-temporal index structure customizing a 3D R-tree to efficiently access

sensor-cloud services. We also propose a spatio-temporal linear composition algorithm which

enables users to select their desired sensor-cloud services based on multiple criteria. Our

heuristic composition algorithm is a variation of A* shortest path finding algorithm [25]

offering an optimal QoS. Failures also need to be addressed since the QoS of a component

sensor-cloud service may not always fulfil the expectation. Consequently, the composed

service has now formally failed. In this regard, we propose a failure-proof spatio-temporal

combinatorial search algorithm for real-time reaction to unavailable sensor-cloud services

based on the D* Lite algorithm [26]. It is an incremental version of the A* algorithm. Our

proposed approach continually improves its initial composition plan while QoS constraints

change. We test the proposed composition approaches using a public transport scenario to

devise the best public transport journey plan.

1.4.2 Coverage as a Service: Two-Level Composition of Crowdsourced Sensor-

Cloud Services

We propose a two-level QoS-based crowdsourced sensor-cloud service composition framework

to select the optimal composite crowdsourced services along a set of optimal linear compo-

sition plans using a set of quality parameters. The framework contains a novel service and

composition model, quality model and a set of novel techniques to compose crowdsourced

sensor-cloud services. We first present a new region service model which aims to abstract

8 (June 26, 2017)

CHAPTER 1. INTRODUCTION

a crowdsourced sensor-cloud service focusing on spatio-temporal features. We define the

overlay spatio-temporal composability models which check that two component services are

spatio-temporally composable. We use the heuristic of path direction to minimize the num-

ber of candidate services in the composition process and optimise the selection process. We

then propose novel QoS attributes for evaluating crowdsourced services. We introduce a new

coverage QoS as a service which is formulated as a composition of crowdsourced services.

Finally, we propose a two-level spatio-temporal composition algorithm based on users’ func-

tional and non-functional requirements. At the first level, the coverage quality parameter of

a line segment service is formulated as the problem of computing an overlay spatio-temporal

composition. The second level takes the first level output as a coverage QoS value of a line

segment service to select the optimal linear composition plan. A significant aspect is that

the overlay service composition acts as a QoS of the line segment service composition. We

investigate two different approaches to double-layered sensor-cloud service composition. We

present a set of heuristic algorithms based on the shortest path algorithm like A* and Dijk-

stra as the basis for finding the optimal linear and overlay composition plan. Our case study

focuses on the use of (1) WiFi hotspot sharing and (2) journey planning in a geographical

region.

1.4.3 A Novel Spatio-Temporal Incentive-Based Framework for Crowdsourced

Services

Finally, we present a new spatio-temporal incentive-based approach to achieve a geograph-

ically balanced coverage of crowdsourced services. The incentive model aims to achieve

demanded coverage of crowdsourced services by employing a virtual credit mechanism to

reward crowdsourced service providers who move to required locations within the required

time. The proposed spatio-temporal incentive model differentiates areas with different re-

wards. This differentiation depends on the spatio-temporal dynamicity of the environment.

In this regard, we consider the types of environment based demands, such as spatio-temporal

density, time of day, popularity of locations in order to design the incentive model so that

crowdsourced service providers can be incentivized according to the environment’s demands.

The approach aims to provide users with the best QoE by redistributing hotspot coverage

within a predefined geographic area. We propose a novel greedy redistribution algorithm that

offers incentives to crowdsourced service providers to achieve an optimal demanded coverage.

The algorithm tries to reach a coverage equilibrium in an iterative process through assigning

9 (June 26, 2017)

CHAPTER 1. INTRODUCTION

crowdsourced service providers in the oversupplied subregions to undersupplied subregions.

We introduce a new participation probability model that determines the expected number

of crowdsourced service providers for movement. Our case study focuses on the use of WiFi

hotspot sharing within any given geographical area.

1.5 Thesis Organization

The rest of this thesis is organised as follows.

In Chapter 2, we present an in-depth study of the background of the field and the closely

related issues. We start by introducing WSNs, cloud computing and the integration of WSNs

and cloud computing , i.e., sensor-cloud. We also review previously proposed frameworks to

sensor-cloud and explains their specific characteristics. We also review the related studies on

service composition and discuss previously proposed approaches along with their strengths

and shortcomings. Finally, we discuss the related work in the area of spatio-temporal crowd-

sourcing and incentive models that are most closely related to our research.

In Chapter 3, we propose a service-oriented framework to efficiently and effectively se-

lect and compose sensor-cloud services. We first introduce the notion of the line segment

sensor-cloud service model which specifies functional and non-functional (QoS) attributes

of sensor data taking into account the spatio-temporal aspects. We develop a model to

spatio-temporally index the sensor-cloud services. We also propose a selection algorithm to

search for and select sensor-cloud services. In addition, new quality parameters are defined

to evaluate sensor-cloud services. In particular, we present a spatio-temporal linear composi-

tion approach for finding the optimal composition plan. A new failure-proof spatio-temporal

composition algorithm is proposed to deal with any failure of services. Finally, we discuss

the experimental results.

In Chapter 4, we propose a two-level spatio-temporal composition algorithm. We first

present a formal spatio-temporal model and quality model for a crowdsourced sensor-cloud

service. We then propose two different approaches to a double-layered crowdsourced sensor-

cloud service composition: one path at a time and one segment at a time. Additionally,

we develop an overlay composition technique to determine the coverage QoS value of the

line segment service that is presented in Chapter 3. We analyse the performance of these

approaches through the experiments.

In Chapter 5, we present an incentive-based approach to achieve demanded coverage

of crowdsourced sensor-cloud services. It also targets changing coverage of the crowd-

10 (June 26, 2017)

CHAPTER 1. INTRODUCTION

sourced services from the environment-oriented dimensions. First, we introduce a new spatio-

temporal incentive model to encourage the spatio-temporal movement of crowdsourced ser-

vice providers. We also propose a new greedy redistribution algorithm to reach the desired

coverage. Finally, we describe the experiments and their results.

In Chapter 6, we summarize the contributions and outcomes of this thesis. We also

discuss directions for future research.

11 (June 26, 2017)

Chapter 2

Background

To the best of our knowledge, there is no similar composition approach in the literature

considering spatio-temporal aspects. The strength of the proposed framework is the ability

to combine techniques from four separate areas, i.e., sensor-cloud, service composition, spatio-

temporal crowdsourcing and incentive models. The sensor-cloud is a potential key to storing

and accessing large-scale sensor data. The concept of services is used as an abstraction that

delivers data through the sensor-cloud to end-users. In addition, a composition of sensor-

cloud services creates new value-added functionality to resolve complex sensor-cloud service

requests. Spatio-temporal features are fundamental to the functional aspect of the sensor-

cloud. In this regard, we focus on spatio-temporal aspects as key parameters to access sensor-

cloud services. A credit-based incentive model motivates crowd participation to achieve the

desired coverage. In this chapter, we provide an overview of related work in these areas.

The rest of this chapter is organised as follows. We start by presenting the basic history

of research activity in the sensor-cloud domain in Section 2.1. We then present various

techniques which are used for service compositions in Section 2.2. In Section 2.3, we discuss

the role of spatio-temporal crowdsourcing. We present previous studies in the domain of

incentive models in Section 2.4. Finally, we conclude the chapter in Section 2.5.

2.1 Sensor-Cloud Architecture

The sensor-cloud is a new paradigm for processing and analyzing big sensor data using the

cloud platform. In this section, we first present a brief overview of Wireless Sensor Networks

(WSNs), cloud computing and its integration with WSNs. We finally review the sensor-cloud

including its definition, architectures and applications.

12 (June 26, 2017)

CHAPTER 2. BACKGROUND

Figure 2.1: Overview of Sensor Applications [1]

2.1.1 Wireless Sensor Networks

A typical WSN consists of a number of heterogeneous sensor nodes. Wireless networks of

sensor nodes enable monitoring and control of the environment from remote locations. WSNs

improve the accuracy of sensing data through collaboration among sensor nodes and online

data processing at those nodes [27]. Current WSNs are deployed on land, under-ground,

underwater and in space satellites. They are usually designed for specific applications to

track the behaviour of the monitored entity or to monitor an environment to take the proper

action when necessary. Therefore, these applications can be classified in terms of tracking

and monitoring [1] (see Figure 2.1). Monitoring applications include wildlife monitoring,

environmental monitoring (such as weather forecasting), health and wellness monitoring,

power monitoring, inventory and factory monitoring. Tracking applications include tracking

objects, animals, humans and vehicles. Moreover, application requirements differ in terms of

storage, computation and user interface. To meet this diversity of applications, the develop-

ment of new communication protocols, designs, and services is needed [1].

13 (June 26, 2017)

CHAPTER 2. BACKGROUND

2.1.2 Cloud Computing

The rapid developments in processing and storage technologies and the success of the Inter-

net have enabled a new computing paradigm called cloud computing, in which on-demand

resources (e.g., infrastructure, platform and software) similar to general utilities (e.g., water,

electricity and gas) are rapidly provided and released [28]. The core features of the cloud

computing include virtualized resources, elastic resource capacity, programmable self-service

interface and pay-per-use pricing models [29].

There are four types of cloud deployment models [30]:

Public Cloud: This is the most common form of cloud computing, in which the cloud

is made available on a pay-as-you-go basis to the general public [31]. It is owned by an

organization selling cloud services. These services are accessible over the Internet via Web

applications or Web services from an off-site third-party provider sharing computing resources

with many customers [32]. Public clouds are run by third parties and applications from

different customers who are likely to be mixed together on the cloud’s servers, storage systems

or networks [33]. Some popular examples of public clouds include Amazon Elastic Cloud

Compute, Google App Engine and Microsoft Azure.

Private Cloud: The private cloud infrastructure is provided for the exclusive use of one

business or one organization which has full control over the applications it runs and also over

the people and organisations using it. Private clouds can be managed by the organization or a

third party service provider. In addition, it may exist on or off premises. The main advantage

of the private cloud is using all advantages of virtualization while retaining control over its

infrastructure [34]. Google Gmail and Google Apps are well-known examples of services

supported by a private cloud infrastructure [35].

Hybrid Cloud: The hybrid cloud infrastructure is a composite of two or more types of

clouds (private and public). Companies in hybrid clouds can benefit from scalable resources in

the public cloud while keeping data or specific applications within their private cloud. Hybrid

clouds can take a number of forms, including cloud-bursting [36], where an organization uses

its own computing infrastructure for normal usage. However, in the case of a temporarily

heavy workload, it is dynamically extended from a private cloud to an external public cloud

service (such as Salesforce) to handle additional computing requirements.

Community Cloud: The cloud infrastructure is shared by several organizations with sim-

ilar requirements which can share their infrastructures such as data and computing resources

through defined interfaces. It may be considered to be a generalization of a private cloud

14 (June 26, 2017)

CHAPTER 2. BACKGROUND

Figure 2.2: The Three Layers of Cloud Computing [2]

as an infrastructure which is only accessible by one certain organization. For example, all

government organizations within the State of California may share computing infrastructure

in the cloud to manage data related to its citizens in California.

Cloud Services

A cloud delivers computing resources to users as services on an on-demand basis. Clouds, in

general, provide services at three different levels as follows [2, 30] (see Figure 2.2).

Software as a Service (SaaS) delivers simple software programs, applications and cus-

tomer interface to end users through a web portal in a pay-per-use manner. Therefore, the

users can access the on-line software services offering the same functionality instead of in-

stalling software on their own computers. SaaS alleviates the troubles of software deployment

and maintenance. Moreover, it simplifies development and testing for service providers. For

example, Salesforce is an industry leader in providing online CRM (Customer Relationship

Management) Services [33].

Platform as a Service (PaaS) provides a platform to support the entire application and

service life cycle including design, development, testing, monitoring, deployment and hosting

15 (June 26, 2017)

CHAPTER 2. BACKGROUND

on the cloud with no need to download and install software. There are some restrictions

for developers on the type of software they can write in exchange for built-in application

scalability [33]. Three typical examples of PaaS are Microsoft Azure, Amazon Map Reduce

and Google App Engine: they enable users to build Web applications on the same scalable

systems that power Google applications.

Infrastructure as a Service (IaaS) provides hardware, software and equipment to deliver

software application environments with a resource usage-based pricing model. Infrastruc-

ture can dynamically scale up and down based on application resource requirements. IaaS

providers normally offer virtualized infrastructure as a service instead of selling raw hard-

ware infrastructures. Virtualization enables abstraction and encapsulation of hardware level

resources. Typical examples are Amazon EC2 (Elastic Cloud Computing) Service and S3

(Simple Storage Service).

Cloud services also play a significant role in sensing and monitoring as they provide

powerful computing resources and elastic resource capacities which are not yet available on

small sensor devices themselves.

2.1.3 Sensor-Cloud

The large amount of real-time sensor data streaming from WSNs pose significant challenges

because of specific needs in storage capacity, processing power, energy and data manage-

ment constraints [1, 5]. To address these challenges, new powerful and scalable computing

platforms are needed. Cloud computing is a promising technology providing virtualized re-

sources, elastic resource capacity, programmable self-service interface and pay-per-use pricing

models [29]. Therefore, cloud computing is a promising solution that addresses WSNs chal-

lenges [37, 38]. The integration of WSNs with the cloud (i.e., sensor-cloud) provides unique

capabilities and opportunities, particularly for the use of data service-centric applications

[8]. Sensor-cloud is a potential key to enable large-scale data sharing and cooperation among

different users and applications. In what follows, we discuss several challenges enabling

sensor-cloud in details.

Scalability. The promising applications of WSNs have posed new challenges. For example,

the frequency of sampling data in WSNs including seismic sensors or bio-sensors can increase

significantly if a situation becomes worse [7, 39]. A large amount of sampled data increases the

need for more storage capacity. However, WSNs have their shortcomings to scale well in large

networks. Therefore, an elastic storage mechanism is necessary to satisfy storage constraints

16 (June 26, 2017)

CHAPTER 2. BACKGROUND

and data loss prevention requirements. A cloud can provide elastic storage resources to

address this issue.

Processing. Some applications such as environmental monitoring and modelling applica-

tions have unpredictable computational demands [38]. On the other hand, current WSNs

are not able to provide the powerful analytical resources needed to satisfy such requirements.

Moreover, cloud computing can elastically provide missing computing capability. In particu-

lar, as collected sensor data is often stored and processed off-line, cloud can supply continuous

running on-line algorithms to analyse sensor data [7].

Reusability. WSNs provide valuable information to make critical decisions. There are

many reasons for maintaining sensed information including historical, future resources and

reanalysis [40]. In contrast, the cost of managing and maintaining these sensor resources is

a key shortcoming for WSNs, specifically for short life-cycle applications [38]. As a result,

sensed information will be deleted quickly after that application no longer requires it. To

reuse sensed information for further processing, unlimited data storage of cloud can be a

feasible solution.

Availability. WSNs are used by their specific applications for a specific purpose [5].

Each application manages its own physical sensors and sensor data which cannot be used by

other applications’ users [4]. To share WSN resources among different kinds of applications,

lightweight virtualization technologies are required [29]. The cloud computing platform is a

promising approach to promote data sharing within existing WSNs.

Reliability. In a WSN, there is normally one server (single point of failure) in operation

that can fail at any time due to hardware, software and communication issues. If the server

becomes unavailable, sensor data will be inaccessible [39]. Consequently, it is necessary to

provide disaster recovery and data backup services to handle failures before and after they

occur [1]. Cloud can provide a backup system in case of failure of the main server through

geographically distributed data centres [7].

Research in sensor-cloud has mainly focused on the integration of WSNs with the cloud.

For example, [41] proposes a new sensor-cloud architecture which establishes multiple phys-

ical sensors as virtual sensors on the cloud. Virtualization provides an abstraction layer for

the user as if the user interacts with the physical sensors directly without worrying about

the physical sensor location. In [42], a framework for the integration of sensor network and

the cloud is proposed through adapting a content-based publish/subscribe platform [43] that

simplifies this integration. In the content-based publish/subscribe system, the meta-data has

to be added to sensor data to identify the different data fields. In this framework, sensor data

17 (June 26, 2017)

CHAPTER 2. BACKGROUND

is transferred to a publish/subscribe broker, located on the cloud side, through a gateway.

This broker delivers information to the cloud consumers. A mechanism is proposed in [44] to

transfer sensor data from sensor nodes to the cloud. This sensor-clod mechanism filters the

collected data using sensors at the sensor gateway through applying trained neural networks

for anomaly detection. The compressed sensor data is sent to the cloud gateway where the

data is first decompressed and then uploaded to the cloud. In [9], a theoretical model for

virtualization is presented, which is a key enabler of the sensor-cloud. A comparative per-

formance study between the sensor-cloud and WSN in terms of energy consumption, fault

tolerance, lifetime of a sensor node and cost effectiveness is shown in [9]. The results present

that the sensor-cloud outperforms traditional WSNs in most cases. In [3], the sensor-cloud

is defined as a cloud of virtual sensors built on top of physical wireless sensors to provide

sensing as a service to the user. A three-layer sensor-cloud architecture from the Missouri

University of Science and Technology is also presented (see Figure 2.3). The architecture

consists of three layers: client-centric, middleware and sensor-centric. Client-centric acts as

a gateway to connect users to a sensor-cloud. It also allows users to specify their own pa-

rameters including regions of interest, sensing phenomena, sampling frequency and sensing

duration. The middleware layer provides an intermediary for data communication between

client-centric and sensor-centric layers. It also negotiates between the user and the sensor-

cloud for virtual sensor provisioning for each incoming request and maintenance of virtual

sensors. The sensor-centric layer deals directly with physical wireless sensors through the

WSN registration, WSN maintenance and data collection components. Sensing and Actu-

ation as a Service (SAaaS) [45] is a cloud of sensors and actuators. Its key functionalities

include enabling of interoperation and management of WSNs, smartphones and other devices

equipped with sensors and/or actuators in a cloud environment, exploitation of volunteer-

based methods for enrolling, aggregating and managing virtual sensors and actuators. The

sensing as a service [46] framework enables sensor data to be published and makes that data

available to consumers through the cloud either for free or for a fee. In this framework,

consumers are allowed to select the number of sensors they require, based on the context

information. For example, a user may be willing to pay more for highly accurate sensor data.

The sensor-cloud enables several new real-life applications including health-care, trans-

port monitoring, target tracking, disaster management, agriculture, environmental monitor-

ing and power management [47]. For example, BodyCloud [48] is a sensor-cloud system

developed for integrating sensor data collected from Body Sensor Networks (BSNs) with

the cloud infrastructure. The system is a SaaS architecture that supports a scalable data

18 (June 26, 2017)

CHAPTER 2. BACKGROUND

Figure 2.3: A Layered Sensor-Cloud Architecture [3]

management, processing and analysis. The system enables large-scale data sharing and col-

laborations among users and applications in the cloud. To address security perspectives,

a secure and scalable e-health sensor-cloud whose objective is managing a large amount of

generated data by medical WSNs and dynamically scaling resources through on-demand pro-

visioning is proposed in [39]. A fine-grained access control with low computation overhead

that combines Ciphertext Policy Attribute Based Encryption (CPABE) [49] and symmet-

ric encryption is used to ensure data security and confidentiality. In [50], the design and

implementation of a sensor-cloud to manage and monitor collected sensor data, such as hu-

midity and temperature from an agriculture system is described. A sensor-cloud architecture

is proposed in [51] that enables on-demand and shared access by users to multiple physical

sensors from different applications including healthcare and environment monitoring through

19 (June 26, 2017)

CHAPTER 2. BACKGROUND

virtual sensors. [52] addresses the problem of correctly mapping sensors to targets in target

tracking applications within a sensor-cloud environment. The main contribution is proposing

a dynamic mapping algorithm based on the theory of social choice [53] to ensure the fair and

best allocation of sensors to their corresponding targets. That work is extended in [54] by

proposing a new QoS-aware sensor allocation approach, taking into account QoS parameters

such as detection probability, dwelling time and availability. The proposed selection process

is also an auction-based mechanism that ensures a balance between the QoS and the cost

incurred by the user.

2.1.4 Sensor-Cloud Service Framework

A key challenge in the sensor-cloud is the efficient delivery of sensor data to end users. The

preferred paradigm and abstraction is services to transform data into useful information, i.e.,

sensor data is made available as a service (aka sensor-cloud service) to different clients over a

sensor-cloud infrastructure [47]. There have been little research into the sensor-cloud which

focuses on a service-oriented architecture to abstract the functionality of sensor data as a ser-

vice. For example, [4] develops a sensor-cloud service model which provides service instances

(virtual sensors) to end users (see Figure 2.4). Users request services according to their

own needs by selecting an appropriate service template of the sensor-cloud. [55] proposes

a virtualized Internet of Things (IoT) framework called Sensor-as-a-Service (SenaaS). This

framework exposes the functional aspects of sensors as services through hiding details from

the user. SenaaS mainly focuses on providing sensor management as a service rather than

sensor data provisioning (collection and dissemination) as a service. The framework com-

prises three layers: (i) the real-world access layer, providing an interface with an underlying

IoT cloud to overcome the technical diversity in terms of sensor types and communication

mechanisms; (ii) the semantic overlay layer, adding semantic annotations to the sensor con-

figuration process through maintaining an IoT ontology, a sensor ontology, an event ontology

and service access policies, and (iii) the service virtualization layer, abstracting functional

aspects of an underlying IoT cloud and exposing information in the form of services to fa-

cilitate users. A similar approach is presented by [56] where sensors are encapsulated to

a service with semantic annotations. They also propose a model-based approach based on

UML Activity diagrams and their associated semantics for the efficient sensor service discov-

ery and composition. Not only does our work contribute to the integration of WSNs and the

cloud, but also our service model is different from other sensor-cloud service models which

20 (June 26, 2017)

CHAPTER 2. BACKGROUND

Figure 2.4: Overview of Sensor-Cloud Infrastructure [4]

focus on spatio-temporal features.

There is a number of services and middlewares on the sensor-cloud infrastructure which

collect, share and process sensor data on the cloud. We briefly describe few of them. Nim-

bits [57] is a social data service that provides data compression, data calculation and alert

management on collected sensor data. Pachube [58] provides a platform that enables users to

collect, store, share and discover real-time sensor data in different areas including healthcare,

environment and energy. These services have some limitations in terms of sensor data man-

agement and interoperability among services from different sensor data resources [5]. Hydra

[59] is middleware consisting of an intelligent software layer placed between the operating

system and applications. Global Sensor Networks (GSN) [60] is an evolving middleware for

sensor data stream processing. GSN also rapidly simplifies the process of connecting hetero-

geneous sensor devices to applications. Specifically, GSN provides the capability to integrate,

discover, combine, query and filter sensor data through a declarative XML-based language

and enables zero-programming deployment and management. The virtual sensor is the key

element in the GSN. Virtual sensors in GSN are defined using XML, whereas approaches such

as [61] where virtual sensors are defined based on classes, . Additionally, Hydra and GSN are

data-centric frameworks. They provide services as an API to access data. In contrast, our

approach is service-centric. We consider services as first class objects to query and access.

21 (June 26, 2017)

CHAPTER 2. BACKGROUND

2.2 Service Composition

Service composition is one of the hottest research problems in service-oriented computing

[13]. In this section, we briefly overview the principal related works of traditional, mobile

and timed service compositions.

2.2.1 Traditional Service Composition

The traditional service composition problem can be categorized into two areas. The first

focuses on the functional composability among component services. The second area aims

to compose optimal services based on non-functional properties (QoS). Functional-driven

service composition approaches typically adopt semantic descriptions of services. Examples

of automatic approaches include the policy-based approach proposed in [62] and the com-

posability model driven approach proposed in [13]. Functional-driven service composition

approaches do not generally attempt to find an optimal solution but instead focus on finding

a solution. The QoS of the resulting composite service are usually used as a determinant

factor to ensure users’ satisfaction. Different users may have different requirements and

preferences regarding QoS. Therefore, QoS-aware composition approaches are required. The

QoS-aware service composition problem is usually modelled as a Multiple Criteria Decision

Making [63] problem. The most popular approaches include integer linear programming and

genetic algorithms. An Integer Linear Program (ILP) consists of a set of variables, a set of

linear constraints and a linear objective function. After translating the composition problem

into this formalism, a specific solver software such as LPSolve can be used. [64] and [65]

use Genetic Algorithms (GA) for service composition. There are also some service composi-

tion algorithms [66–68] which apply A* shortest path finding algorithm to find the optimal

composition plan. Most classical composition techniques are off-line and are mostly inappli-

cable for composing services using dynamic features [69] such as those found in sensor-cloud

applications. Those works on traditional service composition form the background of our

research. We recast the problem into QoS-aware service composition problem and utilize an

extension of A* algorithm to find the optimal composition plan. However, we model the ser-

vice composition problem in a sensor-cloud environment taking into account spatio-temporal

features which are not easy to apply in traditional methods.

22 (June 26, 2017)

CHAPTER 2. BACKGROUND

2.2.2 Mobile Service Composition

Recent advances in smart mobile devices have enabled more powerful mobile applications and

services that were not previously available on desktops or laptops. As a result, more studies

have emerged to address the problem of mobile service composition that is more flexible and

complex than traditional service compositions [70]. [71] proposes a mobile service composi-

tion algorithm in opportunistic networks that allow mobile users to benefit from a larger set

of services available in the local environment. They also present an efficient service selection

algorithm for devices located in close proximity considering the service load and temporal

distances between nodes of the composition graph. Temporal distance provides a measure for

reachability of nodes (i.e., the relative location of other nodes) when an end-to-end connected

path does not exist. For each node, the service composition graph builds a local view of the

services available at other nodes. The vertices of the composition graph are nodes and edges

represent the cost of obtaining a certain service from that node. This mobile composition

algorithm selects a composition sequence based on the composition graph to meet the user’s

requirements. [72] incorporates a mobility prediction approach into the dependable service

composition in wireless mobile ad hoc networks. The mobility prediction helps to determine

the estimated time that a service provider is available in the current environment instead of

predicting its future location. It aims to find an optimal service composition that has max-

imum tolerance to the uncertainty of the mobility prediction. This provides a more reliable

composition in terms of mobility. It also assumes that the execution duration of each service

is the same on every provider. This assumption is not reasonable in real life because of dif-

ferent hardware configurations of service providers. This work mainly focuses on the impact

of mobility of service providers on reliability. However, none of the approaches in [72] and

[71] take into account QoS properties to find the optimal composition plan. [24] introduces

a new mobile provisioning architecture called Mobile Service Sharing Community (MSSC)

where both service requesters and providers are moving. They propose a mobility model

that is an extension of Random WayPoint (RWP) model [73] for abstracting users’ moving

behaviour. This mobility model also assumes that users can only travel among a number

of critical points which limits its usefulness. They also propose a service composition ap-

proach based on Krill-Herd algorithm [74] to find the optimal response time. A QoS-aware

mobility-aware service composition algorithm is proposed in [75]. They introduce the concept

of mobility-aware QoS based on the mobility model of service invocations that describes the

performance of a service. Due to the changes in location and mobile network strength, the

23 (June 26, 2017)

CHAPTER 2. BACKGROUND

data transmission time changes which affects the response time. On the other hand, [24]

and [75] approaches only consider the location sensitive response time as a QoS criterion to

select the optimal composition plan. [76] develops a QoS-aware service composition model to

handle the mobile environment. This model is based on traditional QoS criteria and a new

dynamic QoS criterion (i.e., availability) which reflects the mobility. They also introduce

a k-neighbour algorithm which decomposes the composite service into smaller elementary

composite services. Each such service includes at most k consecutive atomic services. This

algorithm finds the composition plan for those elementary composite services based on the

available service provider set. GoCoMo [77] is a self-organizing, goal-driven service compo-

sition model in mobile and pervasive computing environments. It introduces a decentralized

heuristic planning algorithm based on the backward-chaining to support a flexible service

query. A risk-aware mobile service composition algorithm is proposed in [78] to deal with the

risk of failures resulting from the mobility of service consumers and providers. This service

composition approach is a modification of the simulated annealing algorithm [79] to find the

optimal mobile composite service that has the best QoS and lower risk. Too little attention

has been paid to sensor-cloud service composition particularly in terms of spatio-temporal

features. Our work considers QoS constraints and both spatial and temporal dependencies

among services.

2.2.3 Timed Service Composition

Some works have taken temporal properties into consideration to select the optimal service

composition. For example, [80] augments the behaviour of Web services with time properties.

This mechanism is based on a timed mediator to deal with the problem of timed (and non-

timed) conflicts when generating an asynchronous Web service composition. Time-dependent

and input-dependent QoS attributes (i.e., execution time and inter-domain validation) are

considered in [81] to compose services in multi-domain environments. The service compo-

sition is also modelled as the multi-domain scheduling problem. Moreover, [82] defines a

multi-objective optimization-based approach while considering time-dependent QoS values.

In this approach, a time-dependent pricing model is also used to show how time and input

aspects affect the QoS values of a service. For example, the price of a movie service may

differ depending on the time of viewing (e.g., weekends, weekdays or release date). It selects

the best combination of services while specifying the start and finish times of each service

according to the QoS values at each time period. To address timed service composition

24 (June 26, 2017)

CHAPTER 2. BACKGROUND

problem, an approach is proposed in [83] which considers time-dependent QoS attributes

to select best service instances. There is also an assumption that all QoS attributes are

monotonically decreasing. [84] proposes a differential evolutionary approach for constraints-

driven service composition problem satisfying both QoS and temporal constraints in mobile

cloud computing. This approach also takes into account the service provider mobility which

is modelled by extending the proposed mobility model in [72]. A pruning mechanism for

service selection is presented in [85] that considers time-dependent QoS attributes associated

with temporal constraints. The QoS values of these composition approaches depend on the

time of execution. In contrast, our work goes beyond existing approaches by considering

both time-dependent and location-dependent QoS; i.e., QoS values of a service are affected

by the locations and times of services.

2.3 Spatio-Temporal Crowdsourced Services

In this section, we overview related works in the area of spatio-temporal crowdsourcing and

crowdsourced service composition.

2.3.1 Spatio-Temporal Crowdsourcing

The ubiquity of sensor-enabled mobile devices such as smartphones enables public and pro-

fessional users contributing as multi-modal sensors to collect, analyse and share sensor data

including location, time, direction and acceleration [20, 21]. Crowdsourcing [22] can be a

means to utilize the contributions from users and the collective wisdom of the crowd [23].

Since the crowd (i.e., sensors) is mobile, the produced data by the crowd is spatio-temporal.

In particular, spatial crowdsourcing [21, 23] distributes spatial tasks to a set of so-called

crowd workers travelling to specified locations to perform the tasks. For example, [86] de-

ploys CrowdSensing@Place (CSP) framework which combines spatial sensor data (i.e., loca-

tions) and user trajectories along with sampled images and audio clips to link place visits

with place categories (e.g., restaurants). A new approach for crowdsourcing location-based

queries is proposed in [87]. It uses new location-based services such as Foursquare to select

an appropriate user for answering the given query. Historical Foursquare check-ins are used

instead of assigning spatial tasks to the users. However, only a few studies have focused

on spatio-temporal crowdsourcing [88]. [89] presents a crowdsourcing urban simulation to

detect a user transportation mode through collecting spatio-temporal data (i.e., date, time

and network-based location values) and acceleration sensors values. Mobile crowdsourcing

25 (June 26, 2017)

CHAPTER 2. BACKGROUND

systems are proposed in [90] and [91] to predict real-time arrival of buses using GPS traces

of commuters. Further, [92] develops OneBusAway system, consisting of a set of transit

tools to provide real-time arrival of buses. OneBusAway enables users to comment through

several feedback mechanisms including Twitter, blog and bug tracker. Analyzing such multi-

modal and diversified crowdsourced sensed data poses new challenges when it is collected and

stored. As a result, we investigate the spatio-temporal crowdsourced sensor-cloud services

which combine the spatio-temporal crowdsourcing with the sensor-cloud to provide more

efficient techniques for collecting and processing spatio-temporal sensor data.

2.3.2 Crowdsourced Service Composition

Our work embodies the concept of the spatio-temporal crowdsourcing to design a crowd-

sourced sensor-cloud service framework for a smart city where smartphone users contribute

as service providers. Only a few work [93–95] studied crowdsourcing as a service. For exam-

ple, [96] introduces sensing as a service (S2aaS) which is a crowdsourcing system to provide

sensing services using mobile phones through a cloud computing system. In this regard, not

only a mobile phone user can be a cloud (service) user who requests sensing services but also

a mobile service provider who fulfills sensing tasks according to sensing requests from other

mobile phone users in different locations [97].

Several researchers have started working on crowdsourced service composition because of

the potential of crowdsourced service framework. An agent-based crowd service framework

is proposed in [98], which provides crowd intelligence and labor as services (i.e., Web ser-

vices) through mobile crowdsourcing. A composition approach is also introduced to compose

crowdsourced services and computational service considering users’ constraints including the

cost and response time. The proposed framework is presented by a scenario of purchasing a

secondhand laptop. In this scenario, there are two different types of services: (1) an online

bank transaction service as a computational service and (2) a crowdsourced site inspection

service which checks the site’s description validity and crowdsourced price assessment which

checks the price as crowdsourced services. For each invocation of a crowdsourced service, the

framework launches a crowdsourcing task and selects the workers based on their attributes

(e.g., location and service provision records) to perform the task. The selected workers are

assigned to their tasks and submit their results. The results are then aggregated into an

output result of a composite service. However, this work does not take QoS parameters into

account to select the optimal composition plan.

26 (June 26, 2017)

CHAPTER 2. BACKGROUND

2.4 Incentive Models

Designing effective incentive schemes is an active research area in crowdsourced sensing sys-

tems. [99] considers two system models: platform-centric and user-centric. In the platform-

centric model, the service provider offers a fixed price to motivate a set of participating users.

They model an incentive approach as a Stackelberg game [100] to assign tasks where the sens-

ing cost of each participant is assumed to be known by all other participants. Alternatively,

in the user-centric incentive mechanism, a user announces a reserve price which is the lowest

price for their participation. The service provider then selects a subset of winning users based

on their submitted bids for particular tasks and determines the price payable to each winner.

They model a user-centric incentive approach as a reverse auction [101] to price and allocate

the sensing tasks where the sensing cost of each user is known only to itself. The above

task allocation problem is generalised in [102] by taking into account different participation

levels (i.e., the number of sensing samples per unit time) and quality of service delivered to

users as the quality of their previously contributed data. They also propose an incentive

mechanism based on an optimal reverse auction model [103] that minimizes the total pay-

ment to participating users while delivering a certain quality of service to requested users.

[104] introduces Reverse Auction-based Dynamic Price (RADP) incentive mechanism where

participating users send their claimed bid prices to a service provider and those with the

lowest incentive expectations are selected as winners to sell their sensor data. The drawback

of this mechanism is that the users who contribute higher true valuations may frequently be-

come starved and drop out of the reverse auction. [105] overcomes this issue by introducing

a virtual participant credit (VPC) and a new mechanism, called RADP-VPC. RADP-VPC

considers a specific virtual credit as a reward is given to participants who lost in the previous

reverse auction only for their participation. As a result, the users with higher true valuations

can win by continuously participating. Unlike those reverse auction approaches that allocate

a sensing task based only on the negotiated price, Multi-Attribute Auction (MAA) [106] inte-

grates different quality parameters including the amount of submitted data, sensing location

distance, location accuracy, the number of previously lost auction rounds and user credibility,

in addition to price. A utility function is also applied to reflect the overall value of sensed

data based on its attributes. SenseUtil [107] is a participation-aware incentive model lever-

aging the concept of microeconomics where the supply and demand are incorporated into the

value of sensed data. The incentive value depends on several parameters including sensing

frequency, travel distance and reward which dynamically change subject to spatio-temporal

27 (June 26, 2017)

CHAPTER 2. BACKGROUND

contexts. [108] optimizes SenseUtil to avoid unnecessary energy and bandwidth consumption

at the server end. The optimized SenseUtil is based on a new directional distribution method

in which only the participating user whose distance from the point of interest (POI) is less

than a distance threshold is selected to do the sensing tasks.

The above works focus on pricing modules (e.g., fixed, bidding or geo-location based) and

rewarding mechanisms (e.g., QoS). Another cluster of literature that is closely related to our

work focuses on incentive models for improving the coverage of crowdsourced sensed tasks.

There are several studies that address the problem of the geographically unbalanced price

and coverage of the crowdsourcing [109–111]. For example, a Greedy Incentive Algorithm

(GIA) is proposed in [112], which is a combination of the RADP-VPC mechanism [105] and

Greedy Budgeted Maximum Coverage (GBMC) algorithm [113]. GIA selects a set of users

according to their location to achieve the lowest cost within a given fixed budget while im-

proving the coverage of the area of interest. It also considers that users are not static i.e.,

they are moving from local to new regions. [114] extends their GIA algorithm by introducing

a SPREAD algorithm which also takes into account the spread of sensors. This algorithm

first selects the set of samples that covers all users at minimum cost considering the budget

constraints. It then selects the samples that maximize the variance. [105] proposes a model

that encourages the movement to new target areas by sending a new offer to participants

located close to those areas. [115] proposes the use of a density map which estimates the

number of participants per region based on their locations to reconstruct variables of interest

in different regions. The density map is utilized by the incentive model to encourage the

movement of participants in particular regions. However, these studies are not directly ap-

plicable to our work because they do not consider the temporal aspect to reach a coverage

balance of participants. Our work takes into account both the spatial and temporal dynamic

nature of participants to design an effective incentive model. Few works have addressed the

spatio-temporal coverage problem. [116] proposes a spatio-temporal incentive scheme with

demand awareness. The approach is modelled based on the spatio-temporal neighbouring

contributions and the sensing coverage region. This model encourages participation and se-

lects a representative set of participants which can provide the demanded coverage. However,

this approach does not consider redistribution of participants to achieve a balanced coverage

within a region.

28 (June 26, 2017)

CHAPTER 2. BACKGROUND

2.5 Chapter Summary

In this chapter, we have provided a broad overview of the important and relevant top-

ics in relation to the spatio-temporal composition of sensor-cloud services, together with

a description of their characteristics. We presented a more detailed review of the existing

sensor-cloud architectures and sensor-cloud service frameworks. We then reviewed previous

studies on service composition. Finally, we surveyed spatio-temporal crowdsourcing tech-

niques and incentive models proposed in the literature. This thesis proposes approaches

to compose sensor-cloud services based on spatio-temporal features and to incentivize the

service providers to achieve required coverage of crowdsourced services. In Chapter 3, we

discuss the spatio-temporal composition of sensor-cloud services and how we model them.

Chapter 4 will discuss how to leverage spatio-temporal crowdsourcing to introduce a new

crowdsourced QoS coverage as a service. Chapter 5 proposes a framework for incentivizing

the crowd to participate such that they can provide a balanced crowdsourced coverage.

29 (June 26, 2017)

Chapter 3

Spatio-Temporal Linear

Composition of Sensor-Cloud

Services

3.1 Introduction

In this chapter, we propose a service-oriented sensor-cloud architecture that provides an

integrated view of the sensor data shared on the cloud and delivered as services. Spatio-

temporal features are fundamental to the functional aspect of the sensor-cloud. In this

regard, such aspects are key parameters to design a sensor-cloud service framework.

The major contribution of this chapter is that it proposes a novel QoS-based sensor-

cloud service composition framework using the power of the service paradigm. Two major

components are involved in this framework. The first component is a sensor-cloud service

management framework that comprises a service model and an indexing model of sensor-

cloud services. Therefore, we present a new service model which aims to abstract a sensor-

cloud service by conceptualizing the spatio-temporal aspect of the service as its functional

attributes and the qualitative aspects of the service as its non-functional attributes. The

indexing model aims to spatio-temporally index sensor-cloud services to enable an effective

and efficient search of the services. We also define novel QoS attributes for evaluating sensor-

cloud services based on dynamic features of the sensor-cloud. The composition combines

sensor-cloud services to provide a new sensor-cloud service. Therefore, the second component

of the proposed framework is a spatio-temporal linear composition algorithm which enables

30 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

users to select optimal composition plans based on their own functional and non-functional

requirements. Our linear composition algorithm is a variation of A* shortest path finding

algorithm [25] offering an optimal QoS. In a highly dynamic environment such as is found

in sensed environments, the non-functional properties (QoS) of sensor-cloud services may

fluctuate [117]. For example, a participant service may no longer be available or its QoS

constraint has fluctuated at runtime. As a result, the service may no longer provide the

required QoS and so fail. Therefore, the initial composition plan may become non-optimal

and needs to be replanned to deal with the changing conditions of such environments. We

propose an efficient failure-proof spatio-temporal composition algorithm based on the D*

Lite algorithm [26] for real-time reaction to unavailable services because they are no longer

spatially or temporally available where they were supposed to be. Our proposed approach

continually improves its initial composition plan and finds the best composition plan from a

given source point to a given destination point while QoS constraints change. We evaluate

the proposed composition approaches using a public transport scenario to devise the “ best”

public transport journey plan. We conduct preliminary experiments to demonstrate the

scalability and performance of our proposed approach.

The rest of this chapter is organised as follows. Section 3.2 highlights the related work.

Section 3.3 presents the proposed spatio-temporal model for sensor-cloud services. Section

3.4 describes the proposed selection process and indexing model. Section 3.5 illustrates

the spatio-temporal QoS model. Section 3.6 elaborates the details of the proposed linear

composition approach. Section 3.7 details the failure-proof composition approach. Section 3.8

evaluates the proposed approaches and shows the experiment results. Section 3.9 concludes

the chapter.

Motivating Scenario

We use a scenario from public transport as our motivating scenario. Suppose Sarah is plan-

ning to travel from ‘A’ to ‘B’. She wants to get information about the travel services (i.e.,

buses, trams and trains) in the city to plan her journey. Different users may have different

requirements and preferences regarding QoS. For example, Sarah may specify her require-

ments as a maximum walk of 300 meters and waiting time of 10 minutes at any connecting

stop. In this scenario, we assume that each bus (tram / train) has a set of deployed sensors

(see Fig 3.1). It is also assumed that there are several bus sensor providers (i.e., sensor data

providers) who supply sensor data collected from different buses. We assume each sensor

31 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

Figure 3.1: Public Transport Scenario

data provider owns a subset of a set of sensors on each bus. For example, in Melbourne,

Yarra Trams1 uses intelligent sensors to collect real-time sensor data.

We assume that there are several sensor-cloud data providers who supply IaaS [31],

i.e., CPU services, storage services, and network services to sensor data providers. The

sensor-cloud data providers are in charge of delivering the sensor-cloud infrastructure ser-

vices. Sensor-cloud service providers make query services available so that a user may query

multiple heterogeneous sensor data providers. We assume that each sensor-cloud service

provider offers one or more sensor-cloud services to help commuters devise the “best” jour-

ney plan. Different sensor-cloud service providers may query the same sensor data providers.

The quality of services is assumed to be different. In our scenario, Sarah uses the sensor-

cloud services to plan her journey. It is quite possible that a single service cannot satisfy

Sarah’s requirements. In such cases, sensor-cloud services need to be composed to provide

1http://www.yarratrams.com.au/

32 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

the best travel plan from ‘A’ to ‘B’. We reformulate the research problem as follows: What

is the optimal path from point ‘A’ to point ‘B’ that provides the best QoS based on a user’s

requirements including maximum waiting time or maximum walk between two stops.

3.2 Background

In this section, we review the main related related works in the area of spatio-temporal travel

planning, spatio-temporal index methods, dynamic service reconfiguration and replanning

algorithms.

3.2.1 Spatio-Temporal Travel Planning

There is a large body of work in spatio-temporal aspects addressing travel planning issues

[118, 119]. [120] proposes a model to represent a spatio-temporal network and a shortest-

path algorithm based on a time aggregated graph for a fixed start time. [121] presents a

mobility-oriented spatio-temporal data model for activity-based transport. The model sup-

ports queries from spatio-temporal and activity-based perspectives. The common denomina-

tor in the above work is that they take a data-driven approach to address the research issue.

In contrast, our work explores a new area in spatio-temporal travel planning by abstracting

the problem using the service paradigm. The use of the service paradigm enables querying a

journey map at a higher level of abstraction as users typically think in terms of journey ser-

vices. Therefore, a journey plan would consist of composing a set of journey services on the

map according to a set of functional and non-functional attributes. The proposed service-

based approach enables lay users to use any complex multimodal transportation systems

while expressing their own constraints (e.g., maximum waiting time).

3.2.2 Spatio-Temporal Index Methods

The capability of providing an efficient access and organization of services and tracking

their changes over time is a demanding task. Indexing structures have been leveraged to

enable the fast discovery of services. To index services, we should consider spatio-temporal

aspects of services. Many tree structures have been extended to support time as a temporal

dimension on R-tree [122]. Spatio-temporal index structures have two main categories [123]:

(1) indexing based on the past position of moving objects including HR-tree [122], 3DR-tree

[124] and MV3R-tree [125], and (2) indexing based on the current and future movement

of objects including 2-3TR-tree [126], TPR-tree [127] and ANR-tree [128]. In this paper,

33 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

we model services based on historical spatio-temporal sensor data, i.e., the first category.

Among the indexing data structures for historical sensor data, HR-tree and 3DR-tree aim at

the range query while the others are suitable for the trajectory query. The 3DR-tree adds

time as another dimension and represents two-dimensional rectangles with time interval as

three-dimensional boxes [129]. The HR-tree maintains a separate R-tree for each time stamp.

An R-tree is created whenever an object in a previous R-tree changes. Because of node

replication in case of only small changes in data, the HR-tree is not space efficient [129].

Since the 3D R-tree has no duplicate data, the size of the 3D R-tree is significantly smaller

than the size of the HR-tree [130]. In this paper, we assume that the value of space of a

service rarely changes over the life time of a service while the value of the time attribute is

continuously changing.

3.2.3 Dynamic Reconfiguration

There are several dynamic reconfiguration approaches to deal with QoS changes at runtime.

Most existing approaches have mainly focused on two techniques: Replacement and Re-

composition. Replacement approaches aim to replace an affected service with a new service

being compatible with composition at runtime [18]. Examples of replacement approaches in-

clude one-to-one service mapping [17] and many-to-one service mapping [131]. None of those

aforementioned approaches ensure the correctness of reconfiguration after the replacement.

[18] applies service behavioural types to guarantee the one-to-one service replacement. Run-

time Re-composition has been extensively studied [19, 132]. Some examples of re-composition

approaches include the end-to-end QoS constraints presented in [133, 134]. None of those

dynamic service reconfiguration approaches consider spatio-temporal dependencies among

services. In this chapter, we focus on spatio-temporal replanning of the service composition

at runtime.

3.2.4 Dynamic Replanning

The A* algorithm has been extensively applied to solve the problem of shortest path plan-

ning. Several extensions to A* have been proposed to adapt it to the dynamic environments

requiring real-time replanning including incremental, anytime and real-time [135]. Incre-

mental replanning algorithms including D* [136], LPA* [137] and D* Lite reuse information

obtained from previous iterations to improve the search instead of recomputing the search

from the beginning. Anytime algorithms including Anytime D* [138] provide a fast but non-

34 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

Table 3.1: Summary of Notations

Notation Definition

sen A sensor
sen.sa The sensing area of sen
sa.loc The center of sa
lS A line segment sensor-cloud service
lS.ps The start-point of lS
lS.pe The end-point of lS
lS.ts The start-time of lS
lS.te The end-time of lS
ς A source point
ξ A destination point
tq A start time of a query
r A user-defined spatial radius
t A user-defined time interval

optimal plan considering time constraints for finding the solution. In real-time algorithms

including LRTA* [139] and RTAA* [140], like anytime, finding the plan within the time

constraint is more important than finding the optimal plan. In this paper, we use D* Lite

which can continually find the optimal plan. D* Lite has been developed based on LPA* and

implements the same navigation strategy as D* [26].

3.3 Spatio-Temporal Model for Sensor-Cloud Services

We first propose a model for sensor-cloud services. Spatio-temporal features will be the focal

aspects of this model. The collected sensor data will be analysed and abstracted as sensor-

cloud services. In this section, we present a formal spatio-temporal model that defines atomic

sensor-cloud services and service composition. Table 3.1 summarizes the major notations used

in the rest of this chapter.

3.3.1 Spatio-Temporal Model for Atomic Sensor-Cloud Services

We introduce the notion of a sensor-cloud service relying on spatio-temporal aspects. We

discuss the key concepts as follows.

Definition 1: Sensor sen. A sensor sen is a tuple of < sid, loc ,sa, tsp > where

• sid is a unique sensor ID,

• loc is the latest recorded location of sen,

35 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

• sa is the specific sensing area. It is represented as (loc, Rs) in which loc is the center

location and Rs is the radius of the area that is covered by sen ,

• tsp (timestamp) is the latest time in which sensor data related to a service is collected

from sen.

Definition 2: Sensor-Cloud Service S. A sensor-cloud service S is a tuple of < id, SEN ,

space-time, F , Q > where

• id is a unique service ID,

• SEN = {seni|1 6 i 6 m} represents a finite set of sensors seni collecting sensor data

related to S,

• space-time describes the spatio-temporal domain of S. In this chapter, we restrict the

space of a service to a line segment that is presented by a tuple < ps,pe >, where

– ps is a GPS start-point of S ,

– pe is a GPS end-point of S.

The time is a tuple < ts, te >, where

– ts is a start-time of S,

– te is an end-time of S.

• F describes a set of functions offered by S (e.g., travelling by bus),

• Q is a tuple < q1,q2, ... , qn >, where each qi denotes a QoS property of S including

freshness and accuracy.

Figure 3.2 shows the line segment sensor-cloud service model. For example, a bus service

S65 is a line segment sensor-cloud service travelling from Stop 4 at 5:10 pm (i.e., S65.ps =

Stop 4 and S65.ts =5:10 pm) to Stop 54 (i.e., S65.pe = Stop 54 and S65.te =5:22 pm).

Definition 3: Spatio-Temporal Service Query SQ. A query SQ is defined as a tuple

< ς, ξ, tq, r, t > where

• ς is a source point,

• ξ is a destination point,

36 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

Figure 3.2: Line Segment Sensor-Cloud Service Model

• tq is the start time of a query,

• r is a user-defined spatial radius,

• t is a user-defined time interval.

A user issues a query SQ to find line segment services lS such that the points ps and pe

of that service are within a defined radius r from a source and destination point, respec-

tively. In addition, the start time of the line segment service ts should be within the time

interval t from the start time of query, i.e., ts 6 tq + t. For the sake of simplicity, we

only consider two constraints r and t. For example, considering our scenario, the query

<‘A’, ‘B’, 16:10, 300, 10> means that Sarah wants to travel from point ‘A’ to point ‘B’

starting at 16:10 (i.e., tq = 16:10). Sarah prefers to walk no more than maximum 300 meters

(i.e., r= 300) and the maximum waiting time to catch the next transport is 10 minutes (i.e.,

t= 10). For simplicity, the mode of transport is not considered in our definition.

3.3.2 Spatio-Temporal Model for Composite Sensor-Cloud Service

In some instances, an atomic sensor-cloud service may not fully satisfy a user’s query. In this

case, a composition of sensor-cloud services may be required. A major issue when defining

a composite sensor-cloud service is whether its component services are spatio-temporally

composable. For example, the invocation of a component train service can only occur within

10 minutes of a component tram service located in a spatial radius of 300 meters which has

been successfully invoked. In this section, we propose a new linear composability model and

linear composite service. In the remainder of this chapter, the service and composite service

are used to refer to a sensor-cloud service and composite sensor-cloud service, respectively.

Linear Spatio-Temporal Composability Model

We define a rule called linear spatio-temporal composability. It checks whether two compo-

nent line segment services are spatio-temporally composable with respect to the user-defined

37 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

maximum spatial radius r and maximum time interval t. In this instance, space and time

play the role of non-functional attributes.

Definition 4: Linear Spatio-Temporal Composability. Two component line segment ser-

vices lSk and lSl are spatio-temporally linear composable if they are both spatially and

temporally composable.

• spatially composable: Two line segment services lSk and lSl are spatially composable

if lSl.ps is located within the spatial circle centered at lSk.pe with a geographic radius

r. For example, a bus service 65 using a bus stop 4 is spatially composable with tram

service 8 using the tram station 13 (assuming r = 300) if there is a walk of less than

300 meters between the bus stop and the tram station.

• temporally composable: Two line segment services lSk and lSl are temporally compos-

able if lSl will be executed in a time window t of lSk, i.e., lSk.te ≤ lSl.ts + t. For

example, in our scenario, bus service 65 arrives at the bus stop 4 within 10 min (t =

10) before departure of tram service 8 from tram stop 13.

Definition 5: Linear Composite Sensor-Cloud Service LCS. A linear composite

sensor-cloud service LCS is a sequence of component line segment services

{ lSi, 1 6 i 6 n } where each pair of (lSi, lSi+1) is linear spatio-temporal composable (see

Figure 3.3). Formally, LCS is defined as a tuple < LCID, LCSEN , LCSPACE-TIME,

LCF , LCQ >

• LCID = concat (lSi.id) 1 6 i 6 n is a concatenation of component line segment

services identifiers in which n is the total number of component line segment services,

• LCSEN=
⋃n
i=1 lSi.SEN ,

• LCSPACE-TIME describes the spatio-temporal footprint of LCS. The SPACE part

is defined by a tuple of < cps, cpe >, where

– cps = lS1.ps in which lS1 is the first component service of LCS,

– cpe = lSn.pe in which lSn is the last component service of LCS.

and the TIME part of LCS is a tuple of < cts, cte >, where cts = lS1.ts and cte =

lSn.te.

• LCF = { f1(lS1), f2(lS2), ... , fn(lSn) }, where each fi is the function provided by the

corresponding component services of LCS,

38 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

Figure 3.3: Linear Composite Sensor-Cloud Service

• LCQ is a tuple of < Q1, Q2, ... , Qk >, where each Qi is the aggregated value of ith

QoS attribute of component services of LCS (see detailed discussion later).

3.4 Spatio-Temporal Selection of Sensor-Cloud Services

The service selection problem is to evaluate and select component services so that a composite

service provides optimal QoS and meets all QoS constraints. Section 3.4.1 describes how we

model the spatio-temporal selection process. In Section 3.4.2 and Section 3.4.3, we present

the details of the spatio-temporal indexing model and selection algorithm, respectively.

3.4.1 Spatio-Temporal Candidate Service Search Graph

The QoS-aware spatio-temporal selection problem can be modelled as a directed spatio-

temporal graph search problem in which vertices and edges are associated with spatio-

temporal attributes and dependencies of services.

Definition 6: A spatio-Temporal Graph STG =< V,E > is a directed graph consisting

of a set of vertices V and edges E. Each vertex v has an associated space-time attribute of

a service (e.g., (ps, ts)) and each edge ((ps, ts), (pe, te)) where (ps, ts), (pe, te) ∈ V , ts < te is

associated with QoS attributes. If an edge exists, it means there is a precedent or neighbour

dependency between two vertices. Neighbour dependency is determined by the linear spatio-

temporal composability definition. Figure 3.4 depicts an example of STG in which precedent

and neighbour dependency are shown by black solid and red dashed edges, respectively.

39 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

Figure 3.4: Spatio-Temporal Graph

A virtual source vertex ς and virtual destination vertex ξ are added to the graph. ς is

connected to all neighbour services in radius r and during time interval t considering query

initial time tq. Destination-point ξ is also connected to all neighbour services located in

radius r. Since the time at ξ cannot be predetermined, time is not considered in selecting

neighbours of ξ. Note that if no service is within the radius r of ς or ξ, the search radius is

increased until a service is found.

3.4.2 Spatio-Temporal Index Data Structure for Sensor-Cloud Services

There is a need to manage the real-time sensor data exposed as services in the cloud. To

address this issue, we index all services. This enables the fast discovery of services. To index

services, we should consider spatio-temporal aspects of services. We index line segment

services by using a 3D R-tree [124]. The 3D R-tree is a spatio-temporal index data structure

which efficiently handles range queries of the type “report all objects within a specific area

(e.g., a rectangle) during the given time interval” [141]. 3D R-tree adds time as the third

axis to spatial axes. Figure 3.5 illustrates how line segment services are indexed by a 3D

R-tree. The leaf nodes of the 3D R-tree represent start points of actual services which are

organized using MBB that enclose the service spatio-temporal footprint.

Figure 3.6 presents an example of a service query based on a 3D R-tree. A user issues a

query about the neighbour services available within a query rectangular region R1 surround-

ing the source point ς within the radius r. Even though our approach can support any type

of spatial shapes, for simplicity, we assume the query region is a rectangular. We compute

the MBB to be searched to answer the query. The lower-bound [xmin, ymin, tmin] and upper-

40 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

Figure 3.5: Example of a 3D R-tree for Line Segment Services

bound [xmax, ymax, tmax] of the MBB surrounding ς = (x, y) during the time interval t from

a given time tq, i.e., [tq, tq + t] is computed as follows:

Lower-bound = [x− r ∗ cos(45◦), y − r ∗ sin(45◦), tq]

Upper-bound = [x+ r ∗ cos(45◦), y + r ∗ sin(45◦), tq + t]
(3.1)

As a query answer, S3 and S5 are two neighbour services expected to be inside MBB.

3.4.3 Spatio-Temporal Selection Algorithm

To find neighbour services of a given service, we propose a new algorithm

Spatio-TemporalSearch based on spatio-temporal features of services. We assume that the

services are indexed by using a 3D R-tree.

In Spatio-TemporalSearch, the minimum bounding box of a service, say searchbox, within

radius r and time interval t is computed using Equation 3.1. We then search through the

3D R-tree to find neighbour services which are inside that searchbox. For each neighbour, a

directed edge is created between the service and the available neighbour service, indicating

41 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

Algorithm 1 Spatio-TemporalSearch Algorithm

Input: spatio-temporal graph STG, 3D R-tree RT, location loc , start time st, radius r, time interval t
Output: the neighbour list

1: NeighboursList= ∅
2: R = RT → Root
3: searchbox = compute MBB based on loc,r,st,st+t . Lower bound of searchbox =[loc.x - r*
cos(45◦),loc.y-r*sin(45◦), st] . Upper bound of searchbox [loc.x + r* cos(45◦),loc.y+r*sin(45◦), st + t]

4: if R is a leaf node then
5: insert all entries in the R into E
6: for each e ∈ E do
7: flag = true . To avoid inserting duplicate neighbours
8: if e inside searchbox then
9: for each s ∈ NeighboursList do

10: if e.id = s.id then
11: flag = false break
12: end if
13: end for
14: if flag = true then
15: if edge(e,loc) /∈ STG then
16: AddEdge(e.ps,loc,STG)
17: AssignWeight(e.ps,loc,STG)
18: end if
19: NeighboursList.insert(e)
20: end if
21: end if
22: end for
23: else
24: insert all entries in the R into E
25: for each child entry c ∈ E do
26: if c.MBB overlaps searchbox then
27: Spatio-TemporalSearch(STG,c,loc,st,r,t)
28: end if
29: end for
30: end if
31: return NeighboursList

that a service transition exists (i.e., linear spatio-temporal composability). Moreover, a

weight based on the distance between the service and its neighbour service is assigned to

the edge for further investigation. For example, every tram service within radius r (e.g.,

300 meters walk) from a bus stop (i.e., pe) in the time window 10 minutes is considered

as a neighbour. The time window of 10 minutes is used to find neighbour tram services

which arrive within 10 minutes from the departure time at the bus stop. Note that there

is a different list of neighbours for each query depending on a user’s personal preferences

with respect to r and t. The details of Spatio-TemporalSearch algorithm are presented in

Algorithm 1.

42 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

Figure 3.6: Example of a 3D R-tree Query

3.5 Spatio-Temporal Quality Model for Line Segment Services

Multiple sensor-cloud providers may offer similar services at varying quality levels. Given

the diversity of service offerings, an important challenge for users is to discover the ‘right’

service satisfying their requirements. We propose a novel approach that introduces new

QoS attributes for line segment services which focus on the dynamic aspects. The proposed

quality model is also extensible. For the sake of clarity, we use a limited number of QoS. New

criteria (either generic or domain-specific) may be added without fundamentally altering the

underlying approach.

3.5.1 Quality Model for Atomic Line Segment Services

The proposed quality attributes are as follows.

• Service time (st): Given an atomic line segment service lS, the service time qst(lS)

measures the expected time in minutes between the start and end points. The value of

qst(lS) is computed as follows:

qst(lS) = lS.te − lS.ts (3.2)

• Freshness (fr): Freshness indicates the temporal accuracy of a service. Given an

atomic line segment service lS, freshness qfr(lS) is computed using the expression

43 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

(current-time − timestamp(lS)). Since each service consists of a set of sensors

{sen1, ..., senm}, timestamp(lS) will be computed as follows:

timestamp(lS) =
1

m

m∑
i=1

(current-time− seni.tsp) (3.3)

• Accuracy (acc): Accuracy reflects the level of service reliability. For example, a

smaller value of accuracy is assumed if fewer sensors contribute to the results of the

service. Given an atomic line segment service lS, the accuracy qacc(lS) is the number

of operating sensors covering the specific spatial area related to lS. The value of the

qacc(lS) is computed as follows:

0 6
Nsen(lS)

Tc
6 1 (3.4)

where Nsen(lS) is the expected number of operating sensors in lS and Tc is the total

number of sensors covering the spatial area. Nsen(lS) can be estimated based on the

number of sen in S, i.e., |SEN |. We assume that Tc is known. It is also assumed that

all sensors have the same functionalities and accuracy.

3.5.2 Quality Model for Linear Composite Service

The quality criteria defined above are in the context of atomic line segment services. Ag-

gregation functions are used to compute the QoS of composite services. Table 3.2 presents

these aggregation functions:

• Service time: The service time of a composite service is the sum of the service times of

all its component line segment services in addition to the transition time trans between

two component services. The transition time is computed as follows:

trans =

n−1∑
j=1

(lSj+1.ts − lSj .te) (3.5)

where lSj and lSj+1 are two subsequent component line segment services and lS1.te is

the start time of a query tq.

• Freshness: The freshness value of a composite service is the average of the freshness of

all the selected line segment services.

44 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

Table 3.2: QoS Aggregation Functions

QoS attribute Service Time Freshness Accuracy

Aggregation Function

n∑
i=1

qst(lSi) + trans
1

n

n∑
i=1

qfr(lSi)

n∏
i=1

qacc(lSi)

• Accuracy: The accuracy value of a composite service is the product of the accuracy of

all its component line segment services.

3.6 Spatio-Temporal Linear Composition of Sensor-Cloud Services

Given a large number of possible services to explore, a fast algorithm is required to find

an optimal composition plan in a reasonable period. We adapt A* algorithm for the spatio-

temporal composition. We propose a heuristic algorithm called LinearComposition algorithm

to find an optimal linear composition plan. The greedy nature of our proposed algorithm

ensures that a line segment service chooses a next candidate line segment service that has the

lowest cost to the destination among all eligible neighbours. LinearComposition algorithm

differs from A* algorithm on the search cost and neighbour functions.

We define search cost function f-score as follows:

f -score[lS] = g-score[lS] + h-score[lS]

where g-score calculates the cost of selected line segment services from the source-point

ς to the current segment location and heuristic function h-score estimates the cost from the

current point to the destination-point ξ.

Note that g-score and h-score are normalized before addition in f-score. Since the higher

value of g-score shows the better cost and the lower value of f-score and h-score present

better cost, we use (1 - g-score[lS]).

The g-score function is defined as:

g-score[lS] = u-score[lS]

u-score is computed using the following utility function [63].

u-score =
∑

Qi ∈neg

Wi
Qmax

i −Qi

Qmax
i −Qmin

i

+
∑

Qi ∈ pos

Wi
Qi −Qmin

i

Qmax
i −Qmin

i

(3.6)

45 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

where neg and pos are the sets of negative QoS (e.g., freshness and service time) and

positive QoS parameters (e.g., accuracy). In negative (resp. positive) parameters, the higher

(resp. the lower) the value, the worse the quality is. Wi , ranging from 0 to 1, is assigned by

users to each QoS parameter to reflect the level of importance. Qi is the ith QoS parameter

of the composition plan obtained through the aggregate function from Table. 3.2. Qmaxi and

Qmini are, respectively, the maximal value and minimal value of the ith quality criterion in

composite candidates. These two values can be computed by considering candidate services

with the highest and lowest values for the ith QoS parameter.

Since the performance of the A* algorithm depends on the quality of the heuristics, it is

important to use the right heuristics. The proposed heuristic function estimates the cost (i.e.,

QoS utility score) from the current line segment service to the destination. We assume that

the cost of computing the heuristic should not be more than the cost of expanding nodes.

As a result, we only consider an estimate of service time.

h-score[lS] = hst (3.7)

Our heuristic of service time hst is based on the assumption that selecting a line segment

service closer to the destination would find the goal faster. For this purpose, we define hst

as:

hst = Euclidean-distance(lS.pe, ξ) (3.8)

i.e., hst estimates the length of the straight line between the end-point of a candidate line

segment service lS (lS.pe) and the destination-point. The straight line distance is the shortest

distance between any two points based on the triangle inequality theorem. Although a plan

based on the straight line plan may not exist, the actual shortest distance is usually close to

the straight line distance. Therefore, hst underestimates the cost of service time. To calculate

the Euclidean distance, we use the following formula:

Euclidean− distance =
√

(φ2 − φ1)2 + (λ2 − λ1)2 (3.9)

where φ1 and φ2 are the latitudes of the destination-point and the end-point of lS and

λ1 and λ2 are the longitudes of the destination-point and the end-point of lS. All latitude

and longitude of line segment services are converted to Cartesian coordinates to compute the

Euclidean distance.

To find all possible neighbour services (i.e., candidate line segment services) of a service,

we define a new neighbour function relying on the Spatio-TemporalSearch algorithm which

46 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

searches through the 3D R-tree to find neighbours as discussed earlier. The neighbours are

then added to the candidate list. It is to be noted that the QoS attributes of the neigh-

bour edges in the spatio-temporal graph (i.e., spatio-temporal composability as described in

Section 3.4.1) except service time are set to zero. The service time of the neighbour edge

is computed based on the distance between the vertex (i.e., ς or ξ) and its neighbour. For

example, in our scenario the service time is computed based on the walking distance between

the current service and the neighbour service considering an average walking speed of 4 km/h.

The detail of LinearComposition Algorithm is presented in Algorithm 2 and Algorithm 3.

Figure 3.7 gives an illustrative example of our approach. At each line segment service, the

LinearComposition algorithm considers some heuristic-based cost to select the next candidate

service with the lowest cost. For example, starting from source-point, there are two candidate

services, i.e., lS9 and lS12. The algorithm selects lS12 as the next line segment service to visit

based on the search cost f-score. Suppose lS12 is visited: from lS12 all possible neighbour

line segment services are then identified and one of them (i.e., lS51) as another candidate is

selected. lS12 is then discarded from the candidates. The search cost of existing candidates

(i.e., lS51 and lS9) are computed. If lS9 has the lowest cost, the algorithm backtrack to the

previous line segment service and identifies all possible neighbour line segment services (i.e.,

lS7) from lS9. When the end-point of the next line segment service is the destination-point,

the search is successful. If the algorithm cannot find a path, a user is asked to resubmit their

query with relaxed constraints (e.g., waiting time or distance).

3.7 Failure-Proof Spatio-Temporal Composition of Sensor Cloud Services

Due to the dynamic environments of sensor-cloud, a service may experience significant qual-

ity fluctuation at runtime. As a result, an established composition plan may no longer be

optimal. We identified two situations in which an established linear composition may no

longer be optimal. First, a component line segment service may provide worse QoS or may

no longer be available at runtime and the established composition may fail. Second, the QoS

of a component line segment service becomes better and a more optimal linear composition

plan may be offered. All linear compositions including the affecting component line segment

service should adapt to real-time fluctuation of QoS attributes in such situations. In this

section, we propose a novel heuristic failure-proof spatio-temporal service composition al-

gorithm to deal with affecting component services based on D* Lite algorithm [26], called

Failure-proofComposition algorithm. D* Lite is an incremental heuristic search algorithm

47 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

Algorithm 2 LinearComposition Algorithm

Input: line segment spatio-temporal graph LSTG, line segment 3D R-tree LRT, source-point ς, destination-
point ξ, radius r, time interval t, start-time of a query tq
Output: the optimal linear composition plan from ς to ξ

1: compositionPlan = ∅ . The plan of navigated line segment services.
2: visitedList= ∅ . The list of line segment services already evaluated.
3: candidateList= Spatio-TemporalSearch(G, LRT, ς, tq, r, t) . The list of tentative segment services to be

evaluated.
4: for each lS ∈ candidateList do
5: g-score[lS]= u-score[lS]
6: h-score[lS]= hst(lS.pe, ξ)
7: f-score[lS]= g-score[lS] + h-score[lS]
8: end for
9: while candidateList /∈ ∅ do

10: currentS = a segment service in candidateList having the lowest f-score value
11: if currentS.pe = ξ then
12: return reconstruct-plan(compositionPlan, ξ)
13: end if
14: visitedList.insert(currentS)
15: candidateList.remove(currentS)
16: NeighboursList = Spatio-TemporalSearch(G, LRT, currentS.pe, currentS.te, r, t)
17: for each ns ∈ NeighboursList do
18: if ns /∈ visitedList then
19: if ns.id 6= currentS.id then
20: tentative-g-score = g-score[currentS] + u-score[ns]+ transitionCost(currentS.pe, ns.ps)
21: else
22: tentative-g-score= g-score[currentS] + u-score[ns]
23: end if
24: tentative-h-score= hst(ns.pe, ξ)
25: tentative-f-score= tentative-g-score[ns] + tentative-h-score[ns]
26: end if
27: if ns /∈ candidateList or tentative-f-score ≤ f-score[ns] then
28: compositionPlan[nsg] = currentS
29: g-score[ns] = tentative-g-score
30: f-score[ns] = tentative-f-score
31: if ns /∈ candidateList then
32: candidateList.insert(ns)
33: end if
34: end if
35: end for
36: end while
37: output(”No path found! Resubmit your query with relaxed constraints (e.g., waiting time or distance”)

Algorithm 3 reconstruct-plan(compositionPlan, currentS)

1: if compositionPlan[currentS] in compositionPlan then
2: p = reconstruct-path(compositionPlan, compositionPlan[currentS])
3: return (p + currentS)
4: else
5: return currentS
6: end if

48 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

Figure 3.7: Example of Spatio-Temporal Linear Composition Algorithm

which repeatedly determines the shortest path between source and destination points as the

edge cost (i.e., QoS cost) of the graph changes. D* Lite is used extensively to solve the

goal-directed navigation problem in mobile robot and autonomous vehicle in a changing en-

vironment [142]. the Failure-proofComposition algorithm is capable of recomputing a new

optimal linear composition plan from its current position to destination whenever the overall

QoS of the initial linear composition plan significantly changes at runtime. Our proposed ap-

proach continually improves its initial linear composition plan and finds the best composition

plan from a given source-point to a given destination point while QoS constraints change.

We only consider temporal QoS fluctuations in service time Qst. To ascertain the existence

of a QoS change at runtime, we measure the value of difference τ between the measured Qst

of a line segment service and its promised Qst. If τ is more than a defined threshold ε, a Qst

change has occurred.

Failure-proofComposition algorithm , like LinearComposition, maintains an estimated

g-score for each line segment service lS in the composition plan. Since

Failure-proofComposition searches backwards from the destination-point to the source-point,

the g-score estimates the QoS utility score of the optimal linear plan from lS to the destina-

tion. It also maintains a second kind of estimate called rhs value, which is one step lookahead

of g-score. Therefore, it is better informed than g-score and computed as follows:

49 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

rhs(lS) =

{
0 lS.Pe = ξ

minlS′∈SuccNeighboursList(lS)(trans(lS
′, lS) + g-score(lS′)) lS.Pe 6= ξ

(3.10)

where trans(lS′, lS) is the transition time between lS′ and lS and SuccNeighboursList

is the set of successor spatio-temporal neighbours of the service lS. The rationale of using

neighbours is that the optimal plan from lS to the destination must pass through one of the

neighbours of lS. Therefore, if we can identify the optimal plans from any of the neighbours

to the destination, we can compute the optimal plan for lS. The successor neighbours of a

service lS are identified through the Spatio-TemporalSearch algorithm as discussed in Section

3.4.2.

By comparing g-score and rhs, the algorithm identifies all affecting, called inconsistent,

component services. A line segment service is called locally consistent iff its rhs value is equal

to its g-score value; otherwise it is called locally inconsistent. A locally inconsistent service

falls into two categories: underconsistent (if g-score(lS) < rhs(lS)) and overconsistent (if

g-score(lS) > rhs(lS)). A line segment service is underconsistent if its QoS values degrade.

In such a situation, the QoS values of affecting line segment services should be updated and

the linear composition plan should adapt to the violations. On the other hand, a service

is overconsistent if its QoS values become better. An overconsistent line segment service

implies that a more optimal linear composition plan can be found from the current service.

When a line segment service is inconsistent, the algorithm updates all of it’s neighbours and

itself again. Updating line segment services make them consistent.

Algorithm 4 presents the details of Failure-proofComposition algorithm. This algorithm

generates an optimal initial linear composition plan like a backward LinearComposition search

{Lines 33-42}. If the QoS values of component services change after generating the initial

composition plan, Failure-proofComposition updates the inconsistent (i.e., affecting) compo-

nent services and expands the services to recompute a new optimal composition plan {Lines

43-47 }. All inconsistent services are then inserted in a priority queue CandidateQueue to be

updated and made consistent. Failure-proofComposition avoids redundant updates through

updating only the inconsistent services which need to be modified, while our linearComposi-

tion algorithm based on A* updates all the plan. The priority of an inconsistent service in

CandidateQueue is determined by its key value as follows:

50 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

key(lS) = [k1(lS), k2(lS)] = [min(g-score(lS), rhs(lS))+h-score(lSstart, lS),min(g-score(lS), rhs(lS))]

(3.11)

The keys are compared in a lexicographical order. The priority of key(lS) < key(lS′), iff

k1(lS) < k1(lS
′) or k1(lS) = k1(lS

′) and k2(lS) < k2(lS
′). The heuristics in k1 serves in the

same way as f -score in LinearComposition. The algorithm applies this heuristic to ensure

that only the line segment services, whether newly overconsistent or newly underconsistent,

that are relevant to repairing the current plan are processed. The inconsistent line segment

services are selected in order of increasing priority, which implies that the line segment

services which are closer to the lSstart (i.e., less h-score value) should be processed first. Note

that as the algorithm tracks the execution of the composition plan, the start line segment

service lSstart becomes the current running service of the plan. Therefore, when a QoS value

fluctuates, a new optimal linear composition plan is computed from the original destination

to the new start service (i.e., current service). For example, when QoS values increase, the

heuristic in the key value (k1) ensures that only the newly overconsistent services that could

potentially decrease the cost of the start service are processed. When QoS values decrease,

it ensures that only the newly under-consistent services that could potentially invalidate the

cost of the start state are processed. The algorithm can handle increasing or decreasing the

QoS values.

The algorithm finally recomputes a new optimal plan by calling ComputePlan function

{Line 48}. ComputePlan expands the local inconsistent services on CandidateQueue and up-

dates the g-score and rhs values and adds them to or removes them from CandidateQueue

with their corresponding keys by calling UpdateService function {Lines 4-15}. When Com-

putePlan expands an overconsistent service, it sets the g-score value of the service equals to

its rhs value to make it locally consistent {Line 20}. Since rhs values of predecessor neigh-

bours of a service are computed based on the g-score value of the service (Equation 3.10),

any changes of its g-score value can effect the local consistency of its predecessor neighbours.

As a result, predecessor neighbours {Line 19} of an inconsistent service should be updated

{Lines 21-23}. When ComputePlan expands an underconsistent service, it sets the g-score

value of the service to infinity to make it either overconsistent or consistent {Line 25}. The

predecessor neighbour services of the service need also to be updated {Lines 26-28}. Com-

putePlan expands the services until the key value of the next service to expand is not less

than the key value of lSstart and lSstart is locally consistent {Line 17}.

51 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

Algorithm 4 Failure-proofComposition

Input: line segment spatio-temporal graph STG, line segment 3D R-tree RT, source-point ς, destination-point
ξ, radius r, time interval t, a set of all line segment services LSet
Output: the optimal linear composition plan from ς to ξ

1: procedure CalculateKey(lS)
2: return [min(g-score(lS), rhs(lS)) + h-score(lSstart, lS),min(g-score(lS), rhs(lS))]
3: end procedure

4: procedure UpdateService(lS)
5: if S.Pe 6= ξ then

6: SuccNeighboursList = Spatio-TemporalSearch(STG, RT, lS.pe , lS.te, r, t)
7: rhs(lS) = minS′∈SuccNeighboursList(trans(lS’,lS)+ g-score(lS’))
8: end if

9: if lS ∈ CandidateQueue then

10: CandidateQueue.remove(lS)
11: end if

12: if g-score(lS) 6= rhs(lS) then

13: CandidateQueue.insert(lS,CalculateKey(lS))
14: end if

15: end procedure

16: procedure ComputePlan()
17: while minlS∈CandidateQueue(key(lS))<key(lSstart) or rhs(lSstart) 6= g-score(lSstart) do

18: CandidateQueue.remove(lS with minimum key)
19: PredNeighboursList = Spatio-TemporalSearch(STG, RT, lS.ps, lS.ts-t, r, t)
20: if g-score(lS) > rhs(lS) then g-score(lS) = rhs(lS)
21: for all lS’ ∈ PredNeighboursList do

22: UpdateService(lS)
23: end for

24: else

25: g-score(lS) = ∞
26: for all lS’ ∈ PredNeighboursList ∪ lS do

27: UpdateService(lS)
28: end for

29: end if

30: end while

31: end procedure

32: procedure Main()
33: CandidateQueue = ∅
34: for all services lS ∈ LSet do
35: g-score(lS) = rhs(lS) = ∞
36: end for

37: rhs(lSdestination) = 0
38: CandidateQueue.insert(lSdestination, CalculateKey(lSdestination))
39: ComputePlan()
40: if g-score(lSstart) = ∞ then

41: print ”there is no plan”
42: end if

43: while lSstart 6= Sdestination do

44: Runtime monitoring to find the affecting services
45: for all affecting services lS do

46: UpdateService(lS)
47: end for

48: ComputePlan()
49: end while

50: end procedure

52 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

(a) Initial optimal linear composition plan (b) New optimal linear composition plan

Figure 3.8: Illustrative Example of Failure-proofComposition Algorithm

For example, LCS={lS7, lS13, lS2, lS31} is selected as the optimal initial travel plan for

Sarah’s query (Figure 3.8(a)). If lS2 (e.g., a tram service) is delayed by 15 min

(i.e., τ = 15) in its service time, it is highly probable that Sarah will miss lS31 (e.g., a

bus service). As a result, LCS may fail. In this case, if Sarah is notified of the delay in the

middle of the lS7 journey, she may change her plan. The Failure-proofComposition provides

a new optimal plan from the current running service lS7 to the destination. As shown in

Figure 3.8(b), the new optimal plan from the current service lS7 can be {lS13, lS14, lS26}.

3.8 Performance Study

We conduct several experiments to evaluate the performance of our proposed composition

approaches: LinearComposition and Failure-proofComposition. In Section 3.8.1, we discuss

our experiment setup. In Section 3.8.2, we present the experimental results.

3.8.1 Experiment Setup

To the best of our knowledge, no spatio-temporal service test case is publicly available to

evaluate our approach. Therefore, we focus on evaluating the proposed approach using

synthetic spatio-temporal services. Our evaluation sets a base to which future work will

be compared. In our simulation, line segment services are randomly distributed in a 70 ×
70 region. The space and time attributes of services are randomly determined within the

range of the region for the simulations. The radius for neighbour search r is set as 5% of

the specified region. The remaining service parameters are also randomly generated using a

53 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

2000 4000 6000 8000 10000

105

106

107

Number of services

C
o
m
p
u
ta
ti
o
n
ti
m
e
(m

s)

LinearComposition

STDijkstra

Figure 3.9: Computation Time vs. Number of Line Segment Services

uniform distribution. All experiments are conducted 100 times and the average results are

computed. Each experiment starts from different source and destination points which are

randomly generated.

The quality parameters of the synthetic line segment services are set as follows. Two QoS

attributes are randomly generated with a uniform distribution from the following intervals:

qacc ∈ [0, 1] and qfr ∈ [1h, 24h]. qst is assigned based on the distance between ps and pe

considering a fixed speed. We assume that service time quality parameter is more important

to users. Therefore, the weights provided by users are Wst= 0.6 , Wfr= 0.2 and Wacc=0.2

(Equation 3.6). The experiments are conducted on a 1.80 GHZ Core i3 processor and 6 GB

RAM under Windows 7.

3.8.2 Experimental Results

We perform two sets of experiments. In the first set, we evaluate the performance of linear

copmposition approach in terms of scalability, significance of the heuristic and impact of the

radius on optimal plans. The second set of our experiments measures the effectiveness of

failure-proof composition approach.

Linear Composition Approach

In the first set of the experiments, we evaluate the performance of the LinearComposition

approach. In these experiments, we show the following. (1) The scalability of our approach

54 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

2000 4000 6000 8000 10000
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80

Number of services

O
p
ti
m
a
li
ty

ra
ti
o
(%

)

Figure 3.10: Optimality of LinearComposition Algorithm in terms of Utility Score

over a large number of services and investigate how the execution time varies with the

different number of services. We also compare the execution time of LinearComposition

with STDijkstra’s algorithm which is developed for these experiments. (2) The significance

of our heuristic in terms of utility score and (3) the influence of the radius r for neighbour

search on the overall utility score value are also shown.

We first compare the execution time of LinearComposition algorithm to the execution

time of STDijkstra’s algorithm. STDijkstra is a special case for LinearComposition when the

heuristic is zero, i.e., h-score =0. Figure 3.9 shows the execution time of both algorithms with

respect to the density of the graph in terms of the number of services. For this experiment,

we keep the default map size, the radius r as 0.5 and time window t as 10 minutes. We vary

the number of services from 2000 to 10,000 with an iteration range of 2000. The results show

that the LinearComposition outperforms STDijkstra in terms of execution time (i.e., 21 s <<

559 s for 10,000 services). It can also be seen that the similar computation time is achieved

regardless of the number of services. The slight difference shows the relative stability of our

approach.

Next, we study the significance of our heuristic in terms of the overall utility score. We

define the optimality ratio as

Optimality ratio =
υstdj − υsta

υstdj
(3.12)

where υsta is the utility score of the optimal composition plan given by our heuristic

algorithm LinearComposition and υstdj is the utility of the optimal plan given by STDijkstra’s

55 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

0.5 1 1.5 2 2.5 3
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

r ratio (%)

U
ti
li
ty

S
co
re

Figure 3.11: Impact of the Parameter r on Utility Score

algorithm.

We measure optimality ratio while fixing the default map size, the radius r as 0.5 and

time window t as 10 minutes and varying the number of services from 2000 to 10,000 with an

iteration range of 2000. Figure 3.10 illustrates that LinearComposition produces a satisfying

optimality (i.e., more than 63%). It means that LinearComposition finds more optimal

composition plans which may provide better utility. The results also show that the optimality

ratio remains quite stable (63-70%) along with the number of services. In general, we can see

that the LinearComposition generates more optimal composition plans while the execution

time is significantly reduced.

Finally, we assess the impact of the radius r on the overall utility score of a composition

plan. The optimal composition plan is the one having the maximal utility score. We maintain

the default map size, the number of services as 2000 and time window t as 10 minutes.

We vary the radius r ratio from 0.5% to 3% of the specified map. Figure 3.11 illustrates

that the utility score increases by increasing the r ratio. However, there is no significant

improvement in the utility score after reaching a threshold (i.e., 1.5). This means that

although by increasing the r more neighbours can be found, the time to travel the distance

r also increases. Therefore, considering further neighbours can not significantly improve the

utility score.

56 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

5 10 15 20 25 30

103

104

105

106

QoS Fluctuation Ratio (%)

C
o
m
p
u
ta
ti
o
n
ti
m
e
(m

s)

100 services

1000 services

10000 services

Figure 3.12: Computation Time vs. Fluctuation Ratio

Failure-proof Composition Approach

The second set of experiments assesses the effectiveness of the Failure-proofComposition ap-

proach over multiple services and how computation time varies with different QoS fluc-

tuation ratios. We apply the optimized version of D* Lite [26] to implement Failure-

proofComposition. We test the performance of Failure-proofComposition in terms of com-

putation time with the number of services varying from among 100, 1000 and 10,000. For

each group of services, we also vary the QoS fluctuation ratio from 5 to 30%. The QoS

fluctuation ratio indicates that the ratio of the number of affecting services over the total

number of services. For example, a fluctuation ratio of 10% denotes that the service time of

10% of the total number of bus (tram or train) services change at runtime. Figure 3.12 shows

Failure-proofComposition performs efficiently on a large number of services (i.e., less than

79s to generate an optimal plan on 10,000 services). The computation time increases along

with the number of services, which is an expected result. It can be seen that the similar

computation time is achieved regardless of the QoS fluctuation ratio. The slight difference

(i.e., less than 10 ms over 10,000 services) shows the relative stability of our approach when

QoS is highly violated.

3.9 Chapter Summary

We proposed a novel service framework which integrates sensor data and leverages novel tech-

niques for the selection and composition of sensor-cloud services based on spatio-temporal

57 (June 26, 2017)

CHAPTER 3. SPATIO-TEMPORAL LINEAR COMPOSITION OF SENSOR-CLOUD SERVICES

features. We introduce a novel spatio-temporal indexing model based on 3D R-tree to or-

ganize and access spatio-temporal sensor-cloud services. In particular, a new quality model

is presented that considers dynamic features of sensors to select and compose sensor-cloud

services. In addition, an efficient spatio-temporal linear composition algorithm based on a

modified version of A* is proposed. We also present a novel spatio-temporal failure-proof

composition algorithm based on D* Lite to replan a linear composition plan in case of QoS

changes. The preliminary experiments demonstrate the scalability and performance of our

proposed approaches. In future, we plan to implement a prototype and test it with real-world

applications, focusing on building sensor-clouds for public transport.

58 (June 26, 2017)

Chapter 4

Crowdsourced Coverage as a

Service: Two-Level Composition of

Sensor-Cloud Services

4.1 Introduction

In Chapter 3, we assumed that we have a map consisting of spatial routes which in turn

consists of segments. Each segment represents a sensor-cloud line segment service (e.g.,

buses, trams or trains) that has a number of attributes and associated quality of service

(QoS). Examples of functional attributes are GPS coordinates and time. The QoS parameters

include times of arrival and departure, accuracy and freshness. Therefore, a journey would

consist of composing a set of line segment services on the map according to a set of functional

and non-functional requirements. We introduce crowdsourced WiFi coverage as a new non-

functional and QoS attribute of a line segment service. What we propose in this chapter is to

overlay line segment services with crowdsourced WiFi hotspot coverages modelled as region

services. This allows users to select the set of line segment services which provide the best

crowdsourced WiFi hotspot coverage, i.e., the best quality of experience travelling between

two spatial points. The idea is to treat each outsourced hotspot coverage as a service in its

own right. The problem of crowdsourced sensor-cloud service composition can, therefore, be

reformulated as a problem of finding the best set of WiFi hotspot coverages along an optimal

linear composition plan using user-defined QoS such as maximum disconnection time and

download speed which would be important if the user was watching a movie. Therefore,

59 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

there is a WiFi hotspot service overlay on the line segment service. It is unlikely that a

single line segment service and a WiFi hotspot service would meet a users requirements in a

typical geographical plan. As a result, a composition of WiFi hotspot services needs to take

place to cover the line segment service. This also means two types of service composition are

needed which are correlated, i.e., the linear composition of sensor-cloud services to ensure

functional requirements and the overlay composition of WiFi services to satisfy WiFi QoS

requirements along the travel trajectory.

This chapter focuses on the design and development of a two-level spatio-temporal com-

position algorithm. In the first level, the overlay service composition acts as a QoS of the

linear service composition that described as Chapter 3. In the second level, we take the first

level output as a QoS parameter value to select the best linear composition plan. Func-

tionally, a spatio-temporal overlay composability model is developed to test whether two

sensor-cloud services are composable using spatio-temporal aspects. We investigate two dif-

ferent approaches for sensor-cloud composition. The first approach uses one segment at a

time to devise the best set of WiFi coverages. The second approach uses one path at a time

to select the best set of WiFi coverages. We present a set of heuristic algorithms based on

the shortest path algorithm like A* and Dijkstra as the basis for finding the optimal linear

and overlay composition plan.

The remainder of the chapter is organized as follows. Section 4.2 introduces Coverage

as a Service model. Section 4.3 elaborates the details of the double-layered crowdsourced

sensor-cloud service composition approach. Section 4.4 evaluates the approach and shows

the experimental results. Section 4.5 concludes the chapter.

Motivating Scenario

We extend our motivating scenario in Chapter 3 (see Section 3.1). Here, we assume that

Sarah would like to find the best WiFi hotspot-covered travel plan from ‘A’ to ‘B’. Therefore,

WiFi hotspot coverage is a key QoS parameter to determine the best candidate sensor-cloud

service. The novelty of this approach is QoS WiFi hotspot coverage as a service. Hotspots

are complex in nature; they need to be treated as services in their own right. Therefore,

we formulate the problem of computing the QoS coverage value as a composition of WiFi

coverages. Each basic coverage is offered by a hotspot provided by the crowd. Therefore, the

entire coverage of a journey plan will be crowdsourced. For example, Jack may have a high

data balance remaining towards the end of the billing period and would like to switch on his

60 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

Figure 4.1: Motivating Scenario

WiFi hotspot to share his data balance within a certain period for some cost. Jack can offer

a WiFi hotspot service through WiFiMapper 1 or Fon 2 mobile applications. Sharing WiFi

hotspots can minimize the burden on 3G/4G networks in terms of connections (see Figure

4.1). We also assume that WiFi hotspots are static, i.e., coverage does not change in time

and space. The key to crowdsourcing hotspots is the spatio-temporal attributes used for

selecting and composing Wi-Fi services. There is an assumption that no failure will occur

while the user travels along an optimal path.

This research explores a new area in spatio-temporal travel planning by first abstracting

the problem using the service paradigm and then complementing it with the use of crowd-

sourced WiFi hotspot coverage as a QoS. We take a service-oriented approach to mapping

WiFi hotspot sharing as a QoS for planning a service journey. Even more significantly, we

1https://www.wifimapper.com
2https://fon.com

61 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

Table 4.1: Summary of Notations

Notation Definition

sen A sensor
sen.sa The sensing area of sen
sa.loc The center of sa
Rs The radius of sa
Rc The confident radius of sa
rS A region service
lS A line segment service
ς A source point
ξ A destination point
δt A user-defined disconnection time period
δd A user-defined disconnection distance

consider the coverage QoS as a service itself, reformulating the problem of selecting the best

coverage as selecting the best composed hotspot services.

4.2 Coverage as a Service (CaaS)

We model QoS coverage as a service (CaaS). The idea is to treat each coverage (e.g., WiFi

hotspot) as a crowdsourced sensor-cloud service because of the intrinsic complexity involved

in coverage, including area and strength. Therefore, we define this special QoS as a service

itself, meaning that it has its own functional and non-functional attributes. In particular, we

assume that the coverage with its spatial and temporal aspects represents the functional part.

Non-functional attributes include strength, capacity and the level of composability. Given a

line segment service, we formulate the coverage QoS as a composition of crowdsourced services

(e.g., WiFi coverages) on a line segment service from start-point to end-point. In Sections

4.2.1 and 4.2.2, we propose new formal spatio-temporal models for an atomic crowdsourced

sensor-cloud service and overlay crowdsourced sensor-cloud service composition framework,

respectively. To select crowdsourced WiFi coverage services, a novel quality model is in-

troduced in Section 4.2.3. In the remainder of this chapter, the crowdsourced service and

crowdsourced composite service are used to refer to a crowdsourced sensor-cloud service and

composite crowdsourced sensor-cloud service, respectively.

62 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

Figure 4.2: Crowdsourced Region Service Model

4.2.1 Spatio-Temporal Model for Atomic Crowdsourced Services

We assume that crowdsourced services (e.g., WiFi hotspot services) are typically provided by

smartphones. In this research, the smartphones are modelled as sensors to provide real-time

information. The WiFi-related data about and generated by the smartphone are stored on

the cloud. We introduce a formal crowdsourced service model that abstracts the functionality

of crowdsourced data on the cloud in terms of spatio-temporal features as follows.

Definition 1: Atomic Crowdsourced Service rS. A crowdsourced service rS is a tuple of

< id, SEN , space-time, F , Q > where

• id is a unique service ID,

• SEN = {seni|1 6 i 6 m} represents a finite set of sensors seni collecting sensor data

related to rS. In this chapter, we assume that each crowdsourced service consists of

one sensor or smartphone (i.e., |SEN | = 1). Each sensor is represented as (loc, Rs) in

which loc is the center location and Rs is the radius of the area that is covered by sen

(see Definition 1 in Section 3.3.1).

• space-time describes the spatio-temporal domain of rS. In this chapter, we restrict

the space of a service to region that is presented by a spatial square area As which is

a Minimum Bounding Box (MBB) containing the sensing area of rS.

The time is a tuple < ts, te >, where

– ts is a start-time of rS,

– te is an end-time of rS.

63 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

Figure 4.2 shows the crowdsourced region service model. It also models, the region

service is modelled as an MBB which is represented by (xs , ys, ts) (i.e., bottom-left)

and (xe, ye, te) (i.e., top-right).

• F describes a set of functions offered by rS (e.g., providing WiFi hotspot),

• Q is a tuple < q1,q2, ... , qn >, where each qi denotes a QoS property of rS including

strength and capacity.

For example, a WiFi service is a crowdsourced region service that provides WiFi access

for a specific area (e.g., bus station) at a particular time interval (e.g., ts =5 p.m. and te =6

p.m.). Table 4.1 summarizes the key notations used in the rest of this chapter.

4.2.2 Spatio-Temporal Model for Composite Crowdsourced Services

We formulate the problem of determining the QoS coverage as follows: Given a line segment

service (e.g., tram) from ps to pe, what is the best coverage (e.g., WiFi hotspot coverage) along

the line segment service? There is a crowdsourced service overlaid on the line segment service.

It is quite likely that a composition of region services need to take place to cover the line

segment service. Therefore, the overlay service composition acts as a QoS of the linear service

composition. In our scenario, a combination of overlapping WiFi coverages would cover a

tram service fulfilling Sarah’s requirements which include a maximum disconnection time

and distance. To compose crowdsourced services, spatio-temporal dependency constraints

between component crowdsourced services are considered. We define a rule called Overlay

spatio-temporal composability. It checks whether two component crowdsourced region services

are spatio-temporally composable. In this case, space and time are highly correlated to the

functional part of the crowdsourced service. The existence of a hotspot depends on space

and time.

Definition 2: Overlay Spatio-Temporal Composability. Two component crowdsourced

region services rSk and rSl are overlay spatio-temporally composable with respect to a line

segment service lS iff

• rSk ∩ lS 6= Ø & rSl ∩ lS 6= Ø i.e., rSk and rSl intersect lS and

• rSl has overlap with the extended MBB of rSk (i.e., ExMBB(rSk)). The ExMBB

(i.e., buffer area) is computed by extending each edge of the area of rSk by a disconnec-

tion distance δd and also extending time edge by a disconnection period δt (Figure 4.3).

64 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

Figure 4.3: Overlay Composite Service

The values of δd and δt are assumed to be initially defined by the user. For example,

Sarah specifies that she may tolerate a maximum of 1 minute’s disconnection (i.e., δt)

in the WiFi connection during the WiFi hotspot handover. We can also determine the

disconnection distance δd from δt considering an average speed.

• Two edge vectors Vpspe and Vlocklocl are in the same direction. The vectors Vpspe and

Vlocklocl connect two vertices (ps , pe) and (lock, locl) respectively. ps and pe are the

start-point and end-point of lS and lock and locl are the sensed points of rSk and rSl,

respectively. The vector direction is used as a heuristic based on the premise that the

best neighbours are going to be found in the direction where the traveler is going. The

use of path direction also minimizes the number of candidate services in the composition

process.

As can be seen in Figure 4.3, rSk and rSl are overlay spatio-temporally composable.

However, although rSm intersects lS, it does not have overlap with ExMBB(rSk). As a

result, rSm and rSk are not overlay spatio-temporally composable.

Given a line segment service lS and a set of region services {rS1, rS2, ..., rSn} , we model

an overlay composite service as the total union area of component crowdsourced services that

cover lS.

Definition 3: Overlay Composite Sensor-Cloud Service. An overlay composite service

OCS is a sequence of component region services { rSi, 1 6 i 6 n } where each pair of

(rSi, rSi+1) is overlay spatio-temporally composable. Formally, an overlay composite service

65 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

OCS is defined as a tuple < OCID, OCSEN, OCSPACE-TIME , OCF, OCQ >

• OCID = concat (rSi.id) 1 6 i 6 n is a concatenation of component region services

identifiers in which n is the total number of component region services of OCS,

• OCSEN=
⋃n
i=1 rSi.SEN ,

• OCSPACE-TIME describes the spatio-temporal footprint of OCS. The SPACE part is

defined by a collection of the total union area of component region services

that cover P and the TIME part is a tuple of < cts, cte >, where

– cts = rS1.ts,

– cte = rSn.te.

• OCF = { f1,f2, ... , fn }, where each fi is the function provided by the corresponding

component region services of OCS,

• OCQ is a tuple of < Q1,Q2, ... , Qk >, where each Qi is the aggregated QoS value of

ith QoS attribute of OCS.

4.2.3 An Extensible Quality Model for Crowdsourced Region Services

We introduce the QoS attributes for crowdsourced region services. For the sake of simplic-

ity, we use a limited number of QoS attributes. This QoS model can be applied to other

applications that involve a sensing region within a particular time.

Quality Model for Atomic Crowdsourced Region Services

We propose to use spatio-temporal quality criteria which is part of describing the non-

functional aspects of crowdsourced region services:

• Strength (str): Signal strength is associated with the sensing area of a region service.

The strength depends on the distance between the region service sensed point and the

user. For example, in our scenario, the closer the user is to the center of a WiFi service,

the stronger is the WiFi signal. We model qstr(rS) using an exponential attenuation

probabilistic coverage model [143] (Figure 4.4). In this model, each service has a

confident radius Rc. For each region service rSi, qstr(rSi) is computed with respect to

the line segment service lS as follows:

66 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

Figure 4.4: Strength QoS Model

{
1 0 6 pdis(lS, loc) 6 Rc

e−ka pdis(lS, loc) > Rc
(4.1)

where a = pdis(lS, loc) − Rc and pdis(lS, loc) is the perpendicular distance from the

sensed point of the region service loc to lS (Figure 4.4). k is a sensor-technology

dependent parameter which varies with the type of sensors and environment. The

strength qstr(rS) varies from zero to one. Within the distance of Rc, the value of

qstr(rS) is 1 which means full signal. In the interval (Rs − Rc), the value of qstr(rS)

exponentially approaches zero as the perpendicular distance increases. Since we assume

that a component region service intersects lS, the value of pdis is not beyond Rs (i.e.,

qstr 6= 0).

• Capacity (cap): Capacity indicates the maximum achievable data rate at which in-

formation can be transmitted. It is important for uploading and downloading. Since

better signal strength implies higher Signal-to-Noise-Ratio (SNR) (i.e., less error) and

therefore more successful transmissions, the user-perceived capacity is directly propor-

tional to the signal strength. We model the capacity based on SNR Shannon-Hartley

theorem [144]. We assume that there is a fixed error rate. As a result, the capacity

increases as the signal strength increases. Given an atomic region service rS, qcap would

be approximately:

67 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

Table 4.2: QoS Aggregation Functions

QoS attribute Strength Capacity Level of composability

Aggregation Function

n∏
i=1

qstr(rSi)

n∑
i=1

qcap(rSi)
1

n

n∑
i=1

qcom(rSi)

qcap =
B

K
log2(1 + qstr(rS)) (4.2)

where B is the total available bandwidth and K is the maximum number of concurrent

requests that rS can support. We assume that total available bandwidth is allocated

equally between different users.

• Level of composability (com): Given an atomic region service rS, the level of compos-

ability qcom(rS) is the number of available spatio-temporal neighbour region services

nS which are located in ExMBB(rS). Since the closer neighbours to the sensing area

of rS provide a better composability level, we assign a weight dW based on the distance

to rS. qcom is computed as follows:

qcom =

n∑
i=1

dW (nSi) (4.3)

where n is the number of neighbour services and dW is calculated as follows:

dW =

{
1 0 6 d(rS, nS) 6 (Rs +RnS)
1

(d(rS,nS)+1)2
d(rS, nS) > (Rs +RnS)

(4.4)

where d(rS, nS) is the Euclidean distance between the sensed point of rS and nS. A

dW of 1 shows full-composability for the neighbour services that have overlap with the

sensing region of rS, while dW is going to zero for the neighbours approaching the

borders of the area of ExMBB.

Since the range of strength qstr(rS) is between 0 and 1 , the values of qcap(rS) and

qcom(rS) are normalized in the range of (0, 1) to overcome the inconsistency between

strength, capacity and level of composability. Higher normalized values of qcap(rS) and

qcom(rS) indicate higher capacity and better composability.

68 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

Quality Model for Overlay Composite Service

Since a line segment service is covered by a number of region services, it is necessary to cal-

culate the aggregated value of the QoS parameters of those region services. The aggregation

functions (Table 4.2) are used to compute the overall QoS value of an overlay composite

service as follows:

• Strength:

The strength value of an overlay composite service is the product of the strengths of

all its component region services.

• Capacity:

The capacity value for a composite service is the average of the capacities of all its

component region services.

• Level of composability:

The level of composability value for a composite service is the average of the levels of

composability of all its component region services. Note that the neighbour services

are selected with respect to the given line segment service.

4.3 Double-Layered Crowdsourced Sensor-Cloud Service Composition

The process of finding the best WiFi-hotspot-covered journey from A to B is considered

as a two-level composition problem. At the first level, the coverage quality parameter of a

line segment service is formulated as the problem of computing an overlay spatio-temporal

composition problem. The second level takes the first level output as a coverage QoS value of

a line segment service to select the optimal linear plan. A significant aspect is that the overlay

service composition acts as a QoS of the line segment service composition. We investigate

different approaches to double-layered crowdsourced sensor-cloud service composition. There

are fundamentally two options for computing the best double-layered crowdsourced sensor-

cloud service composition. The first option is one path at a time to look at the optimal plans

as driven by the linear service composition with the WiFi hotspot services as the layered

composition. The second option is one segment at a time to start with the WiFi hotspot

service composition and consider the linear composition as the second layer of composition.

In what follows, we detail both approaches, i.e., one path at a time and one segment at a

time.

69 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

Figure 4.5: Linear Composition Plan Set P

4.3.1 One Path at a Time

At the first level, the one path at a time approach applies a variation of LinearComposition

algorithm as described in Section 3.6, returning k optimal linear composition plans. Given a

source point ς and destination point ξ, a linear plan set P is a set of k optimal linear plans

as shown in Figure 4.5. The second level takes the first level output (i.e., P) as an input and

applies a new algorithm FindBestPlan to determine the best linear plan of P in terms of WiFi

coverage as a key parameter. The idea of our algorithm is to initially prune the search space

with respect to P and select a set of filtered crowdsourced region services over the whole set

of candidate crowdsourced region services. A filtering step identifies a spatio-temporal search

space which covers all the possible crowdsourced region services that may be involved in the

optimal composition plan. We then divide the overlay composition into two phases: local for

an individual component line segment service of the linear plan and global for the whole linear

plan. The local phase computes the optimal overlay composition plan that covers the given

line segment service. The global phase combines the optimal overlay composition plans of all

its component line segment services obtained from the local phase. Finally, the best plan in

P is selected as the optimal solution. Algorithm 5 details the FindBestPlan algorithm. In

general, this FindBestPlan algorithm works in the following four phases.

Step 1. Crowdsourced Region Service Filtering

To improve the efficiency of the proposed approach, the first step is to reduce the search

space of the algorithm. We develop an MBB that encloses a set of crowdsourced region

services relevant to P. The services outside this MBB are assumed to have little probability

of being involved in the optimal composition plan. The enclosing MBB is represented by the

lower-bound [xmin, ymin, tmin] and upper-bound [xmax, ymax, tmax], where xmin (resp. xmax)

70 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

Figure 4.6: Example of the Coordinates of an Enclosing MBB

and ymin (resp. ymax) are the lowest (resp. highest) x-coordinate and y-coordinate among

all coordinates of all optimal linear plans. tmin and tmax are the minimum and maximum

time values among all time instants of all optimal linear plans (see Figure 4.6).

Lower-bound = [min
∀P∈P∧pi∈P

P.pi.x, min
∀P∈P∧pi∈P

P.pi.y, min
∀P∈P

P.t]

Upper-bound = [max
∀P∈P∧pi∈P

P.pi.x, max
∀P∈P∧pi∈P

P.pi.y, max
∀P∈P

P.t]
(4.5)

3D R-tree retrieves the crowdsourced region services which are inside the enclosing MBB

and have overlap with boundaries. All retrieved crowdsourced region services are indexed by

a new 3D R-tree, called NRRT (Lines 2-3 in Algorithm 5).

Step 2. Decomposition

The decomposition step divides each linear composition plan into elementary line segment

services lS which is presented by a line segment of length 1 which consists of two consecutive

tuples (< pi, ti > , < pi+1, ti+1 >) (Figure 4.5).

Step 3. Local Spatio-Temporal Overlay Composition

Given a line segment service lS, the local overlay composition step finds an optimal overlay

composition plan that covers lS. The spatio-temporal overlay composition problem is mod-

elled as a directed spatio-temporal graph search problem as discussed in Section 3.4.1. A

virtual start-point vertex (S.ps, S.ts) and virtual end-point vertex (S.pe, S.te) are added to

71 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

Algorithm 5 FindBestPlan Algorithm

Input: Linear plan set P, region spatio-temporal graph RSTG, region services 3D R-tree RRT, maximum disconnec-
tion distance δd, maximum disconnection time period δt
Output: The plan with the highest coverage in P bestPlan

1: max-overlay-u-score=0
2: enclosingMBB = compute the enclosing MBB based on lower-bound and upper-bound
. lower-bound = [min

∀P∈P∧pi∈P
P.pi.x, min

∀P∈P∧pi∈P
P.pi.y, min

∀P∈P
P.t] .

upper-bound = [max
∀P∈P∧pi∈P

P.pi.x, max
∀P∈P∧pi∈P

P.pi.y, max
∀P∈P

P.t]

3: Add all crowdsourced region services inside the enclosing MBB of RRT to a new 3D R-tree NRRT
4: for each P ∈ P do
5: OCSList = ∅
. The list of component line segment services of the optimal overlay composition plan that covers P.

6: for each line segment service lS in P do
7: OCSList.insert(OverlayComposition (RSTG, lS.ts, lS.ps , lS.te, lS.pe, NRRT , δd, δt))
. OverlayComposition function computes the optimal overlay composition plan that cover lS

8: end for
9: Compute overlay-u-score[P] based on all component region services in OCSList

10: if overlay-u-score[P] > max-overlay-u-score then
11: max-overlay-u-score = overlay-u-score[P]
12: bestPlan = P
13: end if
14: end for
15: return bestPlan

Algorithm 6 OverlayComposition Algorithm

Input: region spatio-temporal graph RSTG, start-time lS.ts, start-point lS.ps , end-time lS.te, end-point lS.pe,
region services 3D R-tree RRT, , maximum disconnection distance δd, maximum disconnection time period δt
Output: Coverage QoS value

1: compositionPlan = ∅ // The plan of navigated region services
2: visitedList= ∅ // The list of region services already evaluated
3: candidateList = Spatio-TemporalSearch(RSTG, RRT, lS.ps, lS.ts,δd, δt) ∩ ls // The list of tentative neighbour

region services which intersects lS and in the same direction with lS
4: for each rS ∈ candidateList do
5: compute u-score[rS]
6: end for
7: while candidateList /∈ ∅ do
8: currentS = a region service in candidateList having the lowest (1- u-score) value
9: if currentS.sen.sa.loc = lS.pe then

10: return u-score[currentS]
11: end if
12: visitedList.insert(currentS)
13: candidateList.remove(currentS)
14: NeighboursList = Spatio-TemporalSearch(RSTG, RRT, currentS.sen.sa.loc, currentS.te, δd, δt) ∩ ls
15: for each nrs ∈ NeighboursList do
16: if nrs /∈ visitedList and nrs.id 6= currentS.id then
17: tentative-u-score= u-score[nrs]
18: end if
19: if nrs /∈ candidateList or tentative-u-score ≤ u-score[nrs] then
20: compositionPlan[nrs] = currentS
21: u-score[nrs] = tentative-u-score
22: if nrs /∈ candidateList then
23: candidateList.insert(nrs)
24: end if
25: end if
26: end for
27: end while
28: return 0

72 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

the graph. The virtual vertices are connected to all neighbour region services. The strength,

capacity and level of composability of these neighbour services are set to neutral values of

one, zero and zero, respectively.

We propose a new algorithm OverlayComposition to find the best overlay composition

plan that covers the line segment service. OverlayComposition is a variation of the Dijkstra

shortest path finding algorithm that minimizes the search cost function to find the optimal

spatio-temporal overlay composition plan from the start-point to end-point of the line seg-

ment service. Our algorithm favours full coverage over partial coverage. OverlayComposition

differs from the Dijkstra algorithm on the search cost and neighbour functions. The search

cost function of an overlay composition is defined as the following utility function [63] in the

same way as the LinearComposition algorithm in Section 3.6:

u-score =
∑

Qi ∈neg

Wi
Qmax

i −Qi

Qmax
i −Qmin

i

+
∑

Qi ∈ pos

Wi
Qi −Qmin

i

Qmax
i −Qmin

i

(4.6)

We use a spatio-temporal index structure customizing a 3D R-tree for services to ef-

ficiently access crowdsourced region services. We assume that the 3D R-tree index of all

crowdsourced services are constructed in advance. The leaf nodes of the 3D R-tree repre-

sent actual crowdsourced services. Services are presented using MBB that enclose the area

of a crowdsourced service as shown in Figure 4.7 (see detailed discussion in Section 3.4.2).

To find the neighbour region services (i.e., candidate region services) of a service, we define

a neighbour function relying on the Spatio-TemporalSearch algorithm in Section 3.4.3 which

searches through the crowdsourced 3D R-tree. Keeping all region services in the same direc-

tion of the line segment service using overlay composability model also prevents generating

a loop in the search graph.

The details of OverlayComposition are shown in Algorithm 6. The input of Algorithm 6

is the space-time attributes of a line segment service lS, a spatio-temporal graph of region

services, a 3D R-tree of region services, maximum disconnection distance δd and maximum

disconnection period δt. The output is the coverage QoS value of the given line segment

service. The algorithm starts finding neighbour region services of the start-point of lS . The

u-score of all region services in the candidate list are computed (Lines 4-6). The algorithm

selects the candidate region service with the lowest cost as the next candidate to be examined.

Given that the higher value of u-score indicates better QoS, we use (1 - u-score). The

candidate service with the smallest u-score becomes the current service (Line 8). For the

current service, all its unvisited neighbours are considered and their tentative u-scores are

73 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

Figure 4.7: Crowdsourced 3D R-tree

computed (Lines 14-18). If the current service location is the end-point of the line segment

service (i.e., the search is successful) (Lines 9-11) or if the candidate list is empty (i.e., the

coverage value is zero) (Line 7), the algorithm terminates. Otherwise, the algorithm selects

the candidate region service with the smallest tentative u-score and, sets it as the new current

region service and continues (Lines 19-25).

We proceed now to describe how the spatio-temporal selection of linear composable seg-

ment services is performed.

Step 4. Global overlay Composition

After performing the local overlay (Line 7 Algorithm 5), each line segment service ends up

with an optimal overlay composition plan which covers that service. The global overlay step

takes the output of all local overlays, combines them as an overlay composite service and

computes the overlay utility score of the composite crowdsourced service for each linear plan

Pi (Line 9 Algorithm 5). The best plan of P is the linear plan with the highest overlay utility

score (i.e., coverage QoS value) of the composition process (Lines 10-13, Algorithm 5).

74 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

4.3.2 One Segment at a Time

The one segment at a time approach first determines WiFi coverage QoS value along every

line segment service using the overlayComposition algorithm as the first level composition

and then applies a variation of the linear composition algorithm for selecting the best linear

composition plan from a source point ς to a destination point ξ as the second level. This

approach is more accurate than the previous one (i.e., one path at a time) because it considers

coverage as a QoS parameter in addition to the other QoS parameters to select the best

candidate line segment service during the linear composition process.

The first level works in the same way as Step 3 in the former approach (in Section 4.3.1).

Through this level, we determine the coverage QoS values of all crowdsourced region services.

In the second level, we only modify the heuristic function of the linearComposition algorithm

(see Section 3.6) to find an optimal linear composition plan considering coverage QoS. It also

needs to be noted that the aggregate coverage value of an overlay composite service in search

cost function is the average of the coverage of all the component line segment services.

We define a new composite heuristic for the linearComposition algorithm based on esti-

mates of service time hst and coverage hcov. Since the value of hst+hcov may be greater than

1, the h-score may overestimate the actual cost. As a result, we cannot apply the formula

f -score = g-score+ hst + hcov. We define the composite heuristic based on Equation 4.6 as

follows:

h-score[S] = Wst × hst +Wcov × hcov (4.7)

where Wst +Wcov < 1.

The heuristic of service time hst is computed in the same way as LinearComposition

algorithm which determines the Euclidean distance of the straight line between the end-

point of a candidate line segment service lS (S.pe) and the destination-point.

We consider a novel heuristic hcov which is defined as the coverage of the region services.

This is based on the assumption that if the number of region services is high in an area,

the probability of finding a more optimal overlay composition plan regarding coverage as a

service is high. Since actual region services in an optimal linear composition plan are likely

to be close to the straight line, we take into account proximity and spatial distribution of

region services along the straight line. hcov is computed as follows:

hcov =
1

2
(proximity + distribution) (4.8)

75 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

Figure 4.8: The Coverage Heuristic

To calculate proximity and distribution values, we first identify the list of region services

around the straight line, i.e., RS = {rS1, rS2, ..., rS|RS|}. The MBB surrounding the straight

line using Spatio-TemporalSearch function is computed to find RS. We consider the minimum

bounding box MBB of the buffer area of the line. The buffer area of a line is a zone of a

specified width around it. In this paper, we consider a buffer with width r (Figure 4.8). The

time interval of MBB is [lS.te, lS.te + maxt], where maxt is the time to travel the straight

line. The values of proximity and distribution are normalized before addition.

The proximity value measures the number of region services in MBB. Since the closer

region service is highly likely to be involved in an optimal overlay composition plan rather

than when region services are further from the straight line, we assign a weight based on the

distance pdis from the straight line. To assign the weight of proximity, for each region service

rSi, the perpendicular distance pdis from the center location of rSi (i.e., rSi.sen.sa.loc) to

the straight line is computed. The value of proximity is then calculated as follows:

proximity =

|RS|∑
i=1

1

(pdis(line, rSi) + 1)2
(4.9)

We propose a method to calculate the distribution (variability) of region services along

the straight line in the x-y plane. First, the projection of the selected region services (i.e.,

rSi.sen.sa.loc) onto the straight line is calculated. This eliminates the variability along the

orthogonal direction with respect to the straight line as depicted in Figure 4.9. The constant

76 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

-5 0 5 10 15 20 25

-10

0

10

20

30

40

50

(a) Original

-5 0 5 10 15 20 25

-10

0

10

20

30

40

50

(b) Projected

Figure 4.9: The Effect of Projection

one is needed to prevent division by zero. We then can calculate the variance along the

straight line using eigen-decomposition on the covariance matrix of the projected sensed

points.

A small variance indicates that the region services tend to be very close to each other,

while a high variance shows that the region services are very spread out around the line and

from each other.

The mathematical representation of the distribution heuristic is as follows. First, a pro-

jection matrix is constructed that projects the crowdsourced region services onto the straight

line.

P = rrT ,

where r is the vectorial representation of the straight line i.e., r = ξ−rSi. It should be noted

that r is a column vector.

The matrix Sn×2 represents all the sample region services. Each row in S represents a

region service rSi in the x-y plane. Therefore, the projected region services can be calculated

using the following matrix multiplication.

Sp = SP.

Next, the covariance between columns of Sp is calculated and the maximum eigenvalue

of the resultant covariance matrix is taken as a measure of distribution along the straight

line. The eigenvalues of the covariance matrix C can be calculated by solving the following

equation:

77 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

det (C − λI) = 0,

where det(·) is the determinant function and I is the identity matrix.

4.4 Experimental Results

We conduct a set of experiments to evaluate the performance of both proposed approaches:

one path at a time and one segment at a time. In these experiments, we show (1) the

scalability of our approaches over a large number of services and investigate how the execution

time varies as the number of services becomes larger, and (2) the significance of our filtering

step and heuristic in terms of execution time. We run our experiments on a 3.40 GHZ Intel

Core i7 processor and 8 GB RAM under Windows 7. All the algorithms are implemented in

Python.

4.4.1 Experiment Setup

To the best of our knowledge, there is no usable and relevant real spatio-temporal service (e.g.,

crowdsourced WiFi hotspot service) test case publicly available to evaluate our approach.

Therefore, we focus on evaluating the proposed approach using synthetic spatio-temporal

services. Our evaluation sets a baseline against which future work will be compared. In our

simulation, line segment and region services are randomly distributed in a 70 × 70 region.

The space and time attributes of services are randomly determined within the range of the

region for the simulations. The radius for neighbour search r is set as 5% of the specified

region. To obtain a more realistic approach, we use heterogeneous sensors for region services

by varying the values of these parameters which are set as follows. Rs and Rc are specified by

a ratio of the region size (sensing ratio size) and a ratio of the sensing radius Rs (confident

ratio size). The default sensing ratio size and confident ratio size are uniformly selected

within a range of [0.05, 0.1] and [0.4, 0.6], respectively. The remaining service parameters are

also randomly generated using a uniform distribution. All experiments are conducted 100

times and the average results are computed. Each experiment starts from a different source

and destination point which are randomly generated.

The quality parameters of the synthetic line segment services are set as follows. Two QoS

attributes are randomly generated with a uniform distribution from the following intervals:

qacc ∈ [0, 1] and qfr ∈ [1h, 24h]. qst is assigned based on the distance between ps and pe

78 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

1000 2000 3000 4000 5000

103.2

103.4

103.6

103.8

104

Number of region services

C
o
m
p
u
ta
ti
o
n
ti
m
e
(m

s)

Figure 4.10: Computation Time vs. Number of Region Services

considering a fixed speed. We assume that coverage and service time quality parameters are

more important to users. Therefore, the weights provided by users are Wst= 0.4 , Wcov=0.4,

Wfr= 0.1 and Wacc=0.1 (Equation 4.6).

We set the quality parameters of the synthetic region services as follows. The strength

value qstr is assigned at runtime based on the distance between the region service and the line

segment service with respect to Rs and Rc parameters. The capacity qcap is also computed

based on qstr. The level of composability qcom is also assigned at runtime based on the

distance between the region service and neighbours that have an overlay with the line segment

service. We also assume that the weights are provided by users as Wstr= 0.4, Wcom= 0.4

and Wcap= 0.2.

4.4.2 One path at a time approach

In the first set of experiments, we investigate the scalability of FindtBestPlan algorithm. For

this experiment, we keep the default map size and vary the number of region services from

1000 to 5000 with an iteration range of 1000. Figure 4.10 demonstrates the computation time

of our algorithm with respect to the density of the graph in terms of the number of region

services. The results show that our algorithm performs efficiently on a large number of region

services (e.g., less than 11s for 5000 services). The computation time increases along with

the number of region services, which is an expected result. Note that the computation time

shown in Figure 4.10 does not consider the time to generate optimal linear plans through

proposed LinearComposition in Chapter 3.

79 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

1000 2000 3000 4000 5000

10

20

30

40

50

60

70

80

90

100

Number of region services

O
p
ti
m
al
it
y
ra
ti
o
(%

)

Figure 4.11: Optimality in terms of Computation Time

We also study the significance of our filtering stage in terms of the computation time.

We define the optimality ratio as follows:

Optimality ratio =
ctwf − ctf
ctwf

(4.10)

where ctwf is the execution time of our algorithm FindtBestPlan without filtering and

ctf is the execution time of FindtBestPlan by applying filtering stage. We measure the

optimality ratio while fixing the default map size and varying the number of region services

from 1000 to 5000 with an iteration range of 1000. Figure 4.14 illustrates that the filtering

phase produces a satisfying optimality (i.e., more than 83%). This means that applying a

filtering stage significantly reduces the computation time which confirms our expectation

about its impact on the computation time. The results also show that the optimality ratio

remains quite stable along with the number of region services.

4.4.3 One segment at a time approach

In the second set of experiments, we first investigate the scalability of our modified Lin-

earComposition and OverlayComposition algorithms. We focus on how computation time

varies with the number of both line segment and region services. In the first experiment, we

vary the number of line segment services from 200 to 1000 with an iteration range of 200

while the values of other parameters are kept constant. In addition, we uniformly distribute

the region services along each group of line segment services. Figure 4.12 shows the execu-

tion time of the LinearComposition algorithm with respect to the density of the graph in

80 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

200 400 600 800 1000
103

104

105

106

Number of line segment services

E
xe
cu
ti
on

ti
m
e
(m

s)

Figure 4.12: Execution Time vs. Number of Line Segment Services

terms of the number of line segment services. The results show that the execution time of

our algorithm increases along with the number of line segment services which is an expected

result. This exponential time complexity is basically due to the need to compute a large

number of time-consuming shortest path operations to determine the coverage value as the

number of line segment services increasing.

We also study the scalability of OverlayComposition in terms of the execution time. We

fix the number of line segment services to 400 and vary the number of region services from

2000 to 10,000 with an iteration range of 2000. Figure 4.13 illustrates the execution time of

OverlayComposition algorithm increases by increasing the number of region services because

the cost of finding neighbours is significant. The results show that OverlayComposition can

scale up to 10,000 region services in less than 310 ms.

We study the significance of our heuristic in terms of execution time. We define the

optimality ratio as follows:

Optimality ratio =
υwh − υh
υwh

(4.11)

where υh is the execution time of the optimal linear composition plan given by our

heuristic algorithm linearComposition and υwh is the execution time of the optimal plan

given by linearComposition algorithm without applying heuristic (i.e., h-score = 0). We

then compute the accuracy of the results of our approach by comparing the overall utility

value (Uh) of the optimal plan given by our heuristic algorithm linearComposition to the

overall utility value (Uwh) of the optimal plan obtained by linearComposition algorithm

81 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

2000 4000 6000 8000 10000

50

100

150

200

250

300

350

400

450

500

Number of region services

E
xe
cu
ti
on

ti
m
e
(m

s)

Figure 4.13: Execution Time vs. Number of Region Services

without applying heuristic. The accuracy is computed by Uh
Uwh

.

We measure optimality and accuracy ratio while keeping constant all parameters and

varying the number of services from 200 to 1000 with an iteration range of 200. Figure

4.14 shows that linearComposition produces a satisfying optimality in terms of execution

time (i.e., more than 70% for 1000 segment services). It means that applying heuristic

significantly reduces the execution time dramatically, which confirms our expectation about

its impact on time. Figure 4.14 also shows that linearComposition finds almost the near

optimal plans with respect to the utility score. The results also show that the accuracy ratio

reduces slightly along with the number of line segment services. The slight difference (i.e.,

less than 10%) shows the relative stability of our approach. In general, we can see that the

linearComposition generates quite the same optimal composition plans while the execution

time is significantly reduced.

4.5 Chapter Summary

We proposed a novel service framework which integrates crowdsourced sensor data and cloud.

We also leveraged novel techniques for the selection and composition of crowdsourced sensor-

cloud services based on spatio-temporal features. We introduced a two-level spatio-temporal

composition algorithm to efficiently select the optimal composition plan considering multiple

QoS criteria. Even more significantly, we considered the coverage QoS as a service itself,

reformulating the problem of computing the coverage value as an overlay service composition.

We conducted preliminary experiments to demonstrate the scalability and performance of

82 (June 26, 2017)

CHAPTER 4. CROWDSOURCED COVERAGE AS A SERVICE: TWO-LEVEL COMPOSITION

OF SENSOR-CLOUD SERVICES

200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

Number of line segment services

R
at
io
(%

)

optimality (computation time)

accuracy (utility score)

Figure 4.14: Optimality and Accuracy

our proposed algorithms. The results show that our algorithms have a satisfying efficiency

in terms of optimality and execution time. The analysis and experimentation presented in

this chapter can be extended to consider other possible application scenarios including ride

sharing and carpooling.

83 (June 26, 2017)

Chapter 5

Incentive-Based Crowdsourcing of

Hotspot Services

5.1 Introduction

The success of the proposed crowdsourced service framework in Chapter 4 depends on the

willingness of the crowd to participate and offer services. Therefore, it is paramount to

consider the incentives as the driving mechanism to increase participation. The context of

participation includes parameters such as the spatio-temporal context (location and time)

and QoS context (WiFi coverage). We use a credit compensation model for owners of crowd-

sourced services to encourage greater participations. A crowdsourced service provider will re-

ceive credit for the services it provides. Since we assume that crowdsourced service providers

may also be service consumers, accumulated credits could also be used when crowdsourcing

services from others.

The initial distribution of crowdsourced services may not be an ideal distribution. Some

areas might be oversupplied or undersupplied. An area is considered to be undersupplied if

the number of supplied crowdsourced service providers are less than the number of demanded

service providers (i.e., potential users) and vice versa. Therefore, the redistribution of crowd-

sourced services is required to achieve better balanced coverage in each area. As a result,

there is a need for an incentive model to move a certain proportion of sensor-cloud service

providers from oversupplied regions to undersupplied regions to fulfil various environment-

based coverage demands. This movement also helps crowdsourced service providers to earn

more credits. In this chapter, we propose a new spatio-temporal incentive model which cre-

84 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

ates different incentives for different areas. The differences among incentives depend on the

dynamic spatio-temporal sensor-cloud environment. In this regard, we consider the spatio-

temporal density and location entropy in designing the incentive model. Therefore, service

providers are incentivized according to the area’s demands.

The major contribution of this chapter is a novel redistribution algorithm that offers

incentives to crowdsourced service providers to achieve an optimal balanced coverage. In the

algorithm, we try to reach coverage equilibrium in an iterative process where crowdsourced

service providers in the oversupplied areas move to undersupplied areas. The proposed

approach is based on a novel participation probability model that estimates the expected

number of crowdsourced service providers in the redistribution process. We focus on the

use of WiFi hotspot sharing in a geographical area. Finally, we present the performance

study of the proposed approach in terms of both its effectiveness and scalability using real-

world datasets. The proposal aims to provide users with the best Quality of Experience

(QoE) along a WiFi-covered travel plan by redistributing hotspot coverage in a predefined

geographic region.

This chapter is organized as follows. Section 5.2 illustrates the related work. Section 5.3

provides an overview of the system model and defines the problem. Section 5.4 elaborates

the details of the proposed spatio-temporal incentive-based approach. Section 5.5 evaluates

the approach and shows the experimental results. Section 5.6 concludes the chapter.

Motivating Scenario

The problem of crowdsourced service coverage is illustrated using the real-world scenario of

WiFi hotspot sharing as in Chapter 4. We assume that WiFi hotspot services are typically

provided by smartphones. We consider smartphones as sensors that provide real-time infor-

mation which is stored in the cloud. In this context, we model the WiFi hotspot coverage

as a service. We assume that WiFi hotspot coverage information will be overlaid on digital

maps. It allows users to select the set of road segments which provide the best WiFi hotspot

coverage, i.e., the best quality of experience when travelling between two spatial points. Each

basic coverage is offered by the crowd as hotspot providers (see Figure 5.1).

We assume that there is a virtual credit system which incentivizes the crowd partici-

pation. Users of hotspots may use credits to purchase premium services from hotspot ser-

vices. Hotspot providers earn credits by participating in this space. Similarly, users of WiFi

hotspots pay in credits for consuming hotspot services. The problem of crowdsourced service

85 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

Figure 5.1: WiFi Hotspot Sharing Scenario

coverage can be reformulated as providing an optimal demanded coverage of crowdsourced

services along the route using incentives to provide users with the best QoE.

5.2 Background

There have been several pricing modules and rewarding mechanisms in crowdsourcing sys-

tems as discussed in Section 2.4. Incentives act as a powerful tool to change habits. For

example, in the Netherlands, users are rewarded to change their travel behavior during the

morning rush-hour through switching to another travel mode or changing their schedules

[145]. During periods of excessive demand, the ride-sharing company Uber also applies a

surge pricing algorithm to temporarily increase normal fares for a particular geographic lo-

cation at particular time to encourage drivers to flood undersupplied regions [146]. We take

slightly different approach that tries to reach equilibrium in an iterative process by rewarding

hotspot providers to move from only oversupplied regions to assigned undersupplied regions.

Our work is also related to an online spatial task assignment problem in mobile crowd-

sourcing due to the assignment of crowdsourced service providers to achieve coverage bal-

ancing and the spatio-temporal nature of crowdsourced services. [147] and [148] present

frameworks for online task assignments in which heterogeneous tasks must be assigned to

workers. [149] studies the problem of task allocation for spatial crowdsourcing applications

with the key objective of maximizing the reward taking into account a time constraint for

each worker. They also propose an efficient pricing mechanism in which each mobile user

reaches an agreement on the price of each task. [21] proposes the task assignment prob-

lem in spatial crowdsourcing with the aim of maximizing the number of performed tasks

per worker. This work is extended in [150] to a maximum score assignment problem. Two

86 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

greedy offline and online task assignment algorithms that minimize the average makespan

of all tasks are also proposed in [151]. [152] presents a unified framework for task matching

and task scheduling based on flow network. Our aim is different from the aforementioned

studies; it is to achieve a demanded coverage of crowdsourced services. The strength of the

proposed framework is also the ability to combine techniques from incentive models and task

assignment in spatio-temporal crowdsourcing systems.

5.3 System Model and Problem Formulation

This section presents a formal model for our spatio-temporal crowdsourced coverage balance

problem. We consider the scenario of crowdsourced WiFi hotspot sharing in a selected spatial

region during a particular time interval τ . The system consists of a central server that is

assumed to be fully aware of the crowdsourced services’ distribution. We use the following

definitions to formulate the problem.

Definition 1: Crowdsourced service. In Chapter 4, we defined a crowdsourced service

S with a center location (i.e., longitude and latitude) and the radius of the sensing region,

start-time ts, end-time te, a set of functions offered by S (e.g., providing a WiFi hotspot)

and a set of QoS attributes qi (e.g., strength, capacity and level of composability).

Definition 2: Crowdsourced service provider. A crowdsourced service provider as de-

scribed in Chapter 4 and denoted by sp, is a person who volunteers to provide crorwdsourced

service through their smartphone. We assume that crowdsourced service providers may also

be crowdsourced service consumers.

Definition 3: Region and subregion. The server divides the entire region into a set of

subregions SR = {sr1, sr2, ...} (of different sizes according to the system’s service granularity

requirement). For example, each suburb (i.e., zip code) in the city of San Francisco (i.e.,

region) is defined as a subregion. Each subregion is composed of a coordinator, a set of

crowdsourced service providers SP = {sp1, sp2, ...} and a set of potential users who are

willing to access the Internet through WiFi hotspot of spi. A subregion coordinator is the

system that monitors the shortage of the subregion to ensure that the demanded services are

provided.

The server also divides the entire time interval τ into a set of discrete time slots, denoted

as {t1, t2, t3, ...} based on the maximum travel time between two subregions using Google

Map Distance Matrix API 1. Within each subregion and within a certain time slot, a certain

1https://developers.google.com/maps/documentation/distance-matrix/intro

87 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

number of crowdsourced service providers are required: this is set by the coordinator as

demand. As a result, each subregion sri maintains the number of supplied hotspot providers

(i.e., supply) Ns and the number of demanded hotspot providers (i.e., demand or potential

users) Nd. We now define the notions of oversupplied and undersupplied subregions.

Definition 4: Undersupplied and oversupplied subregion. In the time slot ti, given supply

Ns and demand Nd of a subregion sri, sri is said to be undersupplied if Nd > Ns. If Nd < Ns,

sri is said to be oversupplied.

Definition 5: Balanced subregion. A subregion is balanced if Nd = Ns.

In our model, we take into consideration a credit compensation approach to incentivize

the crowd to offer their data as a service. We formally define the notion of an incentive as

follows.

Definition 6: Incentive. The crowdsourced service provider receives an incentive (i.e.,

reward) by participating. Each incentive is earned as credit points that can be stored. We

assume that at the outset an initial budget is assigned to all users. It is the same for all users

to ensure fairness.

Definition 7: Incentive advertisement. In each time slot ti, the coordinator of the under-

supplied subregion sri advertises an incentive to encourage crowdsourced service providers to

move from oversupplied subregions to sri. The coordinator specifies its incentive value based

on several spatio-temporal factors including density, time of day and subregion entropy. The

crowdsourced providers in oversupplied subregions will also decide to move based on several

parameters including the advertised incentive. Therefore, the higher incentive in some under-

supplied subregions can motivate more crowdsourced providers to move into undersupplied

suregions.

Definition 8: Region coverage equilibrium. Given a set of subregions {sr1, sr2, ...} and

their corresponding supplies Ns and demands Nd , a region is in coverage equilibrium if and

only if :

for all sri ∈ SR,
sri.Nd

sri.Ns
≤ 1 (5.1)

Based on above definitions, we now formally define the problem of crowdsourced coverage

balancing with incentive.

Definition 9: Crowdsourced coverage balance problem. Given a time interval

τ = {t1, t2, t3, ...} and a set of subregions {sr1, sr2, ...}, let SPij = {sp1, sp2, ...} be the

set of hotspot providers in the time slot ti in the subregion srj . The crowdsourced cover-

88 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

Figure 5.2: The Proposed System Architecture

age balance problem is to redistribute service providers within subregions during the time

interval τ through offering incentives, while achieving optimal coverage equilibrium.

Figure 5.2 shows the proposed system architecture. The undersupplied subregions coor-

dinators advertise their desired incentive to the server in the time slot ti (Step 1). Next, the

server disseminates the incentive offers to all crowdsourced providers of oversupplied sub-

regions (Step 2). According to the incentive offers and other parameters, a crowdsourced

provider sends the participation probability to move to undersupplied subregions sri and

srj (e.g., the probability that an oversupplied provider participates and moves to sri is

60%.)(Step 3). Thereafter, the server assigns the providers of oversupplied subregions to

move to undersupplied subregions based on their participation probability (Step 4). The

server then sends the movement request to providers of oversupplied subregions (Step 5).

Upon receiving the request, a provider decides whether to move or not. If yes, it sends a

consent message to the server confirming its movement (Step 6). If a provider is not willing

to move, no consent message is sent. We use the following assumptions in our system model:

89 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

Table 5.1: Summary of Notations

Notation Definition

sp A crowdsourced service provider
SP Set of crowdsourced service providers
sr A subregion
SR Set of subregions that partition the whole area
τ Time interval under consideration
ti A time slot
osr Oversupplied subregion
usr Undersupplied subregion
M The transition matrix
P The participation probability
ε The equilibrium ratio
Ns Number of supplied crowdsourced service providers
Nd Number of demanded crowdsourced service providers
G Bipartite graph
osv Oversupplied subregion vertex
usv Undersupplied subregion vertex
C Capacity of a vertex
f Flow of an edge

• Each subregion has autonomous incentive advertisements. In the system, subregions

advertise incentives based on their own model. They are autonomous while determining

their own desired incentive values.

• We only consider transition of crowdsourced service providers from oversupplied sub-

regions to undersupplied subregions.

• The total number of crowdsourced service providers and consumers are static over time.

• We assume that each hotspot provider from oversupplied subregions is assigned to each

demanded hotspot provider.

The major notations used in the rest of the chapter are summarized in Table 5.1. In

the remainder of this chapter, the terms hotspot service and hotspot provider refer to a

crowdsourced service and crowdsourced service provider respectively.

90 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

5.4 Spatio-Temporal Incentive-Based Approach

In this section, we propose a novel spatio-temporal incentive-based approach to encourage

movement from oversupplied subregions to undersupplied subregions. This movement helps

crowdsourced hotspot providers to earn more incentives. Distributing crowdsourced ser-

vices may help to achieve a better balanced crowdsourced coverage among the subregions.

In Section 5.4.1, we define the coverage equilibrium. Then Sections 5.4.3 and 5.4.2 detail

the proposed incentive model and participation probability model respectively. Finally, we

present our novel greedy approach to redistribute hotspot providers in Section 5.4.4.

5.4.1 Coverage Equilibrium of Hotspot Providers

Each subregion sri in the map maintains the number of supplied hotspot providers (i.e.,

supply) Ns and the number of demanded hotspot providers (i.e., demand or potential users)

Nd. These values are updated at the beginning of each time slot ti. The aim of our model

is to continuously update supply and demand values to achieve a balanced coverage among

subregions during the time interval τ . We use the difference of Ns and Nd to determine the

surplus or shortage of providers in a subregion. Figure 5.3 shows an example of the histogram

of the initial distribution of hotspot providers in each subregion in the time slot ti. The initial

(surplus or shortage) distributions of the hotspot providers (without incentives) may not be

the ideal distribution. For example, in Figure 5.3 the coordinator of the subregion sr2 may

require at least 50 hotspot providers to meet its demand. However, sr2 has 22 providers which

are fewer than 50 hotspot providers. As a result, some subregions can be undersupplied (e.g.,

sr2) while others are oversupplied (e.g., sr1).

Therefore, we require redistribution of some hotspot providers to reach coverage equilib-

rium. The region coverage equilibrium occurs at the point at which the ratio of the number

of hotspot providers supplied and the number of hotspot providers demanded for each sub-

region is less than one. Given a set of subregions sr = {sr1, sr2, ...}, the equilibrium ratio ε

is computed as the ratio between the sum of the number of supplied hotspot providers and

the sum of the number of demanded hotspot providers among all subregions as follows:

ε =

∑n
i=1 sri.Ns∑n
i=1 sri.Nd

(5.2)

We recompute the surplus and shortage of providers in each subregion using the computed

equilibrium ratio as follows:

91 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

Figure 5.3: The Number of Hotspot Providers among Each Subregion Histogram in the
Time Slot ti

δsri = bsri.Ns − (sri.Nd × ε)c (5.3)

Our goal is to reach a coverage equilibrium during the time interval τ .

5.4.2 Incentive Model

The crowdsourced hotspot supply among some subregions e.g., sr1 and sr3 is significantly

higher than the supply in subregions sr2 and sr9. The higher incentive values in some sub-

regions may motivate hotspot providers in the oversupplied subregions (e.g., sr1 and sr3) to

move into an undersupplied subregion (e.g., sr2) and provide the hotspot service. The mo-

tivations can be categorized as intrinsic or extrinsic [153]. Intrinsic motivation occurs when

an individual engages in an activity because of its inherent satisfactions generated by the

activity such as interest or enjoyment. Extrinsic motivation is doing an activity to achieve

a certain desired outcome such as material incentives [154]. Rewarding can also be further

divided into tangible (monetary) and intangible (non-monetary) (also called recognition).

Tangible rewards can be demonstrable and measurable such as money and awards. Intan-

92 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

gible rewarding is internal and psychological (e.g., giving membership privileges and public

recognition) [155]. Since the WiFi hotspot sharing is a simple task and do not demand cre-

ativity, it can be assumed that a key incentive to participate is intrinsic motivation through

achieving a tangible reward such as credit.

The coordinator of an undersupplied subregion sets its desired incentive value (called

reward) to transfer providers among subregions. Several factors including subregion density,

subregion entropy and time of day affect the reward value, which changes over time. To

compute the reward value, we consider the following spatio-temporal features:

• Subregion entropy

We consider the popularity of a subregion to determine the reward. This is calculated

using Location Entropy. Location Entropy was first introduced in [156] to measure the

diversity of unique visitors to a region. We use entropy of a subregion to measure the

total number of hotspot providers in that subregion as well as the relative proportion

of their future service provisioning (or visits) in that subregion. A subregion has a high

entropy if many hotspot providers offer services in that subregion in equal proportion

of services. Conversely, a subregion has a low entropy if the distribution of the hotspot

providers to that subregion is restricted to only a few hotspot providers. Intuitively,

higher reward is offered to provider to move to subregions with smaller location entropy

(i.e., less popular), because those subregions are less likely to be serviced by other

hotspot providers.

For a subregion sri, let SPsri = {sp ∈ SP : sp offers ahotspot service in sri} be

the set of all unique hotspot providers who offer services in sri. Let Ssri be the set of

all services offered by all hotspot providers in sri and Ssri,spk be the set of services in

sri that are offered by spk. The probability that a random draw from Ssri belongs to

Ssri,spk is Psri(spk) =
Ssri,spk
Ssri

which is the total fraction of all services in sri that are

offered by the hotspot service provider spk. The subregion entropy of sri is computed

as follows:

SREi = −
∑

spk∈SPsri

Psri(spk)× logPsri(spk) (5.4)

The reward value decreases when the entropy is higher in a particular subregion, be-

cause hotspot service provisioning is highly probable in future, even if the frequency

93 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

Figure 5.4: An Example of Subregion Entropy (SRE)

of the hotspot providers in the subregion is low. Figure 5.4 shows an example of sub-

region entropy for three hotspot providers. The subregion entropy is not calculated

based on the total number of hotspot services. However, it is determined based on the

number of services that offered by unique hotspot providers (e.g., sr5 and sr7 have the

same entropy i.e., 1.040 regardless of different total number of four and eight services,

respectively). As a result, our model assigns higher reward to encourage the crowd to

move to less popular areas.

• Spatio-temporal density

The reward is increased if there is an excessive demand in a particular subregion.

The reward is determined based on the difference between the levels of supply and

demand. For example, since there is more demand than supply during peak hours, the

coordinator sets higher reward to incentivize more hotspot providers. In this regard,

we take into account the spatio-temporal density of hotspot providers as one of the

parameters to calculate the reward. Our model assigns a higher reward to encourage

the crowd to move to sparse areas. The density is computed as the total number of

demanded hotspot providers Nd in sri in the time slot ti divided by the total number

of supplied hotspot providers Ns in sri in the time slot ti, Dti(sri) = Nd
Ns

.

• Time of day

Time is an important parameter in determining the reward. For example, the reward

of providing a hotspot service in early morning or at midnight should cost more than

94 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

the reward during day time. If a higher reward is not offered for movement at this

particular time, then the probability of participation is lower. We define the time

coefficient TCti to represent the significance of the time of day ti. The time of day is

quantized into four time intervals inti, each lasting six hours (i.e., int1= [4-10) am,

int2= [10 am-4 pm), int3= [4-10 pm) and int4= [10 pm- 4 am)). Similarly, the day

of week is categorized as either weekend or weekday. Our model assigns a higher time

coefficient (i.e., TCti = 2) to weekends if ti ∈ (int1 or int4) and weekday midnight if

ti ∈ int4. For the rest of time intervals considering weekdays or weekends, TCti is set

to one.

The reward points rti(sri) to be paid by the server to each hotspot provider to move

to sri at time ti is defined as:

rti(sri) =
α×Dsri

1 + β × SREsri
× TCti × r0 (5.5)

where r0 is the standard reward point that is offered to all hotspot providers in over-

supplied subregions for movement to undersupplied subregions to ensure the fairness

among the subregions. SREsri and Dsri are the subregion entropy and spatio-temporal

density of sri , respectively. α and β are, respectively, weights for Dsri and SREsri

which are determined based on the market. TCti is the time coefficient of the reward.

The reward is simply proportional to the spatio-temporal density and time of day and

reversely proportional to the subregion entropy. The constant “1” is needed to prevent

division by zero.

5.4.3 Participation Probability Model

When a reward value of an undersupplied subregion is advertised to hotspot providers of

oversupplied subregions, each provider decides whether or not to move to that undersup-

plied subregion. We introduce a simple participation probability model to determine the

hotspot providers’ participation. Each hotspot provider spi is characterized by a participa-

tion probability pspi ∈ [0, 1]. The participation probability is time-dependent, i.e., it varies

over an interval of time. For example, if the provider spi has participation probability x

to move to srj from srk in time slot ti, it may have participation probability y to move to

srj in time slot tj . To design the participation probability model, we consider two key sets

of factors, incentive (e.g., reward value) and disincentive (e.g., travel cost and total credit

95 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

account), which are paramount in the relative willingness to participate in a reward-based

scheme [157]. Consequently, the participation probability model is defined based on two

heuristics.

• Spatial heuristic: This spatial heuristic is based on the fact that incentives to migrate or

relocate can be in some cases costly. For example, [157] shows that although the reward

is the main incentive to participate, lack of flexibility in daily schedules or changing

habits (e.g., changing their daily path) is the main reason to reject it. Since the benefit

of incentive has trade-off against the travel distance in the decision process, our model

considers travel cost as an indicator of how probable it is for a hotspot provider to

move. The intuition is that a hotspot provider who is further away from a subregion is

less likely to move. We calculate the travel cost as travel time between two subregions

sri and srj , denoted by tc(sri,srj) using Google Maps Distance matrix API.

• Economic heuristic: For each hotspot provider, we maintain a total account acc denotes

the total earned credits up to ti. The intuition is that a hotspot provider with a higher

total credit account is less likely to be willing to earn more reward points than those

with fewer credit points. For example, if a hotspot provider is a relatively new provider,

the probability that it will move to an undersupplied subregion is higher than more

established providers. This can be explained by the studies by [158] and [159] which

demonstrate that participants with higher income are likely to be less sensitive to a

marginal monetary incentive compared to participants with lower incomes. The reward

value is also of paramount importance. The provider will also determine the reward in

credits to move.

Given tc(sri,srj), acc and reward value, we assume that probability values ptravel cost ,

paccount and preward for hotspot provider spi in the time slot ti are known in advance. For the

sake of simplicity, we model the participation probability of a hotspot provider based on the

total account, travel cost and reward value R in the time slot ti through the weighted-sum

method as follows:

pti(spi → srj) =
wt × ptravel cost + wacc × paccount + wr × preward

ptravel cost + paccount + preward
(5.6)

where the weights wt, wacc, wr range from 0 to 1. These weights are assigned by a hotspot

provider to ptravel cost , paccount and preward respectively to reflect the level of importance.

Then, the aggregated value of participation probabilities Pij is calculated as:

96 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

Figure 5.5: An Example of Participation Model in the Time Slot ti

Pij =
1

n

n∑
k=1

pti(spki → srj) (5.7)

where n is the total number of hotspot providers who move from sri to srj within the time

slot ti. Figure 5.5 shows an example of two oversupplied subregions and two undersupplied

subregions participation model. As can be seen, the hotspot provider sp11 in sr1 has the

probability of 0.86 to move to sr2.

A transition matrix Mn×m is constructed to represent the movement among subregions.

Each row corresponds to an oversupplied subregion sri and each column corresponds to an

undersupplied subregion srj . Each element mij in the matrix denotes the number of hotspot

providers who are willing to move from an oversupplied subregion sri to an undersupplied

subregion srj in the time slot ti which is computed as:

mij = Pij × δi (5.8)

where δi is the surplus number of hotspot providers of sri. For example, if P14 is 0.6 (i.e.,

the aggregated probability of hotspot providers to move from sr1 to sr4) and the surplus

number of hotspot providers of sr1 is 20 (i.e., δ1 = 20), the m14 is 12. The transition matrix

M(ti) is computed as follows:

97 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

M(ti) =

mij ... mim

. .

mnj ... mnm

 (5.9)

Algorithm 7 Greedy Redistribute Algorithm

Input: An edgeless bipartite graph G (oversupplied subregions set OSR, undersupplied subregions set USR,
∅), edge set E based on transition matrix
Output: An assignment between oversupplied subregions and undersupplied subregions

1: while USR 6= ∅ and OSR 6= ∅ do . There is no undersupplied and oversupplied subregion available.
2: (G,OSR,USR) = Initial Assignment(G,E)
3: (AG,AOSR,AUSR) = Refinement(OSR,USR,G)
4: assigned set = Assignment (AOSR,AUSR,AG)
5: end while
6: Return assigned set

5.4.4 Greedy Network Flow Algorithm for Crowdsourced Service Coverage Bal-

ancing Using the Incentive Model

We propose a greedy network flow based redistribution approach that offers incentives to

redistribute the hotspot providers. The idea of the algorithm is to select appropriate crowd-

sourced hotspot service providers at every instance of time and assign them to subregions

so that the equilibrium can be achieved (an assignment problem). The reason this approach

is called “greedy” is that in every time slot, it only tries to find the equilibrium for the

current assignment (i.e., local optimization instead of global optimization). Because hotspot

providers arrive dynamically, it becomes challenging to achieve the global equilibrium. Since

the system does not have prior knowledge about future hotspot providers, it tries to reach

an equilibrium locally in every time slot. Therefore, the challenge is to perform the hotspot

provider assignment in a given time slot with the goal of achieving the coverage equilibrium

across the whole time period. We formulate the assignment problem as a flow network prob-

lem and find the matching of oversupplied subregions and undersupplied subregions from

the flow. We then divide the assignment into two phases: initial assignment and refine-

ment. The initial assignment phase finds a matching for the set of oversupplied subregions

and the set of undersupplied subregions. A hotspot provider is assigned to a subregion if

they are matched with each other based on the transition matrix. The refinement phase

then builds the corresponding flow network between the remaining oversupplied subregions’

hotspot providers and undersupplied subregions’ hotspot providers through calculating new

assignments. Algorithm 7 gives the details of the greedy algorithm. In general, the greedy

98 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

Algorithm 8 Initial Assignment(G,E)

Input: An edgeless bipartite graph G (oversupplied subregions set OSR,undersupplied subregions set USR,
∅), edge set E based on transition matrix
Output: An updated graph after initial assignment, oversupplied subregions set and undersupplied subregions
set

1: for each edge e(osv,usv) ∈ E do . It selects the edge in which Cusv is the maximum capacity.
2: if fe < Cosv and Cusv > 0 and Cosv > 0 then
3: if Cusv > fe then
4: AddForwardEdge(osv, usv, 0, G)
5: AddBackwardEdge(usv, osv, fe, G)
6: Cosv = Cosv − fe
7: Cusv = Cusv − fe
8: else
9: AddForwardEdge(osv, usv, fe − Cusv, G)

10: AddBackwardEdge(usv, osv, Cusv, G)
11: Cosv = Cosv − Cusv

12: Cusv = 0
13: end if
14: else
15: if fe > Cosv and Cusv > 0 and Cosv > 0 then
16: if Cusv > Cosv then
17: AddForwardEdge(osv, usv, fe − Cosv, G)
18: AddBackwardEdge(usv, osv, Cosv, G)
19: Cosv = 0
20: Cusv = Cusv − Cosv

21: else
22: AddForwardEdge(osv, usv, fe − Cusv, G)
23: AddBackwardEdge(usv, osv, Cusv, G)
24: Cosv = Cusv − Cosv

25: Cusv = 0
26: end if
27: end if
28: end if
29: end for
30: return G, OSR and USR

algorithm works in the following three steps: a) initial assignment module b) refinement

module, and c) final assignment module.

Initial assignment module

To reach the coverage equilibrium, the first step is to assign hotspot providers from the

oversupplied subregions to undersupplied subregions if their respective participation prob-

ability model supports such transitions. Given a set of oversupplied subregions OSRi =

{osr1, osr2, ...} and a set of undersupplied subregions USRi = {usr1, usr2, ...} in the time

slot ti, we model the flow network as a bipartite residual graph G = (OSR,USR,E) which

is divided into two disjoint sets of vertices OSR and USR, i.e., OSR and USR are each

99 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

(a) After the first iteration (b) After the initial assignment

Figure 5.6: Snapshots of a Simple Flow Network for Several Iterations in the Time Slot
ti

independent. Each vertex osv in OSR represents an oversupplied subregion from where we

may incentivize a hotspot provider to move. Each vertex usv in USR represents an under-

supplied subregion that receives a hotspot provider from oversupplied subregions. Each edge

e = (osv, usv) ∈ E connects vertex osv in OSR to usv in USR which means that there is at

least one hotspot provider who wants to move from the subregion osv to the subregion usv.

Each edge has an associated flow value fe representing the number of hotspot providers who

are willing to move based on the transition matrix. Each vertex (i.e., subregion) has also

a capacity value which is the total number of hotspot providers to move or receive. Noted

that an edge’s flow f(osv,usv) cannot exceed its capacity Cosv. We assign through two types

of edges. First, we use any edge that has f(osv,usv) < Cusv and Cosv > 0 as a forward edge.

Second, we use any edge to go backward from usv to osv if f(osv,usv) > 0 as a backward

edge. The idea of using the residual graph is to keep track of remaining capacities and flow

which we send through two types of edges. The details of the initial assignment algorithm

are outlined in Algorithm 8.

Algorithm 8 starts with the set of edges extracted from the transition matrix. We use a

heuristic to select the edge. Our heuristic selects the edge related to the highest undersupplied

subregion. If the subregions usri, usrj and usrk have the highest, second highest and least

shortages, we select the edge in which the end node is usri. For each edge e = (osv, usv), it

checks the capacity values of two oversupplied and undersupplied subregions Cosv and Cusv,

respectively. If usv and osv still have available capacity, it will add a forward edge and

100 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

Figure 5.7: Refinement Phase of Figure 5.6

update the residual flow value of the forward edge with respect to Cosv and Cusv. It then

adds a backward edge e(usv, osv) and sets the flow value of the backward edge by the exact

number of hotspot providers who are moving from the subregion usv to osv (Lines 2-28).

Since flows in opposite directions counterbalance, decreasing the flow from the forward edge

from osv to usv is the same as increasing the flow from usv to osv. If Cosv or Cusv is zero

(i.e., no available capacity), e is not a valid edge to be added. The iteration terminates when

there is no edge in the set E (i.e., there exists no mapping between OSR and USR).

Figure 5.6(a) shows the example of the corresponding flow network from Figure 5.5. In

Figure 5.6(a) , we pick the edge sr1 → sr2, because sr2 has the highest shortage. The

flow value along the edge is 12 which means that we could send 12 hotspot providers along

this edge from sr1 to sr2. We then check the capacity of sr1 and sr2 which are 13 and 16

respectively. Since they have available capacity, we add the edge sr1 → sr2 and decrease the

flow of the edge by 12. We then add a backward edge sr2 → sr1 (denoted by dashed line)

and set its flow value to 12. The capacity of sr1 and sr2 also decrease by 12.

Refinement module

Once we complete the initial assignment phase for those subregions with the assigned hotspot

providers, we check the capacity values of all subregions in OSR and USR. If there are any

spaces and hotspot providers available in both undersupplied and oversupplied subregions,

we will attend to the refinement phase. We calculate new assignments among the remaining

hotspot providers of oversupplied and undersupplied subregions. Let us assume that the set

of these remaining oversupplied subregions and undersupplied subregions are called ROSR

and RUSR (Algorithm 9 Lines 1-2). In this regard, the algorithm does a DFS to find a

valid path from rov ∈ ROSR to any ruv ∈ RUSR. A path is valid if the minimum flow of

101 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

Figure 5.8: The Number of Suuplied or Demanded Hotspot Providers in Each Subregion
After Applying the Incentive-based Approach

all edges is greater than zero. It then sends the flow along a path still having capacity. It

might erase some flow that we had previously assigned through pushing backwards. Note

that there can be a path from rov to ruv in the residual network, even though there is no

path from rov to ruv in the original network, due to adding forward and backward edges in

the initial assignment phase. Algorithm 9 represents the details of the refinement.

After completing the initial assignment process, we will obtain Figure 5.6(b) which is

not the optimal solution. In Figure 5.6(b), sr3 has six hotspot providers left and sr4 has a

shortage of three hotspot providers. By doing a DFS, we will find the path sr3 → sr2 →
sr1 → sr4 denoted by the red edges. We interpret the path as follows. First, sr3 sends the

flow of 1 (i.e., the minimum flow along the path) along sr3 → sr2 and there are no more

forward edges going away from sr2 toward sr4 that have available flow. Therefore, we push

back the flow along (sr2 → sr1), i.e., some units of flow that came along (sr1 → sr2) can

now be taken over by flow coming into sr1 along (sr2 → sr1). After pushing back the flow

to sr1, we send the flow of 1 through sr1 → sr4. While doing so, we also update the graph.

We simply increase flow on forward edges and decrease flow on backward edges (see Figure

5.7).

102 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

Algorithm 9 Refinement(OSR,USR,G)

Input: oversupplied subregions set OSR, undersupplied subregions set USR and a bipartite graph G
(OSR,USR, E’) after the initial assignment
Output: The updated graph G based on assignments between oversupplied subregions and undersupplied
subregions, updated oversupplied subregion list ROSR and updated ROSR undersupplied subregion list

1: ROSR = {rov, rov ∈ OSR and Crov > 0} . The list of oversupplied subregions have remaining capacity
after the initial assignment.

2: RUSR = {ruv, ruv ∈ USR,Cruv > 0} . The list of undersupplied subregions have remaining capacity
after the initial assignment.

3: for each rov ∈ ROSR do
4: for each ruv ∈ RUSR do
5: pathSet = find-all-shortest-path(rov , ruv) . find all shortest path between rov and ruv.
6: for each path p ∈ pathSet do
7: validPath = true
8: for each edge e ∈ p do
9: if fe < o then

10: validPath = false
11: break
12: end if
13: end for
14: if validPath = true then
15: update (G) . Push the flow through updating the forward and backward edges and

capacities of rov and ruv.
16: break
17: end if
18: end for
19: if Crov = 0 then
20: remove rov from ROSR and G and update forward and backward edges
21: end if
22: if Cruv = 0 then
23: remove ruv from RUSR and G and update forward and backward edges
24: end if
25: end for
26: end for
27: return G, ROSR, RUSR

Assignment module

If a hotspot provider is selected and accepts the reward, it moves toward the particular

undersupplied subregion. After providing the service in that subregion, the hotspot provider

receives the reward via the system. In this case, the hotspot provider is no longer part of

the initial subregion. In an ideal case, all hotspot providers will accept the offer and move.

However, it is not practical due to the participation probability. Therefore, our optimization

goal is to achieve coverage equilibrium in each time slot ti.

The greedy redistribute algorithm tries to achieve the coverage balance in an iterative

process where in each time slot ti a selected number of hotspot providers in the oversupplied

subregions accept and move to undersupplied subregions (Algorithm 7 Line 4). In each

103 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

Algorithm 10 Assignment(AOSR,AUSR,AG)

Input: Assigned oversupplied subregions set AOSR, assigned undersupplied subregions set AUSR and
assigned bipartite graph AG (AOSR,AUSR, AE’) after refinement
Output: Final assignment between oversupplied subregions and undersupplied subregions

1: for each ov ∈ AOSR do
2: for each edge e ∈ AG do
3: if e.endNode = ov then
4: compute acceptedF low . calculate the number of hotspot providers in subregion ov that

accepts the reward to move from e.endNode to e.startNode.
5: fe = acceptedF low . Update the flow of the backward edge
6: update (AG) . Update the flow of the forward edge and capacities Cov and Cuv based on the

acceptedFlow.
7: end if
8: end for
9: end for

10: return the final assignment

iteration, the algorithm aims to minimize the number of undersupplied hotspot providers

until there is no undersupplied and oversupplied subregion available (Algorithm 7 Line 1).

After the refinement process, for each assignment (i.e., backward edge), the assigned

oversupplied hotspot providers decide whether or not to accept the offer (Algorithm 10 Lines

1-4). Based on the number of accepted assignments, the flow of the corresponding backward

and forward edges, shortage and surplus values are then updated (Algorithm 10 Lines 5-6).

Figure 5.8 shows the distribution histogram of Figure 5.3 after applying an incentive-based

approach.

5.5 Experiment Results

We conduct four sets of experiments. These experiments show (1) the effectiveness of our

approach to reach equilibrium: (2) the scalability of our approach over different distributions

to investigate how the execution time and the number of time slots varies: (3) the effectiveness

of our approach in comparison with a baseline approach and (4) the effect of weights of the

participation probability in terms of the execution time and the number of time slots.

5.5.1 Experiment Setup

Datasets. The closest similar datasets to evaluate our proposed approach that are applicable

are Uber and taxi cab datasets. The taxi dataset contains mobility traces of 536 taxi cabs in

San Francisco BAY Area, USA collected over 30 days which is fairly dense [160]. Each line

of traces contains latitude, longitude, occupancy and time. The occupancy shows if a cab is

occupied (i.e., 1) or free (i.e., 0). The location-updates are quite fine-grained and the average

104 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

time interval between two consecutive location updates is less than 10 sec. As a result, we

can generate a denser sample of instantaneous hotspot locations. For our experiments, we

define each sampled GPS point of an occupied cab as a hotspot provider and a free cab

as a hotspot user (i.e., 10,946,098 location points in total). We divide San Francisco (i.e.,

region) to several subregions based on the zip code that represents a subregion and there

are 84 subregions in this case. Based on extracted supply and demand values, there are 56

undersupplied subregions and 28 oversupplied subregions.

Uber is a ride-sharing company where those who need a ride are linked to those who

are willing to drive. We have used an Uber dataset that contains 25K anonymized GPS

traces from black car pickups in San Francisco produced in January 2007 2. Line in each

trace is spaced at about 4 seconds apart. Similar to taxi dataset, we use zip codes to divide

San Francisco into several subregions, which is 66 in this case. For our experiments, we as-

sume that each GPS point is either a hotpot service provider or user and there are 1,111,513

location points in total. We consider 33 undersupplied subregions and 33 oversupplied sub-

regions in the Uber dataset.

We use an extrapolated taxi dataset which is generated based on the relationships among

surplus or shortage of taxi services (S), population (P) and traffic volume (T) in the given

geo location (i.e., San Francisco) to evaluate the scalability of our approach. Two new

datasets, i.e., population 3 and traffic 4 in San Francisco SF are used with the Taxi cab

dataset in the extrapolation process. We fit the datasets in R and run polynomial regression

((lm(s A+xP + y+T 2)) considering S as a dependent variable and P and T as independent

variables. Here, lm is regression model in R, A is the intercept coefficient and x and y are

coefficient of P and T respectively. The regression analysis generates the following fitted

equations.

• For over-supplied postcodes: S = 370.89 + .3594 ∗ P − .2594 ∗ T 2

• For under-supplied postcodes: S = 875 + .529 ∗ P + .1156 ∗ T 2

Once the model is generated, the new extrapolated dataset is easily derived using the

population dataset and traffic in SF and surrounding of SF (i.e., zip codes from San Francisco

to Los Angeles). The extrapolated taxi dataset include 115 oversupplied subregions, 85

undersupplied subregions and 3,008,155 hotspot providers in total.

2http://www.infochimps.com/datasets/uber-anonymized-gps-logs
3https://s3.amazonaws.com/SplitwiseBlogJB/2010+Census+Population+By+Zipcode+(ZCTA).csv
4https://data.sfgov.org/Transportation/Estimated-Yearly-Pedestrian-Volume-at-Intersection/v62e-2jxp

105 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

0
20
00
0

40
00
0

60
00
0

80
00
0

Subregion Postcodes

S
ho

rt
ag

e
of

 p
ro

vi
de

rs

94402 94134 94116 94530 94401

Shortage values at time t1
Shortage distribution at time t1
Shortage values at time t2
Shortage distribution at time t2
Shortage values at time t3
Shortage distribution at time t3
Shortage values at time t4
Shortage distribution at time t4
Shortage values at time t17
Shortage distribution at time t17

Figure 5.9: Distributions Reaching Equilibrium in Undersupplied Subregions

To the best of our knowledge, there are limited research investigating incentive based

spatio-temporal coverage balance. We compare the proposed Greedy Redistribute Algorithm

(GRA) and a greedy baseline algorithm to show the effectiveness of our approach.

• BaseLine (BL): Hotspot providers are randomly selected from the oversupplied sub-

regions and assigned to undersupplied subregions if they are matched based on the

transition matrix in each iteration. The process stops when there is no undersupplied

or oversupplied subregion available. We treat BL as a greedy approach because it fills

up the undersupplied subregions quickly considering hotspot providers from randomly-

selected oversupplied subregions.

• Greedy Redistribute Algorithm (GRA): The proposed greedy algorithm in which the

refinement phase (redistribution of initial assignments considering all subregions) and

initial assignment heuristic (i.e., first select the edge related to the highest undersup-

plied subregion) are applied in each iteration (Algorithm 1).

106 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

0
20
00
0

40
00
0

60
00
0

80
00
0

Subregion Postcodes

Sh
or

ta
ge

 o
f p

ro
vi

de
rs

94402 94134 94116 94530 94401

Shortage values at time t1
Shortage distribution at time t1
Shortage values at time t4
Shortage distribution at time t4
Shortage values at time t8
Shortage distribution at time t8
Shortage values at time t12
Shortage distribution at time t12
Shortage values at time t16
Shortage distribution at time t16

Figure 5.10: Not Reaching Equilibrium in Undersupplied Subregions

The travel cost between two subregions are calculated using Google Maps Distance Matrix

API that provides travel distance and time duration based on a recommended route that

take traffic conditions into account. We use the default travel mode (i.e., car driving) and

departure time (i.e., current time). Given the travel time tc, the probability value ptravelcost

is calculated. The paccount and preward are uniformly selected within a range of [0, 1]. For

each time slot, we generate an m × n transition matrix. m and n denote the number of

oversupplied and undersupplied subregion, respectively. We generate m×n
2 transitions from

randomly-selected sri, i ∈ [1,m] to srj , j ∈ [1, n]. For example, 784 transitions are generated

in a taxi transition matrix 56 × 28. The number of hotspot providers who are willing to move

from oversupplied subregion sri to srj is computed as Pij×δi for i ∈ [1,m] in each transition.

For example, if the aggregated participation P14 is 0.5 in a randomly selected transition from

sr1 to sr4 and the number of oversupplied hotspot providers of sr1 is 20 (i.e., δ1 = 20), then

the transition value is 10. This means that only 10 hotspot providers are willing to move

from sr1 to sr4. The default assignment ratio in each time slot is uniformly selected within a

107 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

20 40 60 80

102

103

Edge density (%)

E
xe
cu
ti
on

ti
m
e

Taxi
Uber
Extrapolated taxi

Figure 5.11: Execution Time vs. Edge Density

range of [0.4, 0.7]. Here, 0.4 means that at each iteration only 40% of the hotspot providers

agrees to move from sri to srj . Therefore, if the assigned flow from sri to srj is ten hotspot

providers, only four providers accept the reward to move. The remaining parameters are

also randomly generated using the uniform distribution. We run our experiments on an Intel

Core i7 CPU at 3.40 GHZ with 8 GB of RAM under Windows 10. All the algorithms are

implemented in Python. All experiments are repeated 100 times and the average results are

computed. The transition matrix is randomly generated in each run.

5.5.2 Reaching Equilibrium using the incentive model

According to definition 8, we consider a region to be in equilibrium when there is no shortage

of providers in any subregion. In the first experiment, we explore the effectiveness of the

proposed incentive model to reach equilibrium in two different scenarios. In the first scenario,

we consider around 474,000 shortage of providers in 33 undersupplied subregions on the Uber

dataset in the time slot t1. Figure 5.9 depicts the distribution trend and actual values of the

shortage of providers in each time slot. The proposed incentive model gradually reduces the

shortage of providers and we reach equilibrium, i.e., empty distribution of shortage in the

time slot t17. The rate of shortage reduction is higher in earlier time slots (t2, t3, t4 and t5)

and lower when close to the equilibrium as time slot t16 and t17 has similar distribution

pattern.

In the second scenario, similar to the first scenario, the proposed incentive model gradually

reduces the shortage of providers in undersupplied subregions (Figure 5.10). However, we

108 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

Table 5.2: Total Number of Completed Run

Taxi Uber Extrapolated taxi

Algorithm 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%

BL 0 59 97 100 0 1 5 50 68 100 100 100
GRA 11 100 100 100 17 33 81 100 99 100 100 100

Table 5.3: Execution Time vs. Edge Density

Taxi Uber Extrapolated taxi

Algorithm 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%

BL 0.234 0.147 0.079 0.097 0.222 0.218 0.214 0.162 0.484 0.706 1.106 1.522
GRA 4.09 0.093 0.135 0.168 1.812 1.433 0.317 0.111 0.658 1.014 1.587 2.139

could not reach equilibrium as around 74,000 shortage of providers from initial 474,000 remain

in the undersupplied regions in time slot t17 because the distribution of surplus providers

becomes zero. Therefore, equilibrium is not reached due to the shortage of surplus hotspot

providers in oversupplied subregions.

5.5.3 The scalability of the proposed approach

In the second set of experiments, we evaluate the scalability of our proposed approach by

varying the edge density of the graph (i.e., number of transitions) from 20% to 80% with an

iteration range of 20 while the values of other parameters remain constant. We measure the

edge density of the graph as the ratio between the number of existing edges and the number

of possible edges in the corresponding complete bipartite graph. For example, the number

of edges for 20% density of Taxi graph is 28×56
5 ' 314.

Figure 5.11 depicts the execution time to reach equilibrium of our proposed approach on

taxi, Uber and extrapolated taxi datasets when the edge density varies. As expected, for

each dataset, the execution time increases as the graph becomes denser. We conclude that

the proposed algorithm is scalable for a larger number of subregions, hotspot providers and

transitions (e.g., less than 2.3 s for 200 subregions, 80% density i.e., 7820 transitions and

3,008,155 hotspot providers). Figure 5.12 shows the number of time slots to reach equilibrium

for our three datasets as the edge density varies. The slight difference (i.e., only one time

slot) shows the proposed approach is stable in different distributions of data in terms of

subregions, hotspot providers and the graph density.

109 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

Taxi Uber Extrapolated taxi
0

5

10

15

Edge density

A
ve

ra
ge

n
u
m

b
er

o
f

ti
m

e
sl

o
ts

20% 40% 60% 80%

Figure 5.12: No. of Time Slots vs. Edge Density

5.5.4 The effectiveness of the proposed approach

In the third set of experiments, we study the effectiveness of the proposed GRA algorithm

by comparing with the baseline algorithm BL. We use the static transition matrix through

each experiment for more objective comparison. If the algorithms cannot reach equilibrium

after maximum 1000 time slots (a relatively large number), the algorithm will stop. Table

5.2 summarizes the number of completed run out of 100 times for both algorithms on three

datasets by varying the edge density of the graph from 20% to 80% with an iteration range

of 20 while the values of other parameters remain constant. The results show that GRA

significantly outperforms BL algorithm. This indicates that the refinement phase in GRA

algorithm plays an important role to reach equilibrium specifically when the graph is sparser.

For example, for the Uber dataset, compared with BL, the number of completed run is 76%

and 50% better for 60% and 80% dense graph. When the graph is highly dense, for taxi and

extrapolated taxi, the number of completed run by two algorithms are close. The reason

is when the graph is denser, there are a lot of transitions to reach equilibrium. Table 5.3

reports the computation time of both the GRA and BL algorithm. In terms of computation

time, GRA is less efficient approach due to its high computation time of computing a large

number of time consuming shortest path operations in the refinement phase. To conclude,

the GRA algorithm is practical for real application when the graph is sparser.

110 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

W
1

W
2

W
3

W
4

102

103

Weight vector

E
xe
cu
ti
on

ti
m
e
(m

s)

Taxi
Uber
Extrapolated taxi

Figure 5.13: Execution Time vs. Weights

Taxi Uber Extrapolated taxi
0

5

10

15

Edge density

A
ve

ra
ge

n
u
m

b
er

of
ti

m
e

sl
o
ts

20% 40% 60% 80%

Figure 5.14: No. of Time Slots vs.
Weights

5.5.5 Effect of weights

The last set of experiments investigates the effect of varying weights of Eq. 5.6 on GRA

approach. For this experiment, we fix the edge density as 40% and vary the weight values

as follows: W1 = [wtt = 0.8, wacc = 0.1, wr = 0.1], W2=[wtt = 0.1, wacc = 0.1, wr = 0.8

], W3 = [wtt = 0.1, wacc = 0.8, wr = 0.1] and W4 = [wtt = 0.4, wacc = 0.3, wr = 0.3].

Figure 5.13 shows the execution time and Figure 5.14 depicts the number of time slots to

reach equilibrium on our three different datasets. We observe that the weight values have

little influence on the total number of time slots and execution time to reach equilibrium.

As a result, the GRA approach is independent of the weights.

5.6 Chapter Summary

This chapter proposed a novel incentive-based greedy redistribution approach to achieve an

optimal geographically-balanced coverage by offering incentives to crowdsourced hotspot ser-

vice providers. The proposed approach is based on a new spatio-temporal incentive model

that considers multiple parameters including location entropy, time of the day and spatio-

temporal density to encourage the participation of crowdsourced service providers. We pre-

sented a new greedy network flow algorithm that offers incentives to redistribute the crowd-

sourced service providers to improve the crowdsourced coverage balance along an area. A

novel participation probability model was also introduced to estimate the expected number

of crowdsourced service providers movement based on spatio-temporal features. In our ex-

111 (June 26, 2017)

CHAPTER 5. INCENTIVE-BASED CROWDSOURCING OF HOTSPOT SERVICES

periments, we demonstrated the scalability and effectiveness of our proposed approach to

reach coverage equilibrium using two real datasets Uber and taxi. The results show that our

greedy network flow algorithm has a satisfying scalability in terms of the number of time

slots and execution time.

112 (June 26, 2017)

Chapter 6

Conclusion

Sensor-cloud is an emerging field that provides unique storage and processing capabilities and

opportunities, particularly for the use of a large amount of real-time sensor data streaming

collected from all types of sensors and mobile devices such as smartphones. However, efficient

and real-time delivery of sensor data is challenging. In this thesis, we have proposed a

novel service framework to manage crowdsourced sensor data focusing on spatio-temporal

aspects while providing a balanced distribution of crowdsourcing providers. The service

framework aims to provide a high-level abstraction (i.e., sensor-cloud services) to model

sensor data from functional and non-functional perspectives, seamlessly turning raw data into

“ready to go” services. The proposal focused on spatio-temporal selection and composition

of crowdsourced sensor-cloud services. This is a new and novel direction in service-oriented

computing research. In what follows, we recap the research objectives mentioned in the

introduction. We also summarize the major contributions of this thesis. Finally, we discuss

several possible future research directions.

6.1 Research Objectives Revisited

This section summarizes the research objectives, proposed methods and findings of this thesis.

• To design and develop a service framework for cloud-based sensor data.

Chapter 3 defined a service-oriented framework to effectively and efficiently capture,

manage and deliver cloud-based sensed data as user-desired services, taking into account

users’ spatio-temporal and qualitative requirements. We used a typical public transport

scenario as our motivating scenario. We focused on modelling sensor-cloud services

113 (June 26, 2017)

CHAPTER 6. CONCLUSION

based on the spatio-temporal features of sensor data, i.e., sensor data shared in a cloud

can be abstracted as sensor-cloud services. The functional attributes of sensor-cloud

services capture their spatio-temporal features and non-functional attributes describe

their qualitative aspects. The functional attributes include service ID, a set of sensors

that collect sensor data related to the service, space-time and the function offered by

the service (e.g., modes of transportation). The space is presented by a line segment

including the GPS start and end-points. The time shows start-time and end-time of the

service. We also designed a service organization to efficiently search and select sensor-

cloud services. We devised a spatio-temporal index structure based on a 3D R-tree to

efficiently and effectively access for sensor-cloud services. QoS attributes are typically

used to select functionality equivalent services. We introduced new QoS attributes,

namely service time, freshness and accuracy, which focus on the dynamic aspects of

the services. Service time reflects the expected time in minutes between the start and

end points. Freshness measures how fresh the sensor data related to the service is.

Accuracy indicates how a service is assured.

• To devise QoS-aware spatio-temporal composition of sensor-cloud services.

The research challenge is to select the ”best” spatio-temporal composition of sensor-

cloud services within a range of users’ requirements and QoS expectations. In Chapter

3, we modelled the spatio-temporal linear composition problem as a directed spatio-

temporal graph search problem. In that graph, each vertex has an associated space-time

attribute of a line segment service and each edge is associated with the QoS attributes.

We proposed a spatio-temporal linear composition algorithm, using a modified version

of the A* shortest path algorithm as the basis for finding the optimal linear composi-

tion plan. We also introduced the notion of a linear composability model to cater for

checking that two line segment sensor-cloud services are spatio-temporally composable.

The initial composition plan needs to be replanned to prevent failures caused by a fluc-

tuating QoS when the user executes the composed sensor-cloud service. We developed

a failure-proof mechanism based on the incremental replanning algorithm D* Lite to

repair the linear composition plan when new information about the environment is re-

ceived. The experimental results showed that this linear composition outperformed the

spatio-temporal Dijkstra algorithm which was developed for our experiments. We also

showed that a similar computation time was achieved in the failure-proof composition

approach regardless of varying the QoS fluctuation ratio.

114 (June 26, 2017)

CHAPTER 6. CONCLUSION

• To design a crowdsourcing platform for real-time and adaptive service pro-

visioning. We designed a two-level spatio-temporal composition algorithm based on

the proposed framework for the spatio-temporal linear composition of sensor-cloud ser-

vices, in Chapter 4. This two-level composition approach maps crowdsourced coverage

as a QoS for selecting the optimal linear composition plan. Even more significantly, we

considered the crowdsourced coverage as a region service itself for each candidate linear

plan. We then reformulated the problem of selecting a linear composition plan with the

best crowdsourced coverage as selecting the best composed region services along the

linear composition plans. In the case of crowdsourced region services, we also defined

new quality parameters including signal strength, capacity and level of composability.

The signal strength is modelled based on the distance between the region service and

a user using the exponential attenuation probabilistic coverage model [143]. The ca-

pacity is the maximum amount of data that can be transmitted. We modelled the

capacity based on the Signal to Noise Ratio Shannon-Hartley theorem [144]. The level

of composability presents the number of available spatio-temporal neighbour region

services. We also proposed two different approaches to this two-level service composi-

tion. The first approach considered one path at a time for selecting the best coverage

along each and every optimal linear composition plan. The second approach considered

one segment at a time for selecting the best coverage along every line segment service.

We then proposed the QoS-aware spatio-temporal overlay composition approach in the

scenario of WiFi hotspot sharing. In the experiments, we studied the scalability of

both approaches in terms of execution time. The one path at a time approach applies

a filtering mechanism to prune the search space to improve the efficiency of the overlay

composition process. The experimental results showed that applying this filtering stage

significantly reduces the computation time. In addition, we found that the new heuris-

tic in the one segment at a time approach had a significant impact on the execution

time and finding more accurate composition plans in terms of QoS cost.

• To devise an incentive model to drive coverage of crowdsourced sensor-

cloud services. Chapter 5 outlined a new spatio-temporal incentive-based approach

to achieve a required coverage of crowdsourced services in a predefined region. We first

proposed a spatio-temporal incentive model to encourage movement from oversupplied

subregions to undersupplied subregions. The incentive model was defined based on the

spatio-temporal dynamicity of the environment including changes in regional density,

115 (June 26, 2017)

CHAPTER 6. CONCLUSION

time of day and subregion entropy. We then introduced a new participation probabil-

ity model to estimate the number of crowdsourced service providers who are moving

to earn the offered incentive. We then formulated the problem of the crowdsourced

providers’ assignment as a flow network problem. A greedy flow network redistribution

algorithm was proposed to redistribute the crowdsourced service providers through of-

fering incentives. This algorithm aimed to select the appropriate crowdsourced service

providers from oversupplied subregions in a particular time slot and to assign them to

undersupplied subregions so that the required coverage can be attained. The conducted

experiments presented the effectiveness and scalability of our greedy approach to reach

a coverage balance of crowdsourced services using two real datasets (i.e., mobility traces

of Uber and Taxi Cabs in San Francisco, USA). The experimental results also showed

that the algorithm is scalable for larger numbers of subregions and hotspot providers

and dense graph. Furthermore, we demonstrated that our approach is more effective

in comparison to a baseline approach to reach equilibrium over different distributions.

6.2 Future Research

In this section, we identify and describe some future research directions.

6.2.1 Leveraging Crowdsourced Sensors for Real-Time Spatio-Temporal Linear

Composition

In this thesis, we made the assumption that the linear service composition is created using

services modelled by fixed sensors. Similarly, the QoS properties are modelled based on these

historical sensors information. In future research, crowdsourced sensors may be considered

as providing an alternative source of information to find a set of optimal linear composition

plans from source point to destination point. This study could be extended to develop a

set of new spatio-temporal selection and linear composition techniques to create an optimal

linear composition plan using crowdsourced sensors to provide real-time sensor data about

the quality of a sensor-cloud service (e.g., bus or train). This could also be applied to

obtaining feedback on the completeness of our present proposed approaches and comparing

the crowdsourced and static sensors to augment reliability. Identifying and accessing the right

sensors from the cloud which may be applicable to the current service is another interesting

direction for future research. This is important as sensors will move from one mode of

transportation to another, i.e., they would serve different sets of services at different locations

116 (June 26, 2017)

CHAPTER 6. CONCLUSION

and times. Developing efficient techniques to accurately identify sensors that will be mapped

to the right service is another important area for future research.

6.2.2 Designing QoS-aware Frameworks for Spatio-Temporal Selection and Com-

position of Transient Crowdsourced Services

We identify four different types of crowdsourced services which are modelled by considering

permanent and transient in space and deterministic or non-deterministic in time. Crowd-

sourced services may be spatially permanent or transient. A permanent crowdsourced service

is assumed to be fixed in space for the time required by a specific user. For example, John

would like to share his WiFi hotspot while he is sitting in a cafe. A transient crowdsourced

service is not tied to any specific location or any specific time. We assume that John may

share his WiFi hotspot and also move from one location to another. In the case of perma-

nent hotspot sharing, we assume that once a hotspot is part of a plan, that hotspot will

not change its availability at a spatial location during the provision of the service. However,

in the case of transient hotspot sharing, no such promise is given regarding the availability

or spatial location of the hotspot. Additionally, crowdsourced services may also be tem-

porally deterministic or temporally non-deterministic. Temporally deterministic refers to a

crowdsourced service whose time of availability at a certain location is known and fixed in

advance. Conversely, temporally non-deterministic refers to a crowdsourced service whose

time availability is not known in advance.

In this thesis, we modelled permanent deterministic crowdsourced services. In future, we

intend to extend our research on transient non-deterministic crowdsourced services. Since the

transient services are represented by moving sensors, it is important that they be modelled

in such a way that they are identified accordingly. This is important as clearly identifying

the moving service allows for accurate and efficient composition of crowdsourced coverage.

This also calls for new trajectory clustering techniques like convoys [161], flocks [162] and

travelling companions [163] to efficiently discover the transient crowdsourced services. In

addition, we suggest designing composition techniques for transient services which focus on

efficiently discovering services with similar trajectories to users’ trajectories.

In our current work, we assumed that QoS features of component services were determin-

istic relative to the crowdsourced sensor-cloud services they were used for. Investigating the

use of supervised or unsupervised approaches including Hidden Markov Model (HMM), Arti-

ficial Neural Networks (ANN) and Autoregressive Integrated Moving Average (ARIMA)[164]

117 (June 26, 2017)

CHAPTER 6. CONCLUSION

for spatio-temporal QoS prediction without prior knowledge is another interesting direction

for future research.

6.2.3 Developing Dynamic Incentive Models

In this thesis, we assumed an off-line approach that considers a static population of crowd-

sourced service providers during the redistribution process. Our future research will extend

the current framework to deal with the on-line arrival of both service providers and cus-

tomers. Few studies to date have explored dynamic pricing models that can allocate tasks

to participants on their arrival [165–167]. In this study, the coordinator of each subregion

was assumed to decide the incentive value without negotiating with crowdsourced service

providers. However, further investigation would examine how to integrate bid-price auction

into the design of the incentive model. In particular, an automatic bid price decision process

based on historical bid prices of providers can also be designed to decrease disturbance to

service providers.

118 (June 26, 2017)

Bibliography

[1] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network sur-

vey. Journal of Computer Networks, 52(12):2292–2330, 2008.

[2] Wei-Tek Tsai, Xin Sun, and Janaka Balasooriya. Service-oriented cloud computing

architecture. In 2010 Seventh International Conference on Information Technology:

New Generations (ITNG), pages 684–689. IEEE, 2010.

[3] Sanjay Madria, Vimal Kumar, and Rashmi Dalvi. Sensor cloud: A cloud of virtual

sensors. Journal of IEEE Software, 31(2):70–77, 2014.

[4] Madoka Yuriyama, Takayuki Kushida, and Mayumi Itakura. A new model of acceler-

ating service innovation with sensor-cloud infrastructure. In 2011 Annual SRII Global

Conference, pages 308–314. IEEE, 2011.

[5] Atif Alamri, Wasai Shadab Ansari, Mohammad Mehedi Hassan, M Shamim Hossain,

Abdulhameed Alelaiwi, and M Anwar Hossain. A survey on sensor-cloud: architecture,

applications, and approaches. International Journal of Distributed Sensor Networks, 9

(2):917–923, 2013.

[6] Ian F Akyildiz and Mehmet Can Vuran. Wireless sensor networks, volume 4. John

Wiley & Sons, 2010.

[7] Ruoshui Liu and Ian J Wassell. Opportunities and challenges of wireless sensor networks

using cloud services. In Proceedings of the workshop on Internet of Things and Service

Platforms, page 4. ACM, 2011.

[8] V Rajesh, JM Gnanasekar, RS Ponmagal, and P Anbalagan. Integration of wireless

sensor network with cloud. In 2010 International Conference on Recent Trends in

Information, Telecommunication and Computing (ITC), pages 321–323. IEEE, 2010.

119 (June 26, 2017)

BIBLIOGRAPHY

[9] Sudip Misra, Subarna Chatterjee, and Mohammad S Obaidat. On theoretical modeling

of sensor cloud: A paradigm shift from wireless sensor network. IEEE Systems Journal,

pages 1–10, 2014.

[10] Qi Yu and Athman Bouguettaya. Framework for web service query algebra and opti-

mization. ACM Transactions on the Web (TWEB), 2(1):6, 2008.

[11] Maolin Tang and Lifeng Ai. A hybrid genetic algorithm for the optimal constrained

web service selection problem in web service composition. In 2010 IEEE Congress on

Evolutionary Computation (CEC), pages 1–8. IEEE, 2010.

[12] San-Yih Hwang, Ee-Peng Lim, Chien-Hsiang Lee, and Cheng-Hung Chen. Dynamic

web service selection for reliable web service composition. IEEE Transactions on Ser-

vices Computing, 1(2):104–116, 2008.

[13] Brahim Medjahed, Athman Bouguettaya, and Ahmed K Elmagarmid. Composing web

services on the semantic web. The International Journal on Very Large Data Bases

(VLDB), 12(4):333–351, 2003.

[14] Qi Yu, Xumin Liu, Athman Bouguettaya, and Brahim Medjahed. Deploying and

managing web services: issues, solutions, and directions. The International Journal

on Very Large Data Bases (VLDB), 17(3):537–572, 2008.

[15] Mike P Papazoglou. Service-oriented computing: Concepts, characteristics and di-

rections. In Proceedings of the Fourth International Conference on Web Information

Systems Engineering (WISE 2003), pages 3–12. IEEE, 2003.

[16] Michael N Huhns and Munindar P Singh. Service-oriented computing: Key concepts

and principles. Journal IEEE Internet computing, 9(1):75–81, 2005.

[17] Khaled Mahbub and Andrea Zisman. Replacement policies for service-based systems.

In 2009 Workshops of Service-Oriented Computing (ICSOC/ServiceWave), pages 345–

357. Springer, 2010.

[18] Ying Li, Xiaorong Zhang, Yu Yu Yin, and Yuanlei Lu. Towards functional dynamic re-

configuration for service-based applications. In 2011 IEEE World Congress on Services

(SERVICES), pages 467–473. IEEE, 2011.

120 (June 26, 2017)

BIBLIOGRAPHY

[19] Hussein Al-Helal and Rose Gamble. Introducing replaceability into web service com-

position. IEEE Transactions on Services Computing, 7(2):198–209, 2014.

[20] Jeffrey A Burke, Deborah Estrin, Mark Hansen, Andrew Parker, Nithya Ramanathan,

Sasank Reddy, and Mani B Srivastava. Participatory sensing. Center for Embedded

Network Sensing, 2006.

[21] Leyla Kazemi and Cyrus Shahabi. Geocrowd: enabling query answering with spatial

crowdsourcing. In Proceedings of the 20th International Conference on Advances in

Geographic Information Systems, pages 189–198. ACM, 2012.

[22] Jeff Howe. The rise of crowdsourcing. Wired magazine, 14(6):1–4, 2006.

[23] Florian Alt, Alireza Sahami Shirazi, Albrecht Schmidt, Urs Kramer, and Zahid Nawaz.

Location-based crowdsourcing: extending crowdsourcing to the real world. In Pro-

ceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending

Boundaries, pages 13–22. ACM, 2010.

[24] Shuiguang Deng, Longtao Huang, Javid Taheri, Jianwei Yin, MengChu Zhou, and

Albert Y Zomaya. Mobility-aware service composition in mobile communities. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, 47(3):555–568, 2017.

[25] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2):100–107, 1968.

[26] Sven Koenig and Maxim Likhachev. D* lite. In AAAI/IAAI, pages 476–483, 2002.

[27] Wendi Rabiner Heinzelman, Joanna Kulik, and Hari Balakrishnan. Adaptive protocols

for information dissemination in wireless sensor networks. In Proceedings of the 5th

Annual ACM/IEEE International Conference on Mobile Computing and Networking,

pages 174–185. ACM, 1999.

[28] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and

research challenges. Journal of Internet Services and Applications, 1(1):7–18, 2010.

[29] Kevin Lee and Danny Hughes. System architecture directions for tangible cloud com-

puting. In 2010 First ACIS International Symposium on Cryptography and Network

121 (June 26, 2017)

BIBLIOGRAPHY

Security, Data Mining and Knowledge Discovery, E-Commerce & Its Applications and

Embedded Systems (CDEE), pages 258–262. IEEE, 2010.

[30] Peter Mell and Timothy Grance. The nist definition of cloud computing. NIST special

publication, 800:145, 2011.

[31] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A view

of cloud computing. Communications of the ACM, 53(4):50–58, 2010.

[32] Hai Jin, Shadi Ibrahim, Tim Bell, Wei Gao, Dachuan Huang, and Song Wu. Cloud

types and services. Handbook of Cloud Computing, pages 335–355, 2010.

[33] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and grid com-

puting 360-degree compared. In Grid Computing Environments Workshop (GCE’08),

pages 1–10. IEEE, 2008.

[34] Katarina Stanoevska-Slabeva and Thomas Wozniak. Cloud basics–an introduction to

cloud computing. Journal of Grid and Cloud Computing, pages 47–61, 2010.

[35] Richard Chow, Philippe Golle, Markus Jakobsson, Elaine Shi, Jessica Staddon,

Ryusuke Masuoka, and Jesus Molina. Controlling data in the cloud: outsourcing com-

putation without outsourcing control. In Proceedings of the 2009 ACM workshop on

Cloud computing security, pages 85–90. ACM, 2009.

[36] Michael Papazoglou. Web services: principles and technology. Addison-Wesley, 2008.

[37] Wei Wang, Kevin Lee, and David Murray. Integrating sensors with the cloud using

dynamic proxies. In 23rd International Symposium on Personal Indoor and Mobile

Radio Communications (PIMRC), pages 1466–1471. IEEE, 2012.

[38] Kevin Lee, David Murray, Danny Hughes, and Wouter Joosen. Extending sensor net-

works into the cloud using amazon web services. In 2010 IEEE International Con-

ference on Networked Embedded Systems for Enterprise Applications (NESEA), pages

1–7. IEEE, 2010.

[39] Ahmed Lounis, Abdelkrim Hadjidj, Abdelmadjid Bouabdallah, and Yacine Challal.

Secure and scalable cloud-based architecture for e-health wireless sensor networks. In

122 (June 26, 2017)

BIBLIOGRAPHY

21st International Conference on Computer Communications and Networks (ICCCN),

pages 1–7. IEEE, 2012.

[40] Khandakar Ahmed and Mark Gregory. Integrating wireless sensor networks with cloud

computing. In 2011 Seventh International Conference on Mobile Ad-hoc and Sensor

Networks (MSN), pages 364–366. IEEE, 2011.

[41] Madoka Yuriyama and Takayuki Kushida. Sensor-cloud infrastructure-physical sensor

management with virtualized sensors on cloud computing. In 2010 13th International

Conference on Network-Based Information Systems (NBiS), pages 1–8. IEEE, 2010.

[42] Mohammad Mehedi Hassan, Biao Song, and Eui-Nam Huh. A framework of sensor-

cloud integration opportunities and challenges. In Proceedings of the 3rd International

Conference on Ubiquitous Information Management and Communication, pages 618–

626. ACM, 2009.

[43] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.

The many faces of publish/subscribe. ACM Journal of Computing Surveys (CSUR),

35(2):114–131, 2003.

[44] LP Dinesh Kumar, S Shakena Grace, Akshaya Krishnan, VM Manikandan, R Chinraj,

and MR Sumalatha. Data filtering in wireless sensor networks using neural networks

for storage in cloud. In 2012 International Conference on Recent Trends In Information

Technology (ICRTIT), pages 202–205. IEEE, 2012.

[45] Salvatore Distefano, Giovanni Merlino, and Antonio Puliafito. Sensing and actuation

as a service: a new development for clouds. In 11th IEEE International Symposium on

Network Computing and Applications (NCA), pages 272–275. IEEE, 2012.

[46] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Georgakopoulos.

Sensing as a service model for smart cities supported by internet of things. Trans-

actions on Emerging Telecommunications Technologies, 25(1):81–93, 2014.

[47] Sanjit Kumar Dash, Subasish Mohapatra, and Prasant Kumar Pattnaik. A survey on

application of wireless sensor network using cloud computing. International Journal of

Computer science & Engineering Technologies (E-ISSN: 2044-6004), 1(4):50–55, 2010.

123 (June 26, 2017)

BIBLIOGRAPHY

[48] Giancarlo Fortino, Mukaddim Pathan, and Giuseppe Di Fatta. Bodycloud: Integration

of cloud computing and body sensor networks. In 4th International Conference on

Cloud Computing Technology and Science (CloudCom), pages 851–856. IEEE, 2012.

[49] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based

encryption. In IEEE Symposium on Security and Privacy, pages 321–334. IEEE, 2007.

[50] Wen-Yaw Chung, Pei-Shan Yu, and Chao-Jen Huang. Cloud computing system based

on wireless sensor network. In 2013 Federated Conference on Computer Science and

Information Systems (FedCSIS), pages 877–880. IEEE, 2013.

[51] Sunanda Bose and Nandini Mukherjee. Sensiaas: A sensor-cloud infrastructure with

sensor virtualization. In 3rd International Conference on Cyber Security and Cloud

Computing (CSCloud), pages 232–239. IEEE, 2016.

[52] Subarna Chatterjee and Sudip Misra. Target tracking using sensor-cloud: Sensor-target

mapping in presence of overlapping coverage. IEEE Communications Letters, 18(8):

1435–1438, 2014.

[53] Denis Bouyssou, Didier Dubois, Henri Prade, and Marc Pirlot. Decision Making Pro-

cess: Concepts and Methods. John Wiley & Sons, 2013.

[54] Sudip Misra, Anuj Singh, Subarna Chatterjee, and Amit Kumar Mandal. Qos-aware

sensor allocation for target tracking in sensor-cloud. Ad Hoc Networks, 33:140–153,

2015.

[55] Sarfraz Alam, Mohammad MR Chowdhury, and Josef Noll. Senaas: An event-driven

sensor virtualization approach for internet of things cloud. In 2010 IEEE International

Conference on Networked Embedded Systems for Enterprise Applications (NESEA),

pages 1–6. IEEE, 2010.

[56] John Ibbotson, Christopher Gibson, Joel Wright, Peter Waggett, Petros Zerfos,

Boleslaw Szymanski, and David J Thornley. Sensors as a service oriented architecture:

Middleware for sensor networks. In 2010 Sixth International Conference on Intelligent

Environments (IE),, pages 209–214. IEEE, 2010.

[57] Nimbits data logging cloud sever. URL http://www.nimbits.com.

[58] Pachube feed cloud service. URL http://www.pachube.com.

124 (June 26, 2017)

BIBLIOGRAPHY

[59] Markus Eisenhauer, Peter Rosengren, and Pablo Antolin. Hydra: A development

platform for integrating wireless devices and sensors into ambient intelligence systems.

In The Internet of Things, pages 367–373. Springer, 2010.

[60] Karl Aberer, Manfred Hauswirth, and Ali Salehi. A middleware for fast and flexible

sensor network deployment. In Proceedings of the 32nd international conference on

Very large data bases, pages 1199–1202. VLDB Endowment, 2006.

[61] Sanem Kabadayi, Adam Pridgen, and Christine Julien. Virtual sensors: Abstracting

data from physical sensors. In Proceedings of the 2006 International Symposium on

World of Wireless, Mobile and Multimedia Networks, pages 587–592. IEEE Computer

Society, 2006.

[62] Soon Ae Chun, Vijayalakshmi Atluri, and Nabil R. Adam. Using semantics for policy-

based web service composition. Journal of Distributed and Parallel Databases, 18(1):

37–64, 2005.

[63] Liangzhao Zeng, Boualem Benatallah, Anne H. H. Ngu, Marlon Dumas, Jayant

Kalagnanam, and Henry Chang. Qos-aware middleware for web services composition.

IEEE Transactions on Software Engineering, 30(5):311–327, 2004.

[64] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani.

An approach for qos-aware service composition based on genetic algorithms. In Pro-

ceedings of the 7th annual conference on Genetic and evolutionary computation, pages

1069–1075. ACM, 2005.

[65] Zhen Ye, Xiaofang Zhou, and Athman Bouguettaya. Genetic algorithm based qos-aware

service compositions in cloud computing. In International Conference on Database

Systems for Advanced Applications, pages 321–334. Springer, Berlin, Heidelberg, 2011.

[66] Wei Jiang, Tian Wu, Song-Lin Hu, and Zhi-Yong Liu. Qos-aware automatic service

composition: A graph view. Journal of Computer Science and Technology, 26(5):837–

853, 2011.

[67] Seog-Chan Oh, Ju-Yeon Lee, Seon-Hwa Cheong, Soo-Min Lim, Min-Woo Kim, Sang-

Seok Lee, Jin-Bum Park, Sang-Do Noh, and Mye M Sohn. Wspr*: Web-service planner

augmented with a* algorithm. In IEEE Conference on Commerce and Enterprise

Computing (CEC’09), pages 515–518. IEEE, 2009.

125 (June 26, 2017)

BIBLIOGRAPHY

[68] Bin Wu, Shuiguang Deng, Ying Li, Jian Wu, and Jianwei Yin. Awsp: an automatic

web service planner based on heuristic state space search. In 2011 IEEE International

Conference on Web Services (ICWS), pages 403–410. IEEE, 2011.

[69] Iria Estevez-Ayres, Pablo Basanta-Val, Marisol Garćıa-Valls, Jesús A Fisteus, and Lúıs

Almeida. Qos-aware real-time composition algorithms for service-based applications.

IEEE Transactions on Industrial Informatics, 5(3):278–288, 2009.

[70] Shuiguang Deng, Longtao Huang, Ying Li, and Jianwei Yin. Deploying data-intensive

service composition with a negative selection algorithm. International Journal of Web

Services Research (IJWSR), 11(1):76–93, 2014.

[71] Umair Sadiq, Mohan Kumar, Andrea Passarella, and Marco Conti. Service composition

in opportunistic networks: A load and mobility aware solution. IEEE Transactions on

Computers, 64(8):2308–2322, 2015.

[72] Jianping Wang. Exploiting mobility prediction for dependable service composition in

wireless mobile ad hoc networks. IEEE Transactions on Services Computing, 4(1):

44–55, 2011.

[73] David B Johnson and David A Maltz. Dynamic source routing in ad hoc wireless

networks. In Mobile computing, pages 153–181. Springer, 1996.

[74] Amir Hossein Gandomi and Amir Hossein Alavi. Krill herd: a new bio-inspired opti-

mization algorithm. In Journal of Communications in Nonlinear Science and Numer-

ical Simulation, 17(12):4831–4845, 2012.

[75] Shuiguang Deng, Longtao Huang, Daning Hu, J Leon Zhao, and Zhaohui Wu. Mobility-

enabled service selection for composite services. IEEE Transactions on Services Com-

puting, 9(3):394–407, 2016.

[76] Nguyen Cao Hong Ngoc, Donghui Lin, Takao Nakaguchi, and Toru Ishida. Qos-

aware service composition in mobile environments. In 7th International Conference

on Service-Oriented Computing and Applications (SOCA), pages 97–104. IEEE, 2014.

[77] Nanxi Chen, Nicolás Cardozo, and Siobhán Clarke. Goal-driven service composition in

mobile and pervasive computing. IEEE Transactions on Services Computing, 99, 2016.

126 (June 26, 2017)

BIBLIOGRAPHY

[78] Shuiguang Deng, Longtao Huang, Ying Li, Honggeng Zhou, Zhaohui Wu, Xiongfei Cao,

Mikhail Yu Kataev, and Ling Li. Toward risk reduction for mobile service composition.

IEEE Transactions on Cybernetics, 46(8):1807–1816, 2016.

[79] Peter JM Van Laarhoven and Emile HL Aarts. Simulated annealing. In Simulated

Annealing: Theory and Applications, pages 7–15. Springer, 1987.

[80] Nawal Guermouche and Claude Godart. Composition of web services based on timed

mediation. International Journal of Next-Generation Computing (IJNGC), 5(1):26p,

2014.

[81] Tao Zhang, JianFeng Ma, Qi Li, Ning Xi, and Cong Sun. Trust-based service composi-

tion in multi-domain environments under time constraint. Science China Information

Sciences, 57(9):1–16, 2014.

[82] Florian Wagner, Adrian Klein, Benjamin Klöpper, Fuyuki Ishikawa, and Shinichi

Honiden. Multi-objective service composition with time-and input-dependent qos. In

2012 IEEE 19th International Conference on Web Services (ICWS), pages 234–241.

IEEE, 2012.

[83] Benjamin Klöpper, Fuyuki Ishikawa, and Shinichi Honiden. Service composition with

pareto-optimality of time-dependent qos attributes. In International conference on

Service-oriented Computing, pages 635–640. Springer, 2010.

[84] Shuiguang Deng, Longtao Huang, Hongyue Wu, and Zhaohui Wu. Constraints-driven

service composition in mobile cloud computing. In 2016 IEEE International Conference

on Web Services (ICWS), pages 228–235. IEEE, 2016.

[85] Ikbel Guidara, Nawal Guermouche, Tarak Chaari, Said Tazi, and Mohamed Jmaiel.

Pruning based service selection approach under qos and temporal constraints. In 2014

IEEE International Conference on Web Services (ICWS), pages 9–16. IEEE, 2014.

[86] Yohan Chon, Nicholas D Lane, Fan Li, Hojung Cha, and Feng Zhao. Automatically

characterizing places with opportunistic crowdsensing using smartphones. In Proceed-

ings of the 2012 ACM Conference on Ubiquitous Computing, pages 481–490. ACM,

2012.

127 (June 26, 2017)

BIBLIOGRAPHY

[87] Muhammed Fatih Bulut, Yavuz Selim Yilmaz, and Murat Demirbas. Crowdsourcing

location-based queries. In 2011 IEEE International Conference on Pervasive Comput-

ing and Communications Workshops (PERCOM Workshops), pages 513–518. IEEE,

2011.

[88] Afra J Mashhadi and Licia Capra. Quality control for real-time ubiquitous crowdsourc-

ing. In Proceedings of the 2nd international workshop on Ubiquitous crowdsouring,

pages 5–8. ACM, 2011.

[89] Dongyoun Shin, Stefan Müller Arisona, Sofia Georgakopoulou, Gerhard Schmitt, and

Sungah Kim. A crowdsourcing urban simulation platform on smartphone technology:

Strategies for urban data visualization and transportation mode detection. In Proceed-

ings of the 30th eCAADe Conference, pages 377–384, 2012.

[90] John Zimmerman, Anthony Tomasic, Charles Garrod, Daisy Yoo, Chaya Hiruncharoen-

vate, Rafae Aziz, Nikhil Ravi Thiruvengadam, Yun Huang, and Aaron Steinfeld. Field

trial of tiramisu: crowd-sourcing bus arrival times to spur co-design. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, pages 1677–1686.

ACM, 2011.

[91] Aaron Steinfeld, John Zimmerman, Anthony Tomasic, Daisy Yoo, and Rafae Aziz.

Mobile transit information from universal design and crowdsourcing. Transportation

Research Record: Journal of the Transportation Research Board, (2217):95–102, 2011.

[92] Brian Ferris, Kari Watkins, and Alan Borning. Onebusaway: results from providing

real-time arrival information for public transit. In Proceedings of the Conference on

Human Factors in Computing Systems (SIGCHI), pages 1807–1816. ACM, 2010.

[93] Burak Kantarci and Hussein T Mouftah. Sensing services in cloud-centric internet of

things: A survey, taxonomy and challenges. In 2015 IEEE International Conference

on Communication Workshop (ICCW), pages 1865–1870. IEEE, 2015.

[94] Arber Murturi, Burak Kantarci, and Sema F Oktug. A reference model for crowd-

sourcing as a service. In 2015 IEEE 4th International Conference on Cloud Networking

(CloudNet), pages 64–66. IEEE, 2015.

[95] George Iosifidis, Lin Gao, Jianwei Huang, and Leandros Tassiulas. Enabling crowd-

128 (June 26, 2017)

BIBLIOGRAPHY

sourced mobile internet access. In 2014 IEEE International Conference on Computer

Communications INFOCOM, pages 451–459. IEEE, 2014.

[96] Xiang Sheng, Xuejie Xiao, Jian Tang, and Guoliang Xue. Sensing as a service: A cloud

computing system for mobile phone sensing. In Sensors 2012, pages 1–4. IEEE, 2012.

[97] Xiang Sheng, Jian Tang, Xuejie Xiao, and Guoliang Xue. Sensing as a service: Chal-

lenges, solutions and future directions. IEEE Sensors Journal, 13(10):3733–3741, 2013.

[98] Xin Peng, Jingxiao Gu, Tian Huat Tan, Jun Sun, Yijun Yu, Bashar Nuseibeh, and

Wenyun Zhao. Crowdservice: Serving the individuals through mobile crowdsourcing

and service composition. In 2016 31st IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE), pages 214–219. IEEE, 2016.

[99] Dejun Yang, Guoliang Xue, Xi Fang, and Jian Tang. Crowdsourcing to smartphones:

incentive mechanism design for mobile phone sensing. In Proceedings of the 18th annual

international conference on Mobile computing and networking, pages 173–184. ACM,

2012.

[100] Drew Fudenberg and Jean Tirole. Game theory, 1991. Cambridge, Massachusetts, 393:

12, 1991.

[101] Vijay Krishna. Auction theory. Academic press, 2009.

[102] Iordanis Koutsopoulos. Optimal incentive-driven design of participatory sensing sys-

tems. In 2013 IEEE International Conference on Computer Communications INFO-

COM, pages 1402–1410. IEEE, 2013.

[103] Roger B Myerson. Optimal auction design. Mathematics of operations research, 6(1):

58–73, 1981.

[104] Juong-Sik Lee and Baik Hoh. Sell your experiences: a market mechanism based in-

centive for participatory sensing. In 2010 IEEE International Conference on Pervasive

Computing and Communications (PerCom), pages 60–68. IEEE, 2010.

[105] Juong-Sik Lee and Baik Hoh. Dynamic pricing incentive for participatory sensing.

Pervasive and Mobile Computing, 6(6):693–708, 2010.

129 (June 26, 2017)

BIBLIOGRAPHY

[106] Ioannis Krontiris and Andreas Albers. Monetary incentives in participatory sensing

using multi-attributive auctions. International Journal of Parallel, Emergent and Dis-

tributed Systems, 27(4):317–336, 2012.

[107] Niwat Thepvilojanapong, Kai Zhang, Tomoya Tsujimori, Yoshikatsu Ohta, Yunlong

Zhao, and Yoshito Tobe. Participation-aware incentive for active crowd sensing. In

2013 IEEE 10th International Conference on High Performance Computing and Com-

munications & 2013 IEEE International Conference on Embedded and Ubiquitous Com-

puting (HPCC EUC), pages 2127–2134. IEEE, 2013.

[108] Hao Wang, Yunlong Zhao, Yang Li, Kai Zhang, Niwat Thepvilojanapong, and Yoshito

Tobe. An optimized directional distribution strategy of the incentive mechanism in

senseutil-based participatory sensing environment. In 2013 IEEE Ninth International

Conference on Mobile Ad-hoc and Sensor Networks (MSN), pages 67–71. IEEE, 2013.

[109] Sasank Reddy, Deborah Estrin, and Mani Srivastava. Recruitment framework for par-

ticipatory sensing data collections. In International Conference on Pervasive Comput-

ing, pages 138–155. Springer, 2010.

[110] Luis G Jaimes, Idalides J Vergara-Laurens, and Andrew Raij. A survey of incentive

techniques for mobile crowd sensing. IEEE Internet of Things Journal, 2(5):370–380,

2015.

[111] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymberopoulos, Ramesh

Govindan, and Deborah Estrin. Diversity in smartphone usage. In Proceedings of

the 8th international conference on Mobile systems, applications, and services, pages

179–194. ACM, 2010.

[112] Luis G Jaimes, Idalides Vergara-Laurens, and Miguel A Labrador. A location-based

incentive mechanism for participatory sensing systems with budget constraints. In

2012 IEEE International Conference on Pervasive Computing and Communications

(PerCom), pages 103–108. IEEE, 2012.

[113] Samir Khuller, Anna Moss, and Joseph Seffi Naor. The budgeted maximum coverage

problem. Information Processing Letters, 70(1):39–45, 1999.

[114] Luis G Jaimes, Idalides Vergara-Laurens, and Alireza Chakeri. Spread, a crowd sensing

incentive mechanism to acquire better representative samples. In 2014 IEEE Interna-

130 (June 26, 2017)

BIBLIOGRAPHY

tional Conference on Pervasive Computing and Communications Workshops (PER-

COM Workshops), pages 92–97. IEEE, 2014.

[115] Diego Mendez and Miguel A Labrador. Density maps: Determining where to sample

in participatory sensing systems. In 2012 Third FTRA International Conference on

Mobile, Ubiquitous, and Intelligent Computing (MUSIC), pages 35–40. IEEE, 2012.

[116] Wen Sun and Chen-Khong Tham. A spatio-temporal incentive scheme with consumer

demand awareness for participatory sensing. In 2015 IEEE International Conference

on Communications (ICC), pages 6363–6369. IEEE, 2015.

[117] Nebil Ben Mabrouk, Sandrine Beauche, Elena Kuznetsova, Nikolaos Georgantas, and

Valérie Issarny. Qos-aware service composition in dynamic service oriented environ-

ments. In Middleware 2009, pages 123–142. Springer, 2009.

[118] Ali Frihida, Danielle J Marceau, and Marius Theriault. Spatio-temporal object-oriented

data model for disaggregate travel behavior. Transactions in GIS, 6(3):277–294, 2002.

[119] Calvin P Tribby and Paul A Zandbergen. High-resolution spatio-temporal modeling of

public transit accessibility. Journal of Applied Geography, 34:345–355, 2012.

[120] Betsy George and Shashi Shekhar. Time-aggregated graphs for modeling spatio-

temporal networks. In Journal on Data Semantics XI, pages 191–212. Springer, 2008.

[121] Donggen Wang and Tao Cheng. A spatio-temporal data model for activity-based trans-

port demand modelling. International Journal of Geographical Information Science,

15(6):561–585, 2001.

[122] Mario A Nascimento and Jefferson RO Silva. Towards historical r-tree s. In Proceedings

of the 1998 ACM symposium on Applied Computing, pages 235–240. ACM, 1998.

[123] Mohamed F. Mokbel, Thanaa M. Ghanem, and Walid G. Aref. Spatio-temporal access

methods. IEEE Data Eng. Bull., 26(2):40–49, 2003.

[124] Y Theoderidis, Michael Vazirgiannis, and Timos Sellis. Spatio-temporal indexing for

large multimedia applications. In Proceedings of the Third IEEE International Confer-

ence on Multimedia Computing and Systems, pages 441–448. IEEE, 1996.

131 (June 26, 2017)

BIBLIOGRAPHY

[125] Yufei Tao and Dimitris Papadias. The mv3r-tree: A spatio-temporal access method for

timestamp and interval queries. In Proceedings of Very Large Data Bases Conference

(VLDB), 11-14 September, Rome, 2001.

[126] Mahdi Abdelguerfi, Julie Givaudan, Kevin Shaw, and Roy Ladner. The 2-3tr-tree,

a trajectory-oriented index structure for fully evolving valid-time spatio-temporal

datasets. In Proceedings of the 10th ACM international symposium on Advances in

geographic information systems, pages 29–34. ACM, 2002.

[127] Simonas Šaltenis, Christian S Jensen, Scott T Leutenegger, and Mario A Lopez. In-

dexing the positions of continuously moving objects, volume 29. ACM, 2000.

[128] Ji-Dong Chen and Xiao-Feng Meng. Indexing future trajectories of moving objects in

a constrained network. Journal of Computer Science and Technology, 22(2):245–251,

2007.

[129] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N Papadopoulos, and Yannis

Theodoridis. R-Trees: Theory and Applications. Springer Science & Business Media,

2010.

[130] Youn Chul Jung, Hee Yong Youn, and Eun Seok Lee. Boundary-based time partitioning

with flattened r-tree for indexing ubiquitous objects. In Mobile Ad-hoc and Sensor

Networks, pages 804–814. Springer, 2005.

[131] Hadi Saboohi, Amineh Amini, and Hassan Abolhassani. Failure recovery of composite

semantic web services using subgraph replacement. In International Conference on

Computer and Communication Engineering ICCCE 2008, pages 489–493. IEEE, 2008.

[132] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani.

A framework for qos-aware binding and re-binding of composite web services. Journal

of Systems and Software, 81(10):1754–1769, 2008.

[133] Yanlong Zhai, Jing Zhang, and Kwei-Jay Lin. Soa middleware support for service pro-

cess reconfiguration with end-to-end qos constraints. In IEEE International Conference

on Web Services (ICWS 2009), pages 815–822. IEEE, 2009.

[134] Kwei-Jay Lin, Jing Zhang, Yanlong Zhai, and Bin Xu. The design and implementa-

tion of service process reconfiguration with end-to-end qos constraints in soa. Service

Oriented Computing and Applications, 4(3):157–168, 2010.

132 (June 26, 2017)

BIBLIOGRAPHY

[135] Luis Henrique Oliveira Rios and Luiz Chaimowicz. A survey and classification of a*

based best-first heuristic search algorithms. In Advances in Artificial Intelligence–SBIA

2010, pages 253–262. Springer, 2011.

[136] Anthony Stentz. Optimal and efficient path planning for partially-known environments.

In Proceedings of 1994 IEEE International Conference on Robotics and Automation,

pages 3310–3317. IEEE, 1994.

[137] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong planning a-star. Artificial

Intelligence, 155(1):93–146, 2004.

[138] Maxim Likhachev, David I Ferguson, Geoffrey J Gordon, Anthony Stentz, and Sebas-

tian Thrun. Anytime dynamic a*: An anytime, replanning algorithm. In ICAPS, pages

262–271, 2005.

[139] Richard E Korf. Real-time heuristic search. Artificial intelligence, 42(2):189–211, 1990.

[140] Sven Koenig and Maxim Likhachev. Real-time adaptive a*. In Proceedings of the fifth

international joint conference on Autonomous agents and multiagent systems, pages

281–288. ACM, 2006.

[141] Bonggi Jun, Bonghee Hong, and Byunggu Yu. Dynamic splitting policies of the adap-

tive 3dr-tree for indexing continuously moving objects. In Database and expert systems

applications, pages 308–317. Springer, 2003.

[142] Sven Koenig and Maxim Likhachev. Improved fast replanning for robot navigation

in unknown terrain. In Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE

International Conference on, volume 1, pages 968–975. IEEE, 2002.

[143] İ Kuban Altınel, Necati Aras, Evren Güney, and Cem Ersoy. Binary integer program-

ming formulation and heuristics for differentiated coverage in heterogeneous sensor

networks. Computer Networks, 52(12):2419–2431, 2008.

[144] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMO-

BILE Mobile Computing and Communications Review, 5(1):3–55, 2001.

[145] Michiel CJ Bliemer, Matthijs Dicke-Ogenia, and Dick Ettema. Rewarding for avoiding

the peak period: a synthesis of four studies in the netherlands. 2010.

133 (June 26, 2017)

BIBLIOGRAPHY

[146] Peter Cohen, Robert Hahn, Jonathan Hall, Steven Levitt, and Robert Metcalfe. Using

big data to estimate consumer surplus: The case of uber. Technical report, National

Bureau of Economic Research, 2016.

[147] Chien-Ju Ho, Shahin Jabbari, and Jennifer W Vaughan. Adaptive task assignment

for crowdsourced classification. In Proceedings of the 30th International Conference on

Machine Learning (ICML-13), pages 534–542, 2013.

[148] Chien-Ju Ho and Jennifer Wortman Vaughan. Online task assignment in crowdsourcing

markets. In AAAI, volume 12, pages 45–51, 2012.

[149] Shibo He, Dong-Hoon Shin, Junshan Zhang, and Jiming Chen. Toward optimal al-

location of location dependent tasks in crowdsensing. In 2014 IEEE International

Conference on Computer Communications INFOCOM, pages 745–753. IEEE, 2014.

[150] Hien To, Cyrus Shahabi, and Leyla Kazemi. A server-assigned spatial crowdsourcing

framework. ACM Transactions on Spatial Algorithms and Systems, 1(1):2, 2015.

[151] Mingjun Xiao, Jie Wu, Liusheng Huang, Yunsheng Wang, and Cong Liu. Multi-task

assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on

Computer Communications INFOCOM, pages 2227–2235. IEEE, 2015.

[152] Dingxiong Deng, Cyrus Shahabi, and Linhong Zhu. Task matching and schedul-

ing for multiple workers in spatial crowdsourcing. In Proceedings of the 23rd ACM

SIGSPATIAL International Conference on Advances in Geographic Information Sys-

tems, page 21. ACM, 2015.

[153] Anne C Rouse. A preliminary taxonomy of crowdsourcing. Proceedings of 21st Aus-

tralasian Conference on Information Systems (ACIS), 76:1–10, 2010.

[154] Edward Deci and Richard M Ryan. Intrinsic Motivation and Self-Determination in

Human Behavior. Springer Science & Business Media, 1985.

[155] Maria J Antikainen and Heli K Vaataja. Rewarding in open innovation communities–

how to motivate members. International Journal of Entrepreneurship and Innovation

Management, 11(4):440–456, 2010.

[156] Justin Cranshaw, Eran Toch, Jason Hong, Aniket Kittur, and Norman Sadeh. Bridging

the gap between physical location and online social networks. In Proceedings of the 12th

ACM international conference on Ubiquitous computing, pages 119–128. ACM, 2010.

134 (June 26, 2017)

BIBLIOGRAPHY

[157] Eran Ben-Elia and Dick Ettema. Carrots versus sticks: Rewarding commuters for

avoiding the rush-houra study of willingness to participate. Journal of Transport policy,

16(2):68–76, 2009.

[158] Eran Ben-Elia and Dick Ettema. Rewarding rush-hour avoidance: A study of com-

muters travel behavior. Journal of Transportation Research Part A: Policy and Prac-

tice, 45(7):567–582, 2011.

[159] Hongwei Dong, Liang Ma, and Joseph Broach. Promoting sustainable travel modes for

commute tours: A comparison of the effects of home and work locations and employer-

provided incentives. International Journal of Sustainable Transportation, 10(6):485–

494, 2016.

[160] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser. CRAW-

DAD dataset epfl/mobility (v. 2009-02-24). Downloaded from http://crawdad.org/

epfl/mobility/20090224, February 2009.

[161] Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, Christian S Jensen, and Heng Tao

Shen. Discovery of convoys in trajectory databases. Proceedings of the VLDB Endow-

ment, 1(1):1068–1080, 2008.

[162] Marcos R Vieira, Petko Bakalov, and Vassilis J Tsotras. On-line discovery of flock

patterns in spatio-temporal data. In Proceedings of the 17th ACM SIGSPATIAL Inter-

national Conference on Advances in Geographic Information Systems, pages 286–295.

ACM, 2009.

[163] Lu-An Tang, Yu Zheng, Jing Yuan, Jiawei Han, Alice Leung, Chih-Chieh Hung, and

Wen-Chih Peng. On discovery of traveling companions from streaming trajectories. In

2012 IEEE 28th International Conference Data Engineering (ICDE) on, pages 186–

197. IEEE, 2012.

[164] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time

series analysis: forecasting and control. John Wiley & Sons, 2015.

[165] Yaron Singer and Manas Mittal. Pricing mechanisms for crowdsourcing markets. In

Proceedings of the 22nd international conference on World Wide Web, pages 1157–1166,

2013.

135 (June 26, 2017)

BIBLIOGRAPHY

[166] Adish Singla and Andreas Krause. Truthful incentives in crowdsourcing tasks using

regret minimization mechanisms. In Proceedings of the 22nd international conference

on World Wide Web, pages 1167–1178, 2013.

[167] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Yaron Singer. Learning on a bud-

get: posted price mechanisms for online procurement. In Proceedings of the 13th ACM

Conference on Electronic Commerce, pages 128–145. ACM, 2012.

136 (June 26, 2017)

