
Semantic SLAs for Services with Q-SLA

Kyriakos Kritikos and Dimitris Plexousakis

ICS-FORTH
Heraklion GR-70013, Greece

{kritikos, dp}@ics.forth.gr

Abstract. This paper reports the re-engineering efforts for OWL-Q, a
prominent semantic quality-based service description language. These ef-
forts have focused on making OWL-Q more compact without reducing
its level of expressiveness as well as enriching it with semantic rules to-
wards semantic validation of quality specifications and new knowledge
derivation. It also presents a new OWL-Q extension called Q-SLA ad-
vancing the state-of-the-art by covering all possible information aspects
needed which along with the semantic rules enable proper and automatic
support to all service management activities. A particular use-case is also
provided to highlight the main benefits of Q-SLA.

Keywords: service, management, quality of service, SLA, agreement, seman-
tics, ontology, rules, description, validation

1 Introduction

The main advantages that service-orientation delivers lead to the proliferation
of available services such that the task of identifying tasks completing an appli-
cation functionality is simplified. Such a proliferation heads towards the effect
of having equivalent functionality offered via different quality of service (QoS)
capabilities. As such, the role of QoS is quite important in discovering only those
services which can satisfy the respective application’s QoS requirements. In fact,
as also advocated in [6], QoS can play an crucial role in all activities related to
the service-based application (SBA) management.

Before QoS can be exploited in these activities, it has to be described. As
such, various service description languages have been proposed either focusing
on supporting service discovery or going beyond that. The latter languages can
actually define Service Level Agreement (SLA) templates and actual SLAs. SLA
templates can be used for service discovery and negotiation as they describe both
the QoS requirements and capabilities of the service requester and provider,
respectively. The SLA is then the successful outcome of a service negotiation
representing the agreement between the two aforementioned parties towards the
responsibilities involved during the delivery of the respective service concerned.
This SLA is used as a guide for the realisation of the subsequent management
activities. To this end, an SLA spans the whole lifecycle of services and SBAs.



2 Kritikos & Plexousakis

Unfortunately, the proposed SLA languages cannot capture all appropriate
information required for supporting the SBA management activities [6]. In fact,
it has been proven that some SLA languages can play complementary roles such
that they can be combined into a more complete SLA language. In addition, very
few of them are semantic-based so as to enable both the syntactic and seman-
tic SLA validation. In fact, semantics can be used to derive extra added-value
knowledge and provide automated support to the SBA management activities.

OWL-Q is a semantic, quality-based service description language [7] able to
specify: (a) service quality models involving quality terms, such as QoS attributes
and metrics, and their relationships and (b) quality service profiles used for non-
functional service discovery. Moreover, OWL-Q is coupled with both semantic
alignment [8] and service discovery algorithms [9]. The former can be used to
address the heterogeneity in service quality term description as it enables qual-
ity term matching and alignment. To cover the aforementioned gap and enable
OWL-Q to be exploited beyond service discovery, this paper proposes a novel
OWL-Q extension called Q-SLA towards expressing SLAs. This extension covers
all required service management aspects. It is also coupled with semantic rules
enabling the semantic SLA validation and derivation of added-value knowledge.

By being an extension to OWL-Q, Q-SLA covers also the quality term de-
scription, something not featured by other SLA languages. SLA alignment is also
supported leading to a better and more accurate matching of SLA templates for
service discovery and negotiation, something invaluable in addressing the cur-
rent real-world situation where equivalent quality terms like quality attributes
or metrics are described differently by different service actors. This characterises
well the cloud computing domain and the respective specifications of the avail-
ability metrics involved in the SLA templates offered.

Another contribution of this paper lies on the re-engineering of OWL-Q to
reduce its complexity as indicated in the evaluation conducted in [6] such that
the modelling effort is alleviated. Such a re-engineering resulted in a great reduc-
tion in the number of ontology concepts and relationships. It also involved the
specification of an extensive set of rules covering additional cases in the semantic
validation of the quality-based specifications.

This paper also includes a proof-of-concept application of Q-SLA in a real use
case which highlights its main benefits. It also conducts an extensive comparison
of Q-SLA with the state-of-the-art to highlight the Q-SLA’s main advancement.

The rest of the paper is structured as follows. Section 2 explicates OWL-Q re-
engineering efforts. Section 3 analyzes the Q-SLA extension. Section 4 explicates
Q-SLA’s application on a certain use case. Section 5 reviews the related work.
Finally, Section 6 concludes the paper and draws future work directions.

2 OWL-Q

OWL-Q is a semantic quality-based service description language built on top of
OWL. It comprises various facets covering different service quality aspects, in-
cluding quality attributes, metrics, and units. OWL-Q has now been re-engineered



Semantic SLAs for Services with Q-SLA 3

to become more compact without losing its expressiveness by reducing the num-
ber of facets, concepts and properties. In fact, the rule of design thumb was that
the modeller should supply the least possible amount of information and then
inferencing can be exploited to derive the extra knowledge needed. As such, this
has lead to the enrichment of the axioms involved in quality terms classes.

The re-engineering efforts also concentrated on enriching the SWRL [4] se-
mantic rules used for semantic validation and new knowledge derivation. The
rules were also categorised based on the concerned aspect such that the valida-
tion/derivation can focus only on that aspect, thus speeding up the respective
tasks’ execution. Concerning validation, the consistency rules specified focus on
different aspects and attempt to detect semantic errors in the quality specifi-
cation, such as recursiveness in metric and attribute composition, correctness
of range limits in value types and metric scheduling correctness (e.g., schedule
start is before its end). On the other hand, the new knowledge derivation rules
concentrate on capturing various quality term matching caces covering quality
metrics, attributes, units and value types. Due to paper size restrictions, the
analysis will now focus mainly on the core OWL-Q content.

2.1 OWL-Q Facets

OWL-Q comprises 6 core facets which are shortly analysed to set up the con-
text for better understanding the SLA extension proposed. Figures 1-2 cover all
facets, including all major concepts and respective relationships, where different
colours have been used to highlight the different aspects involved.

Central. This facet covers the modelling of concepts, which are either cross-
aspect or top with respect to a certain aspect, and their respective relationships.
OWL-Q cross-aspect concepts span quality categories to used for creating quality
term partitions in quality models, domains which can be related to quality terms,
and object lists [] representing instance lists of OWL-Q classes to remedy for the
non-decidability when adopting RDF lists. Aspect-related concepts are analysed
in the rest of the facets. OWL-Q also enables specifying generic object and data
properties to be attributed to instances of any or a sub-set of OWL-Q classes.
The generic object properties denote positive or negative dependencies between
quality terms and quality term compatibility. The generic properties involve
representing names, descriptions and values (mapping to any xsd data type).

Attribute. This facet covers quality attribute specification. It distinguishes
between measurable attributes that can be measured by quality metrics and
unmeasurable ones usually mapping to a fixed value set and unit. Attributes can
also be composite when comprising or computed from other quality attributes.
A quality attribute is associated to the level that it concerns. We distinguish
between 5 levels: IaaS, PaaS, SaaS, WFaaS (workflow as a service) and BPaaS
(business process as a service). In this way, we not only cover all possible service
types to which an attribute can be associated but also converge the cloud and
service computing worlds.

Metric. This facet covers the necessary details for specifying the way quality
attributes can be measured. Such details are encapsulated through the concept



4 Kritikos & Plexousakis

Category

Domain

Formula

Function

-scheduleType

-start

-end

-repetition

-interval

Schedule

-magnitude : Double

Unit

ValueType

Argument

MetricContextMetric

Value

OWLList

DerivedUnit

Dimensionless

SingleUnit

Quantity

QuantityKind

CompositeMetric

RawMetric

Measurement

-accessModel

-accessURI

-directiveType

-timeout

MeasurementDirective

-level

Attribute

-downloadScript

-installScript

-runScript

-stopScript

Configuration

-measurementSize

-measurementTime

-timeSize

-windowType

-windowSizeType

Window

-accessModel

-accessURI

Sensor

ArgumentList

MetricList

CompositeAttribute

MeasurableAttribute

UnmeasurableAttribute

DomainDependentAttribute

DomainIndependentAttribute
AttributeList

IntValue

FloatValue

DoubleValue

StringValue

RangeUnion

ValueList

ScalarNumeric String

Double Float Int
-lowInclusive

-upperInclusive

Range

IntRange

FloatRange DoubleRange

composingMetricList

next

argumentList

function

formula

window

sensor

configuration

directive
schedule

measuredBy
metric

context

subCategory

domain

containsValue

lowLimit upperLimit

mappedValueType

subAttributeList

proportional inverseProportional

quantity

multipleOf

quantityKind

Fig. 1: OWL-Q’s 5 out of 6 core facets

of a metric. Metrics can be classified as single or composite. The values of single
metrics (e.g., raw response time) can be directly derived from the measurement
system’s instrumentation or from sensors. Composite metrics (e.g., average re-
sponse time) are derived by applying a formula on a list of arguments, which can
be constants or other formulas or metrics. Any kind of metric is associated to a
value type (e.g., a range of integers in (0,∞] for execution time metrics) and a
unit (e.g., seconds). Metrics are related to a certain MetricContext explicating
scheduling and value aspects with respect to the measurement. Schedule class
cover scheduling aspects in terms of when to start and end and how frequently
to conduct metric measurement. Value aspects are covered by specifying a win-
dow of measurement indicating the amount of measurements to be considered
for the (composite) metric computation. Through decoupling metrics from their
context, the association of metrics to different schedules is enabled thus cover-



Semantic SLAs for Services with Q-SLA 5

-validity

-transactionProtocol

-authenticationProtocol

Specification

QoSRequest

QoSProfile

Constraint

ComplexConstraint

-secondArgument

SimpleConstraint

OperatorBinary

Unary

N_Ary

ComparisonOperator

OptimisationOperator

LogicalOperator

-boundElementURI

-quantifierType

-isRelative

-minQuantifier

-maxQuantifier

ConstraintContext

PreferenceModel

-weight

PreferenceElement

-serviceURI

Service

ServiceProperty

Argument

Category

Attribute

Metric

containsConstraint context

constraint

operator logicalOperator

preferenceModel

preferenceElement

subPreferenceElement

preferredCategory

preferredAttribute

preferredMetric

serviceserviceComponents

property

operatorfirstArgument

Fig. 2: OWL-Q’s specification facet

ing the variability in metric scheduling and computation that can be exhibited
in different monitoring systems. In addition, this facet covers defining actual
measurements produced for a certain metric which are associated to a certain
timestamp and value. As such, OWL-Q can support semantic databases oper-
ating over metric measurement data to infer interesting (event) patterns that,
e.g., lead to Service Level Objectives (SLO) violations.

Unit. This facet concentrates on modelling units of measurements related to
metrics. Units can be classified into single, derived or dimensionless. Derived
units are computed from other units through dividing multications of different
component units (e.g., miles per second is a division between the units of miles
and seconds). Both single and derived units are associated to a dimension rep-
resented by the QuantityKind class and to a Quantity. For instance, a unit of
bytes per second will be associated to both speed and network speed as quantity
kind and quantity, respectively. This facet also covers unit compability through
the multipleOf object property to denote the compatibility between units that
are multiples of each other, such as seconds and milliseconds.

Value Type. This facet focuses on modelling of value types for metrics. Through
such types we can check the validity of measurements, especially if they are pro-
duced through error-prone sources of information, like sensors or even humans.
This facet involves the specification of two main classes, namely Value and Val-
ueType. Value represents any kind of value which can be a component of a
ValueType. Values are further classified into specialised sub-classes which map
to widely-used XSD data types, such as integers and doubles. In addition, two
specialised instances of Value have been developed to represent positive and neg-
ative infinity. ValueTypes can be distinguished at the top-level into Scalar and
ValueList. A ValueList is a list of values of the same type (e.g., integer). On the
other hand, scalar value type which can be bounded or undounded. Unbounded



6 Kritikos & Plexousakis

value types map to four main sub-classes, i.e., Strings, Integers, Floats and Dou-
bles. Bounded value types are separated into ranges and unions of ranges. Ranges
are characterised by two limits which might be or not included in the range and
directly map to certain Value. Both limits should be of the same type (i.e.,
integers). Via the special value instances of infinity we can also represent semi-
bounded ranges (e.g., [1,∞]). The unions of ranges comprise non-overlapping
ranges which contain the same kind of values (e.g., integers).

Specification. This facet focuses on specifying quality-based service descrip-
tions which can be dinstinguished into QoS profiles and requests. A QoS request
and profile represent the QoS requirements and capabilities for a particular ser-
vice. Both specification types are linked to the respective Service concerned,
which can be composite or single. Any kind of service is characterised by its
URL. In this way, we actually abstract from the different ways the functional
service description can be specified as a URL can map to the actual service
endpoint (WSDL) or its actual web-based description in any kind of language,
including semantic ones (but the URL and URI compatibility must be guaran-
teed in this case). Any specification has also a period on which it is valid.

A QoS request is associated to a PreferenceModel representing the requester’s
preferences on certain quality terms. Such a model takes a tree-like structure
comprising nodes mapping to the respective quality term and its preference. The
tree’s top node represents the overall QoS while the rest of nodes map to differ-
ent quality term types. The mappings from one node to its children denote the
propagation of quality evaluations from lower to higher levels. For instance, con-
sider the case of the performance category which could contain quality attributes
nodes, like response time and throughput, with different preferences, like 0.6 and
0.4. The sum of all these preferences should equal to 1.0, while each preference
denotes the relative importance of a child node towards determining its parent’s
quality value. Thus, if the normalised quality value of response time is 0.5 and
0.3 for throughput, then the normalised value for performance will be 0.42. Such
a representation is in accordance to the Analytical Hierarchy Process [11]. It also
provides significant support to the ranking of services after their matching and
to the optimisation formula derivation for service composition problems.

Any kind of specification is associated to one (composite) constraint repre-
senting the set of quality capabilities or requirements that are offered or required,
respectively, for the respective service at hand. Constraints can be distinguished
into simple and composite. Simple constraints express conditions over a qual-
ity term’s value. As such, a simple constraint is related to a quality term, a
comparison operator, and a certain threshold value which should comply to the
term’s value type. On the other hand, composite constraints are logical com-
binations of constraints, expressed through well-known basic unary and n-ary
logical operators, such as NOT, AND and OR.

A constraint also has a particular context associating the quality term condi-
tion to certain restrictions taking the form of: (a) the service or its parts (service
object) for which the condition should hold denoted by associating the context
with a URL pointing to the respective functional service specification part and



Semantic SLAs for Services with Q-SLA 7

(b) a specification of how many relative service object instances must be ac-
counted for and according to which way for the condition’s evaluation (e.g., to
express that a constraint violation occurs only when a certain subset of service
object instances have measurements violating the respective condition).

3 Q-SLA

3.1 Extension Analysis

Q-SLA, depicted in Figure 3, has been developed as a sub-facet of the specifi-
cation facet based on the original design rules for OWL-Q. This is a rational
choice as an SLA is a kind of quality specification and many of the constructs
in the original facet are actually re-used to specify the extension’s respective
constructs. In the following, we provide an analysis of the SLA sub-facet by fo-
cusing on certain important information aspects. The analysis is concluded with
the supply of the respective rules that have been developed for this extension.

-validity

-transactionProtocol

-authenticationProtocol

Specification

SLA

SLATemplate
ComplexConstraint SimpleConstraint

SL

-maintenanceType

MaintenanceSL

-negotiable

-soft

SLO

QualifyingCondition
Entity

Person

Organisation

-minPrice

-maxPrice

-reservationType

-basePrice

PriceModel

-minPrice

-maxPrice

PriceComponent

Formula

-role

RoleAssignment

-serviceURI

Service

-evaluationPeriod

-settlementAction

-settlementCount

Settlement

Penalty

Reward
-settlementPricePercentage

SLOCompensation

-evaluationPeriod

-rewardThreshold

-violationThreshold

SLTransition

Constraint

compensation

compensation

sloSettlement

sloSettlement

settlementroleAssignment

relatedSLA

obligedentity

issuedBy

affectedPriceModel

qualifyingCondition

concernedSL

firstSL

secondSL

serviceLevel
priceModel

slTransition

applicableServiceservice

serviceComponents

priceFormula

priceComponent

assessmentEntity

affectedPriceComponent

assessmentEntity

monitoringEntity

monitoringEntity

obliged

Fig. 3: The OWL-Q’s SLA facet

SLA is considered as a sub-class of Specification. An SLA template in turn
is a sub-class of SLA as it is a certain kind of SLA. An SLA comprises a set of



8 Kritikos & Plexousakis

service levels (SLs) which explicate the different performance behaviors that a
certain service can exhibit. Such a SL can denote normal performance behavior
or behavior exhibited, e.g., during maintenance periods for the respective service
(see MaintenanceSL class). A SL is considered as a kind of composite constraint
as it explicates a set of particular quality capabilities to be delivered by the
service concerned. Such capabilities are denoted via a specialised sub-class of
single constraint called SLO, thus inheriting the respective condition and context
information aspects. In addition, SLOs include the following information aspects:

1. a qualifyingCondition which is a condition that must hold in order for the
SLO to be valid for assessment and possible compensation. Such a condition
can refer to contextual restrictions at the customer side such as the number
of concurrent incoming requests that can be served in a certain time period

2. the services on which the SLO applies – parts of a composite service or the
whole composite service can be concerned

3. the obliged entity to guarantee the SLO
4. the entities responsible for the SLO’s monitoring and assessment
5. a settlement in the form of a penalty or reward. It is highly important to

include both settlement types in a SLA contract as this will motivate service
providers to deliver even better SLs. As such, we consider that SLOs related
to thresholds on worse values that the SLO quality term can take should be
associated to penalties and SLOs related to thresholds on better values to
be associated to rewards.

6. negotiability – we specify whether the SLO is soft or negotiable. This in-
formation aspect is relevant only for SLA templates as it can be exploited
in the discovery and negotiation activities. It can be used in service discov-
ery to better address over-constrained QoS requirements such that always a
matchmaking solution can be derived. It can also enable more flexible ser-
vice negotiations, by indicating whether the ranges of values promised or
required for a certain quality term can be negotiable or not.

A MaintenanceSL is a kind of SL associated to an enumerated data type
denoting the different maintenance types that can occur. We foresee three options
for this: (i) on-demand, (ii) at particular time points, and (iii) both former
options hold. Moreover, we enable moving from one SL to another via the notion
of an SLTransition. This is obvious when we must transit from a normal to a
maintenance SL. However, we also distinguish the two extra cases of downgrading
or upgrading from one SL to another. The latter transition types can occur
either on-demand (by clients when desiring to increase the SL to enable their
applications to exhibit better performance levels or to decrease the SL to reduce
costs) or when certain situations occur, such as the violation or surpassing of a
certain number of SLOs in overall or for a certain time period. So as to specify
all possible transition types, an SLA is associated to a SL transition via the
slTransition object property. The extra flexibility enabled via modelling SLs
and their transitions must be highlighted. As such, we support specifying flexible
SLAs that do not have to be repeatedly re-negotiated when critical situations
occur but gives the freedom to the signatory parties to explicate the most suitable



Semantic SLAs for Services with Q-SLA 9

service performance behaviours and their allowed transitions. By agreeing on
these SLs both parties are satisfied: (a) the client as all these SLs should match
his/her requirements; (b) the service provider as it can decide on-demand when
to transit from one SL to another, e.g., when increased customer load occurs such
that it can still satisfy the performance requirements on lower SLs. By servicing
more clients on lower SLs, the service provider can also maximise its gains.

To address service charging, a SL is related to a price model used to calcu-
late the overall service cost. As such, as long as the SLA is in the respective
SL, the charging is performed by this SL’s price model. A price model comprises
price components that must be added to produce the service cost. Each price
component focuses on one cost aspect. It is computed via a formula over quality
terms and service-specific attributes. For instance, a price component can focus
on the resources provided by a IaaS and calculate the cost, based on the reser-
vation type, as the amount of resource usage hours times the IaaS cost. Other
components could then focus on network resources and data exchange costs.

Both a price model and its components can be associated to maximum and
minimum price limits above and under which the service cost cannot move,
respectively. Such cost constraints will hold irrespectively of whether the sum of
a price model’s components violate them. As such, a price model can be used
as the means to guarantee the minimum possible gain even in SLO violations.
Both the price model and its components are associated to a monetary unit (e.g.,
euros). The price model is also related to a reservation type stating whether the
charging can be performed on-demand, via advanced reservation or spot prices.

A price model covers the normal service cost but the actual cost depends
on whether SLO violations or surpasses have occurred. As such, the Penalty
and Reward concepts were included to indicate the compensation kind that
can be involved during an SLO assessment. Both concepts are associated to an
SLOCompensation explicating the cost modifications to be performed. An SLO
compensation is associated to the affected price model and price components in
particular and indicates the percentage of cost to be discounted or rewarded.

The following must be highlighted. First, as there can be many SLO violations
for a certain SL, the SL’s price model guarantees that the service cost will not
go beyond a certain threshold such that a minimum provider gain is guaranteed.
Second, additional flexibility is allowed via SL transitioning. For instance, if the
amount of SLO violations is big, it can be rational to move to a lower SL such
that the provider still keeps up with its promises and receives a reduced amount
of money again guaranteeing his/her gains. Without such lower SLs, the danger
of SLA contract termination exists due to provider under-performance which
could easily lead, if done frequently, in provider reputation reduction.

The SLA is also associated to a settlement when critical situations, not cov-
ered by it, occur. One such critical situation can map to the SLA being at the
lowest SL and the number of SLO violations overpasses the limit posed. To this
end, we have reached a point where a drastic action should be taken. Such an
action can include the re-negotiation of the SLA or its cancelling.



10 Kritikos & Plexousakis

While the previous analysis indicates that an SLA via Q-SLA can impose
quality constraints on a composite service along with its components, there is
another situation that can occur which Q-SLA still captures it. Suppose that a
BPaaS is offered by a cloud provider. For this BPaaS, an SLA hierarchy can be
posed where at the highest level there is an SLA between the provider and its
customers, while at the lower levels there are SLAs involving SaaS/PaaS/IaaS
services supporting the functionality and execution of the BPaaS. The latter
SLAs involve the BPaaS cloud provider as a client and the providers of the
exploited services. To capture such situations, a light integration approach is
followed for the next two reasons: (a) the specification of composite SLAs raises
the modelling complexity; (b) in typical and most common cases, the different
SLAs are independently negotiated (e.g., in a top-down manner where first the
top SLA is negotiated and then the rest). For instance, a BPaaS provider might
form SLAs with SaaS/IaaS providers to properly support the provisioning of
many BPaaS instances and then independently offer different SLA types (gold,
silver and bronze) to different customer types. As such, the BPaaS provider
should form these SLAs such that a violation of the top-level SLA due to a
violation of a lower-level one will not lead to paying more than the penalty
gained from the lower SLA. As such, the following SLA relationship types can
be modelled: dependsOn indicating that one SLA depends on another one (e.g.,
a BPaaS SLA depends on SaaS/IaaS SLAs). This dependency type is considered
as lightweight as it does not impose any tight integration. For legal issues, as an
example, the BPaaS provider might indicate that some critical situations could
be due to reasons out of its control such that the respective dependant SLAs
can be referenced. In the future, we might consider modifying such modelling,
in case the way SLAs are negotiated or specified is modified.

Apart from the modelling at the class level in terms of concepts, relationships
and axioms, Q-SLA is also accompanied by a set of three semantic validation
rules focusing on: (a) checking based on the respective metric’s monotonicity and
SLO’s comparison direction whether the SLO should be associated to a penalty
or reward; (b) checking whether the max price in a price model or component
is always greater or equal to the min price; (c) checking whether there are no
circles in SL transitions according to one direction (e.g., downgrading) without
considering the maintenance SL. Such validation rules coupled with those gener-
ally applying for any specification kind equip modellers with an instrument that
guides them towards specifying only semantically correct SLA descriptions.

4 Use-Case Application

The use-case concerns developing a traffic management application with the
goal to monitor environment variables and sense critical situations and react via
regulating the traffic accordingly such that accidents are rapidly addressed and
pollution indicators do not exceed certain thresholds. Such an application in-
cludes three main components offered as a service: (a) a monitoring component
sensing the environment conditions; (b) an analysis component (AC ) obtaining



Semantic SLAs for Services with Q-SLA 11

the monitored information and deriving a traffic management plan; (c) a traffic
regulator component executing the plan produced by AC. The first and third
components have been developed internally by the municipality as they regard
sensitive data and own infrastructure manipulation. On the other hand, to re-
duce costs due to the heavy workload of AC, the municipality has decided to
outsource AC to the SP1 provider. To this end, it has to form an SLA with SP1
involving the specification of the offered service’s expected quality behaviour and
the respective penalties to be enforced in deviations of this behaviour.

-validity = 2 years

SLA:TM1

Entity:Municipality

Entity:SP1

-role = REQUESTER

RoleAssignment:RA1

-role = PROVIDER

RoleAssignment:RA2

Entity:TP1

-role = THIRD_PARTY

RoleAssignment:RA3

SL:LOW

SL:NORMAL

-evaluationPeriod = 0.5 hour

-violationThreshold = 4

SLTransition:NorToLow

-evaluationPeriod = 0.5 hour

-settlementCount = 4

-settlementAction = TERMINATE

Settlement:Set_Low

-evaluationPeriod = 0.5 hour

-settlementCount = 8

-settlementAction = TERMINATE

Settlement:Set_Nor

-concernedSL

-serviceURI = http://www.analysis_service.com

Service:AC

-secondArgument = 2

SLO:LOW_RT

-secondArgument = 2

SLO:LOW_THR

-secondArgument = 99

SLO:LOW_AV

LogicalOperator:AND

ComparisonOperator:GEQ

ComparisonOperator:LEQ

-minPrice = 600

-reservationType = PER_MONTH

-basePrice = 800

PricingModel:PM_LOW

-minPrice = 800

-reservationType = PER_MONTH

-basePrice = 1000

PricingModel:PM_NOR

Penalty:P1
-settlementPricePercentage = 0.05

SLOCompensation:C1

CompositeMetric:RT_AVG

CompositeMetric:AV_AVG

CompositeMetric:THR_AVG

RawMetric:RT_Raw

Formula:F1

Function:AVG

-accessModel

-accessURI = http://www.analysis_service.com/getMetric?metric=RAW_RT

-directiveType = RT

-timeout = 10000

MeasurementDirective:MD1

ArgumentList:AL1

-scheduleType = FIXED_RATE

-interval = 10 min

Schedule:Sch1

-measurementSize = 30

-windowType = FIXED

-windowSizeType = MEASUREMENTS_ONLY

Window:W1

settlement

settlement

entity

roleAssignment

entity

service

serviceLevel

serviceLevel

pricingModel

logicalOperator

secondSL

firstSL

pricingModel

constraint

constraint

operator

constraint

operator

firstArgument

firstArgument

firstArgument
window

schedule

formula

function

argumentList

contents

directive
penalty

compensation

entity

obliged

operator

entity

penalty

Fig. 4: Q-SLA’s use-case application

The SLA to be signed (see its snapshot in Figure 4) will hold for two consec-
utive years. It includes, apart from the two signatory parties, a third trusted one
TP1 to take care of SLO monitoring & assessment and SLO violation report-
ing to the signatory parties. This SLA involves three SLs: (a) normal; (b) low;
(c) maintenance. The normal SL maps to the following SLOs: rt ≤ 1 min, av
≥ 99.99%, thr ≥ 6 reqs/min, where rt maps to response time, av to availability
and thr to throughput. The low SL comprises in turn the following SLOs: rt ≤ 2
min, av ≥ 99%, thr ≥ 2 reqs/min. The former two SLs include delivering quality
capabilities that match the municipality’s expectations. The normal SL is ini-
tially selected as the municipality is divided into six regions and all regions can
be serviced concurrently in case of rush hours – this is actually satisfied through
the constraints for response time and throughput. On the other hand, it is ac-



12 Kritikos & Plexousakis

ceptable if one third of the regions can be concurrently serviced as this maps to
an average situation characterised by still confronting the rush hours in a more
limited manner but also (the more extended) non-rush hours in an excellent
manner via the low SL which also leads to lower costs for the municipality.

The maintence SL is transitioned at every midnight, it lasts one hour and
maps to the lowest possible SL. The municipality is satisfied even with this level
as during very late hours, the traffic is minimal. The respective SLOs mapping
to this SL are as follows: rt ≤ 6 min, av ≥ 80%, thr ≥ 0.5 reqs/min.

The transit from normal to low SL is enabled in case of 4 SLO violations in a
time period of half an hour. The municipality is also entitled to end the contract
when 4 violations occur within half an hour in the low SL for rush hours and
8 violations in the same SL for non-rush hours. The pricing of AC service for
each SL is constant: 1000 euros per month for the normal SL and 800 euros for
the low one. Each SLO violation in a SL maps to a 5% discount. For the normal
SL, the service price cannot go under 800 euros (accounting for 4 violations),
while for the low SL it cannot go under 600 (accounting for 5 violations). A great
number of violations in the high SL does not necessarily mean that the we must
transit to the low SL. This depends on the time period in which a percentage of
the total number of violations has occurred. On the contrary, a great number of
violations leads to approaching or reaching the minimum price limits for a SL.

The three main properties are measured via code which intervenes in the
traffic monitoring application and is provided by the third-party organisation,
according to the following metrics:

– Average response time evaluated in a time period of 10 minutes with a time
window of 30 measurements.

– Average availability evaluated every 10 minutes with a window of 10 mea-
surements. It is computed from raw availability evaluated every 1 minute via
dividing the number of times the service was up with this time period.

– Average throughput evaluated every 10 minutes with a window of 5 mea-
surements. It is computed from raw throughput evaluated every 2 minutes
by dividing the number of requests served with this time period.

Figure X visualises all aforementioned information in form of a Q-SLA/OWL-
Q snapshot. Q-SLA can specify all this information, including the handling of
rush hours encapsulated as qualifying conditions on the respective SL’s SLOs.

5 Related Work

In this section, we focus on analysing only highly related work in SLA specifi-
cation. The analysis relies on the extensive set of comparison criteria in [6] or-
ganised according to the activity in the service management lifecycle concerned.
These criteria assess the completeness and suitable expressivity in covering all
required information to properly support each management activity for any SLA
language. As in [6] many SLA languages have already been reviewed, in this pa-
per we concentrate on reproducing evaluation results for the most significant
SLA languages as well as providing results for new ones, including Q-SLA.



Semantic SLAs for Services with Q-SLA 13

In the sequel, we first shortly analyse the comparison criteria, then we present
the comparison table derived and finally we discuss the results encapsulated by
this table. The comparison criteria are analysed according to the management
activity that they concern in the following paragraphs.

Description. This activity includes four main criteria deemed as important
apart from an SLA language’s ability to express quality terms: (a) the formalism
in SLA description; (b) the coverage of both functional and non-functional as-
pects; (c) the re-usability in terms of SLA constructs to be used across different
SLAs; (d) the ability to express composite SLAs.

Discovery. This activity includes four criteria: (a) metric definition mapping
to the ability to refer but also define quality metrics; (b) alternatives – the
ability to specify alternative SLs; (c) soft constraints – the ability to pose soft
constraints to address over-constrained requirements; (d) matchmaking metric –
existence of a metric explicating how specification matching can be performed.

Negotiation. This activity includes two criteria: (a) meta-negotiation – related
to supplying information to support negotiation establishment; (b) negotiability
– the ability to indicate which quality terms are negotiable and in which way.

Monitoring. For monitoring, it is imperative that an SLA language can define:
(a) the metric provider responsible for performing the monitoring and (b) the
metric schedule indicating how often the SLO metrics must be measured.

Assessment. The major criteria for the assessment activity include: (a) the
condition evaluator, i.e., the party responsible for SLO assessment; (b) the abil-
ity to specify a qualifying condition for SLOs; (c) the ability to define the obliged
party for delivering an SLO; (d) the ability to define the SLOassessment sched-
ule; (e) the ability to define the validity period in which an SLO is guaranteed;
(g) the ability to define recovery actions to remedy for SLO violations.

Settlement. The settlement with respect to particular situations comes with
the ability of the SLA language to define: (a) penalties, (b) rewards and (c)
settlement actions required for the final outcome of an SLA

Archive It is concerned with the ability to specify the SLA’s validity period.

Table 1 summarises the evaluation results with the criteria as rows and the
compared SLA languages as columns, while each cell indicates how well a re-
spective language satisfies a certain criterion.

As it can be seen, Q-SLA is the best approach mapping to the best perfor-
mance in all activities. Linked USDL Agreement (LUA in short) seems to come
second but has the worst possible performance for two activities. The aforemen-
tioned languages are over-ruled only in the settlement activity by RBSLA.

These evaluation results also unveil places for Q-SLA improvement, mainly
with respect to composability, meta-negotiation and recovery actions’ criteria.
Via such improvement, Q-SLA will reach its final goal towards becoming a com-
plete semantic SLA language. This outcome could promote Q-SLA to become
a standard or converge to a standard via joining similar standardisation efforts.
Such a standard is currently missing in service and cloud computing and would
definitely provide an added-value to many different aspects, including service
management and better capturing of customer requirements.



14 Kritikos & Plexousakis

Table 1: Evaluation results of SLA languages
Life-cycle Criteria WSLA WS-A WSOL RBSLA LUA SLALOM Q-SLA
Activity [5] [1] [12] [10] [3] [2]

Description Formalism Informal Informal Informal RuleML Ontology UML Ontology
Ontologies

Coverage [p,y] [y,p] [p,p] [p,y] [y,y] [p,y] [p,y]
Reusability yes yes yes yes yes yes yes
Composability no fair no no no no fair

Matchmaking Metric Definition yes no no yes no yes yes
Alternatives impl impl impl impl no no yes
Soft Constraints no yes no no no no yes
Matchmaking Metric no no no no no no yes

Negotiation Meta-Negotiation poor fair poor poor no no good
Negotiability no part no no no no yes

Monitoring Metric Provider yes no yes no yes no yes
Metric Schedule yes no no yes yes no yes

Assessment Condition Evaluator yes no yes no yes no yes
Qualifying Condition impl yes no no yes no yes
Obliged yes yes yes yes yes yes yes
Assessment Schedule yes no no no yes no yes
Validity Period yes no no yes yes no yes
Recovery Actions yes no yes yes no no no

Settlement Penalties no SLO SL SL SLO SLO SLO
Rewards no SLO no SL SLO no SLO
Settlement Actions yes no no yes no no yes

Archive Validity Period yes yes no no yes yes yes

6 Conclusions

This paper has proposed an extension to OWL-Q called Q-SLA to cater for
specifying SLAs. This extension was designed to fill the gaps with respect to the
capturing of information supporting all activities in the service-based application
management. In addition, it is coupled with semantic rules enabling the semantic
SLA validation such that the modellers are guided to specify only semantically
correct SLA descriptions. This paper also reveals the great re-engineering effort
on OWL-Q resulting in the reduction of its complexity and in producing of an
axioms set and semantic rules which not only enable validating semantic quality
models and quality-based service descriptions but also deriving new knowledge.
This knowledge, for the time being, concerns matching quality terms from dif-
ferent OWL-Q quality specifications to assist in their alignment.

The paper has also provided a proof-of-concept application of Q-SLA on a
specific use-case highlighting its main benefits, especially with respect to the
increased flexibility via which SLAs can be expressed. It has also included a
specific SLA language evaluation showcasing Q-SLA’s superiority.



Semantic SLAs for Services with Q-SLA 15

Particular research work directions have been planned. First, further validat-
ing Q-SLA/OWL-Q according to additional use-cases. Second, more complete
SLA relationship handling. Third, coupling Q-SLA/OWL-Q with an editor en-
abling non-expert users in ontology modelling to specify SLAs and other types
of quality-based service specifications. Fourth, developing a complete service-
application management framework based on OWL-Q. Finally, developing adapters
which transform non OWL-Q specifications to OWL-Q ones thus enabling the
aforementioned framework to work with many other quality-based service lan-
guages. This will certainly promote using OWL-Q as well as reducing the mod-
eller effort, when existing quality specifications are already in place.

Acknowledgements The research leading to these results has received funding
from the European Commission’s Framework Programme for Research and In-
novation HORIZON 2020 (ICT-07-2014) under grant agreement number 644690
(CloudSocket).

References

1. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Or-
chard, D.: Web Services Architecture. W3c working draft, W3C (Nov 2002), avail-
able at http://www.w3.org/TR/ws-arch

2. Correia, A., e Abreu, F.B., Amaral, V.: SLALOM: a language for SLA specification
and monitoring. CoRR abs/1109.6740 (2011), http://arxiv.org/abs/1109.6740

3. Garćıa, J.M., Pedrinaci, C., Resinas, M., Cardoso, J., Fernández, P., Ruiz-Cortés,
A.: Linked USDL Agreement: Effectively Sharing Semantic Service Level Agree-
ments on the Web. In: ICWS. pp. 137–144. IEEE Computer Society (2015)

4. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C,
http://www.w3.org/Submission/SWRL/ (2004)

5. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network and Systems Management
11(1), 57–81 (2003)

6. Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benbernou, S.,
Brandic, I., Kertesz, A., Parkin, M., Carro, M.: A Survey on Service Quality De-
scription. ACM Computing Surveys 46(1) (2013)

7. Kritikos, K., Plexousakis, D.: Semantic QoS Metric Matching. In: ECOWS. pp.
265–274. IEEE Computer Society (2006)

8. Kritikos, K., Plexousakis, D.: Towards Aligning and Matchmaking QoS-based Web
Service Specifications, chap. 1, pp. 216 – 257. IGI Global, USA (July 2012)

9. Kritikos, K., Plexousakis, D.: Novel optimal and scalable nonfunctional service
matchmaking techniques. IEEE T. Services Computing 7(4), 614–627 (2014)

10. Paschke, A.: RBSLA: A declarative Rule-based Service Level Agreement Language
based on RuleML. In: CIMCA-IAWTIC. pp. 308–314. IEEE Computer Society,
Vienna, Austria (2005)

11. Saati, T.: The Analytic Hierarchy Process. McGraw-Hill (1980)
12. Tosic, V., Pagurek, B., Patel, K.: WSOL - A Language for the Formal Specification

of Classes of Service for Web Services. In: Zhang, L.J. (ed.) ICWS. pp. 375–381.
CSREA Press, Las Vegas, Nevada, USA (2003)


