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Abstract— Engineering volunteer services calls for novel self-

adaptive approaches for dynamically managing the process of 

composing and/or allocating volunteer services. As these services 

tend to be published and withdrawn without restrictions; 

uncertainties, dynamisms and ‘dilution of control’ related to the 

decisions of selection and composition are complex problems. 

These services tend to exhibit periodic performance patterns, 

which are often repeated over a certain time period. 

Consequently, the awareness of such periodic patterns enables 

the prediction of the services performance leading to better 

adaptation. In this paper, we contribute to a self-adaptive 

approach, namely time-awareness, which combines self-aware 

principles with dynamic histograms to dynamically manage and 

maintain the periodic trends of services performance and their 

evolution trends over time. Such knowledge can inform the 

adaptation decisions; leading to increase in the precision of 

selecting and composing services. We evaluate the approach 

using a volunteer storage composition scenario. The evaluation 

results show the advantages of dynamic knowledge management 

in self-adaptive volunteer computing in selecting dependable 

services and satisfying higher number of requests. 

Keywords—dependability; service composition; self-adaptive; 

self-aware 

I.  INTRODUCTION 

Volunteer Computing (VC) is an emerging distributed 
computing paradigm in which users make their own resources 
available to others enabling them to do distributed 
computations and/or storage [1]. In the literature, many 
approaches have been proposed to enable volunteers to donate 
their resources for scientific projects, e.g. SETI@Home [2] and 
Storage@Home [3], among the others. The paradigm is 
believed to be an enabler for cost-effective large scale 
computation and sharing for storage, leveraging on spare 
resources that can be available and idle on the users’ 
computing devices (e.g. PCs, laptops, smart phones, etc.). The 
paradigm has been seen as an  alternative for purchasing 
resources  in large scale projects, where utilizing volunteered 
resources can bring the benefits  of large scale inexpensive and 
shared computing [4].  

Volunteered resources can be composed together to satisfy 
users’ requests in many service-oriented applications such as 
the cloud and smart cities [5], a practice, which we term as 
volunteer service composition (VSC). Engineering Volunteer 
Services (VSs) calls for novel self-adaptive approach for 

dynamically and adaptively managing the processes of 
selecting, composing, and allocating VSs and underlying 
resources. The approach shall address the following 
fundamental requirements, which caters for dynamisms and 
uncertainties in requests and service provision. More 
specifically, these approaches shall fundamentally address: 

 Resources-awareness: the contributed resources should 
be composed and/or allocated to users, achieving both 
maximum utilization and minimum waste with 
minimum computation time. 

 Availability-awareness: Resources availability tends to 
be uncertain and dynamic in VC. This is because,   the 
publishers often contribute their resources during the 
time intervals in which they do not need those 
resources, i.e. the volunteered resources are not 
available permanently [6]. 

 Dilution of control: As volunteer services are offered on 
a voluntary basis by individuals and organizations 
willing to participate in the model, VC tends to exhibit 
‘dilution’ of control increasing the level of uncertainty 
and the dynamisms of the provision. This is because 
volunteered resources can be offered and withdrawn at 
any time [7]. The right without the symmetric 
obligation to participate in VC makes Service Level 
Agreements (SLAs) less stringent as when compared to 
commercial services; adding further complexity. 

 Dependability-awareness: Because of the dilution of 
control requirement, dependability information of the 
services, in terms of the level of providing the promised 
resources, should be collected and used in VS 
composition/allocation approaches. 

In [8] the authors have reported the presence of periodic 
patterns in the performance of the volunteering hosts based on 
a long-term study. The study analyzed a large set of traces 
taken from the SETI@Home [2] real system. The patterns are 
usually repeated over a certain time period that varies from one 
volunteer to another. Such period can be some hours, days, or 
weeks. We argue that the awareness of such periodic patterns 
enables the prediction of the services performance, which helps 
to reason about the selection and adaptation decisions. 
However, taking into account that different volunteers 
contribute their resources to different systems we can deduce 
that traces collected from one project cannot be used in another 



one, as the volunteers are different. These circumstances 
motivate the need for an approach that captures and manages 
the knowledge at runtime. This also requires data structures 
suitable to represent the dynamically acquired and managed 
knowledge such as the dynamic histograms [9]. Dynamic 
histograms are constructs that dynamically approximate data 
distributions at runtime. They have been used in database 
management systems’ applications in order to maintain and 
represent the data which continuously arrive and vary with 
time.  

Recently, self-awareness and self-expression concepts have 
been receiving more attention in computing systems [10]. Self-
awareness is defined as the combination of (1) the knowledge 
on the internal state of the system and the execution 
environment, (2) the ability to predict the changes in the 
system, and (3) the ability to adapt to the changes [11]. Thus, 
self-awareness can provide self-adaptive systems with 
primitives for proactive management and behavioral control at 
runtime. It can also improve both the accuracy and quality of 
adaptation. This may in turn converge the system towards more 
desirable stable states. 

In our previous work [12], we developed utility models for 
VSC, which can inform the problem of dynamically selecting 
and composing ‘good enough’ services. In [13], we proposed a 
framework to enable self-adaptation in VC inspired by a 
general framework leveraging self-awareness in computing 
[14]. As part of the framework, two self-adaptive approaches 
have been proposed to deal with uncertainty associated with 
VC environment. The first is the stimulus-aware VSC, which is 
considered as a baseline approach. The second is the ‘classic’ 
time-aware VSC, which leverages the historical observations 
on services’ performance at the selection and composition 
phases. The ‘classic’ time-aware approach assumes the 
availability of historical records, which is not always the case. 
In this paper we take this work further: we start from zero-
history and instead accumulate that history at runtime. For this 
purpose, we make novel use of dynamic histograms to capture 
the evolving knowledge on the services’ performance. 

The novel contribution of this paper is the time-aware 
approach that leverages principles of self-awareness and use 
dynamic histograms to dynamically acquire and manage 
knowledge on VSs’ performance in self-adaptive VC. Our 
approach treats knowledge of self-adaptive VC as “moving 
target” that can change and evolve over time and uses this 
information to better inform the adaptation. This can 
consequently improve the quality and precision of adaptation in 
dynamic and uncertain environment. Specifically, we make the 
following novel contributions: 

Firstly, unlike existing works in VC which assume the 
presence of historical records on services performance, we 
assume that the system starts from zero-history and 
accumulates the knowledge at runtime. 

Secondly, we use dynamic histograms to capture the 
evolving knowledge at runtime. The dynamic histograms 
enable capturing the periodic patterns of the VS in case they 
exist. 

Thirdly, we develop a method to estimate the services 
performance that takes into consideration the periodic patterns 

and the time interval in which the requester intends to use the 
required volunteered resources. 

Fourthly, building on a scenario from VSC, we evaluate the 
time-aware approach and compare it with the stimulus-aware 
approach, which is considered as a baseline adaptive approach 
in VC. The results show that the time-aware approach results in 
satisfying higher number of requests and better resources 
utilization. However, it produces certain overhead in terms of 
computation time.  

The remainder of this paper is organized as follows: the 
next section introduces the motivating scenario. Section III 
presents the dynamic histogram and its evolution operations. In 
section IV we present the self-aware architectural framework. 
In section V we briefly introduce our utility model. Section VI 
introduces the self-aware VSC approaches. Section VII shows 
the evaluation results. Related works are outlined in section 
VIII and we conclude in section IX.  

II. MOTIVATING SCENARIO 

We motivate the need for integrating the concepts of self-
awareness into VC, using a situation in which volunteered 
storage are offered as services. Assume a heterogeneous 
environment, which consists of varied computing nodes like 
PCs, laptops, smart phones, etc. These nodes are connected via 
a network. Individual people owning these nodes, known as 
publishers, offer their idle storage resources as services using a 
publish/subscribe model. Assume a subscriber needs to do 
some computations and store data temporarily but she has 
insufficient storage. To overcome this issue, she can explore 
the network searching for volunteer storage services to use. If 
she finds the required storage, while satisfying her 
requirements (e.g. location, security etc.), she will request it for 
her use. Otherwise, volunteered storages can be composed 
together to form a total storage that meets the subscriber’s 
needs. Fig. 1 shows an example in which the subscriber 𝑆1 

submits a request to search for storage of 40 GB. To make this 
volume available to  𝑆1, the composer service, named 
FindSpace4Me, inspects the published services and returns 
three possible composition strategies: 

1
st
: Using the storage promised by 𝑉𝑆1.  

2
nd

: Composing the storages promised by 𝑉𝑆2, 𝑉𝑆3, and 𝑉𝑆4. 

3
rd

: Composing the storages promised by  𝑉𝑆2 and 𝑉𝑆5. 

Now, which strategy should be selected to satisfy the 
request? One possibility is to randomly pick any of them. Then,  

 

Fig. 1. Motivating Scenario - Composition request of S1 for 40GB. 



when a service violates the requirements, the system initiates 
an adaptation action to repair the corresponding strategy. 
However, a question arises here about the feasibility of that 
adaptation action, i.e. will the undertaken adaptation result in 
better performance? On the other hand, if the system is able to 
anticipate the performance of the services, then it can select a 
strategy so that violations are less likely to occur, thus avoiding 
the violations. Also, the deeper the knowledge the system has 
on the services performance, the more intelligent the decision 
will be. In this context, self-awareness can be adopted to reason 
about the self-adaptation actions; henceforth, enabling 
intelligent selection and adaptation decisions. For example, 
assume that 𝑆1 submitted a request at time 𝑡1, and assume that 
the performance of 𝑉𝑆5 is anticipated to be poor at 𝑡1, then the 
system will avoid the selection of the third strategy. But, if we 
assume that 𝑆1 submitted a request at time 𝑡2, and assume that 
the performance of 𝑉𝑆5 is anticipated to be well at 𝑡2, then the 
system may select the third strategy. In our work we implement 
this scenario to demonstrate the adoption of the self-awareness 
in VC. 

III. DYNAMIC HISTOGRAM EVOLUTION 

As mentioned we use dynamic histograms to dynamically 
manage the knowledge on the services historical performance. 
These histograms typically consist of buckets, which are 
created/merged at runtime using a method based on 
Chebyshev’s inequality [15]. Then, the data stored in each 
bucket are used to estimate the service’s performance. In this 
section we give a brief background on the histograms and 
dynamic histograms and Chebyshev’s inequality. Then, we 
present the dynamic histogram evolution operations we have 
developed. 

A. Background 

1) Histograms and dynamic histograms 
A histogram is an estimate of the data distribution of a 

certain variable. Given a certain dataset, a histogram divides its 
data into subsets called buckets based on a partitioning rule. 
Dynamic Histograms have been proposed to capture and 
estimate the data distribution in evolving datasets. In such 
cases, data points arrive continuously and the dataset is built 
incrementally over time [9]. Dynamic histograms are 
continuously updated to tackle the changes in the evolving 
datasets. The main idea in the dynamic histograms is to 
reconstruct the buckets, which involves splitting and/or 
merging buckets, at runtime based on the partitioning rule of 
the histogram in order to keep the properties of the histogram.  

The time-aware approach (explained below), dynamically 
divides the services usage time into time intervals at runtime. 
The time intervals correspond to the dynamic histograms 
buckets. The captured knowledge on the services performance 
is then stored in the buckets, which results in splitting/merging 
buckets based on the number of data points in those buckets. 

2) Chebyshev’s inequality 
Suppose that we have a set of 𝑁 data points for a random 

variable (e.g. observations of a service’s performance) but the 
distribution of the random variable is unknown: We estimate 
the expected value using the data points and we can use the 
Chebyshev’s inequality in order to know how close the 

estimated expected value is to the actual one [16]. In other 
words, Chebyshev’s inequality bounds the probability that a 
random variable deviates from its expected value by a 
sufficiently small positive number 𝜀, called confidence 
threshold. Mathematically, Chebyshev’s inequality is 
expressed as: 

𝑃(|𝐸(𝑋) − 𝐸̂(𝑋) ≥  𝜀|) ≤
𝜎2

𝑁. 𝜀2
 (1) 

where 𝐸(𝑋) is the actual expected value, 𝐸̂(𝑋) is the estimated 
expected value, 𝜎 is the standard deviation, 𝑁 is the number of 
data points, and 𝜀 is the confidence threshold.  

In our approach, we use Chebyshev’s inequality in a 
different way. Our purpose is to know when the number of data 
points in a bucket in the dynamic histogram will be sufficient 
to give a close estimate of the expected value, which helps to 
decide when to split the bucket and evolve the histogram. The 
corresponding method is presented in the next section. 

B. Evolution operations 

As mentioned, the system starts from ‘zero-history’ and 
then the knowledge is captured and managed incrementally at 
runtime using the dynamic histograms. We adopt a dynamic 
histogram for each service in order to continuously insert the 
observed data points taking into account the time interval in 
which the data point has been observed. Then the continuous 
update of the dynamic histogram, by splitting and/or merging 
the buckets, results in refining the histogram structure and 
capturing the periodic performance pattern of the services. 
Accordingly, a data point is defined as follows: 

Definition 1. (Data point) A data point is a tuple of (𝑇 =
 [𝑎, 𝑏], 𝑣𝑎𝑙𝑢𝑒) where 𝑇 is the time interval in which the 
observation has been recorded, 𝑎 is the start date of  𝑇 and 𝑏 is 
the end date, and 𝑣𝑎𝑙𝑢𝑒 is the value of the performance metric. 

The update process of the dynamic histogram involves 
inserting a new data point into the appropriate bucket(s), 
splitting a bucket when the number of data points is sufficient 
to estimate the performance, and merging each empty bucket 
with a neighbour one. In the following, we describe each of the 
mentioned operations and show the corresponding algorithm. 

1) Insert new data point.  
Based on definition 1, a data point might fall into one or more 
buckets depending on the intersection between the data point 
time interval and the bucket(s) boundaries. Algorithm 1 is used 
to find the appropriate bucket(s) in which the data point will be 
inserted. 

 
Algorithm 1  Find Appropriate Buckets 

Input: Dynamic Histogram dhist, Data Point dp 
Output: Array appropriateBuckets 
1: for all bucket in dhist do 
2: // check if the time intervals of dp and bucket intersect 
3: if dp.start_date < bucket.end_date && dp.end_date > 

bucket.start_date then 
4: add bucket to appropriateBuckets 
5: end if 
6: end for 
7: return appropriateBuckets 



2) Split a bucket.  
When the number of data points in a bucket is sufficient to 

estimate the performance in the corresponding time interval, 
then dividing the bucket into smaller buckets will provide more 
accurate estimation of the performance. For example, consider 
a time interval of one year. Dividing the one year into (for 
example) twelve time intervals (each represents one month) 
will provide more in-depth knowledge on the services 
performance instead of treating the one year as a one time 
interval. To resume, the sufficient number of data points in a 
bucket is determined using the following method which is 
based on Chebyshev’s Inequality. Given the confidence 

threshold 𝜀 and the probability of confidence 𝑃(|𝐸(𝑋) −

 𝐸̂(𝑋) ≥  𝜀|) and solving (1) we will have: 

𝑁 ≥
𝜎2

𝑃(|𝐸(𝑋) − 𝐸̂(𝑋) ≥  𝜀|). 𝜀2
 (2) 

We can bound the variance 𝜎2. Assuming the worst case; 
the variance is maximum when one half of the values is at 
lowest possible and the other half is at the highest possible 
value. In this work we express the performance in terms of 
dependability, which will be defined in the next section. Based 
on that, the lowest value of the performance is 0.0 and the 
highest is 1.0. As a result, the maximum variance is 0.25 and 
the splitting threshold 𝑠𝑝𝑙𝑖𝑡_𝑡ℎ is given by: 

𝑠𝑝𝑙𝑖𝑡_𝑡ℎ =
0.25

𝑃(|𝐸(𝑋) − 𝐸̂(𝑋) ≥  𝜀|). 𝜀2
 (3) 

Consequently, when the number of data points in a bucket 
exceeds  𝑠𝑝𝑙𝑖𝑡_𝑡ℎ, the bucket will be split using Algorithm 2. 

Algorithm 2  Split Bucket 

Input: Bucket bucket 
Output: Bucket bucket1, Bucket bucket2 
1: for all data point dp in bucket do 
2:       Add dp.start_date and dp.end_date to temp_array 
3: end for 
4: Find min(temp_array) and max(temp_array). 
5: Calculate spliting_date = (min(temp_array) + max(temp_array)) 

/ 2. 
6: Create Bucket bucket1 such that bucket1.start_date = 

bucket.start_date and bucket1.end_date = spliting_date 
7: Create Bucket bucket2 such that bucket2.start_date = 

spliting_date and bucket2.end_date = bucket.end_date 
8: for all data point dp in temp_array do 
9:     if dp.time_interval intersects with bucket1.time_interval 
10:          Insert dp into bucket1  

11:   end if 
12:   if dp.time_interval intersects with bucket2.time_interval 
13:          Insert dp into bucket2  

14:   end if       
15: end for 
16: Delete bucket 
17: return bucket1 and bucket2 

 

3) Merge empty buckets  
If the splitting operation resulted in an empty bucket, then 

that bucket will be merged with its preceding neighbour. If the 
empty bucket does not have a preceding neighbour, it will be 
merged into the following one.  

Pseudo-code for the update method of the dynamic 
histogram is presented in Algorithm 3. 

Algorithm 3  Dynamic Histograms Update 

Input: Dynamic Histogram dhist, Data Point dp  
Output: Updated version of dhist 
1: appropiateBuckets = FindApprpoitaeBuckets (dp, dhist)  
2: for all Bucket bucketi ∈ appropiateBuckets do 
3:     insert dp in bucketi 

4:     if bucketi.size ≥ split_th then 
5:        Bucket[ ] temp_array ← SplitBucket(bucketi) 
6:        bucket1 ← temp_array[0]; bucket2 ← temp_array[1] 
7:        Replace bucketi by bucket1 and bucket2  

 8:        Set the successor and predecessor buckets for bucket1 and 
bucket2 
9:     end if 
10: end for 
11: for all Bucket bucketi in dhist do 
12:   if bucketi is empty then 
13:      Merge bucketi with its successor or predecessor 
14:   end if 
15: end for 
16: return dhist 

IV. SELF-AWARE VSC ARCHITECTURAL FRAMEWORK 

In [17] we proposed a general framework for self-aware 
service composition which enables knowledge collection and 
representation for reasoning about adaptation in service 
composition. In this section we provide a quick review of the 
self-aware framework. The architectural diagram of the 
proposed framework is illustrated in Fig. 2. The framework 
consists of the following basic components: 

 Internal/external sensors: The sensors are responsible for 
collecting data on the services engaged in a composition 
(internal) and the services available in the service 
repository (external). The data include any changes in the 
promised quality of service (internal) and the offering of 
new services in the service repository (external). Then the 
collected data are passed to the stimulus- and time-aware 
levels in the self-awareness component.  

 Self-awareness: This component models the knowledge 
collected by the sensors and passes the learnt models to 
the self-expression component. The stimulus-awareness 
level represents the basic level of awareness i.e. this level 
enables the system to respond to the events received from 
the sensors. The time-awareness level assumes the 
presence of the stimulus-awareness and adds more 
awareness by considering the historical performance of 
the services in terms of dependability, which is defined in 
the next section. Thus, the time-awareness level enables 
the system to take more intelligent adaptation decisions 
by selecting services that exhibited better performance 
historically.  

 Self-expression: this component performs the actual 
adaptation actions based on the learnt models received 
from the self-awareness component. 

The problem of dynamic knowledge management in self-
adaptive systems is still a pending issue. Dynamic knowledge 
management includes capturing the evolving performance 
datasets,   which   usually   starts   from   zero-knowledge, and 



 

Fig. 2. Self-aware VSC framework 

dynamically updating the models learnt from these datasets. In 
this paper, we provide an approach for dealing with this 
pending issue using the dynamic histograms, namely, the time-
aware approach. 

V. VSC FORMULATION 

In this section we introduce a set of definitions in order to 
formulate the VSC problem. 

A. Basic Definitions 

Definition 2. (Service/Request Attributes). In the presence of 
the identical functionality of the VSs, the services’ attributes 
are the criteria used to discriminate between services when a 
request is submitted. In our model, we use three generic 
attributes for this purpose, namely, Storage, Availability Time, 
and Reputation. However, other criteria can be defined without 
fundamental changes. 

1) Storage. Given a volunteer service 𝑉𝑆𝑖 , the storage 𝑆𝑡𝑔𝑖 
is the size of the volunteered storage in Megabytes where 
𝑆𝑡𝑔𝑖 > 0.  

2) Availability Time. Given a volunteer service 𝑉𝑆𝑖, 𝑇𝑖 is 
the time interval [𝑎𝑖 , 𝑏𝑖] in which 𝑉𝑆𝑖  is available, where 𝑎𝑖 is 
the start date and 𝑏𝑖 is the end date. 

3) Reputation. Given a volunteer service 𝑉𝑆𝑖, 𝑅𝑒𝑝𝑖  is the 

reputation level of the service which is reported from the 

subscribers after their use of 𝑉𝑆𝑖 where 0 ≤  𝑅𝑒𝑝𝑖  ≤  𝑅𝑒𝑝𝑚𝑎𝑥 

and 𝑅𝑒𝑝𝑖, 𝑅𝑒𝑝𝑚𝑎𝑥  ∈  ℕ. The representative reputation of a 

certain service 𝑉𝑆𝑖 is the average of the subscribers’ feedback 

on 𝑉𝑆𝑖. 
 

Definition 3. (Volunteer Service). A volunteer service 𝑉𝑆𝑖, is a 
3-tuple (𝑆𝑡𝑔𝑖, 𝑇𝑖, 𝑅𝑒𝑝𝑖) where 𝑆𝑡𝑔𝑖 is the volunteered storage 
space, 𝑇𝑖 is the time interval [𝑎𝑖 , 𝑏𝑖] in which the 𝑉𝑆𝑖  is 
available, and 𝑅𝑒𝑝𝑖 is the reputation level of the service. A 
service repository (SR) is a set of disjoint volunteer services. 
We denote a SR with 𝑛 services as 𝑆𝑅 =  {𝑉𝑆1,𝑉𝑆2, . . . ,𝑉𝑆𝑛}. 
In this paper we denote the 𝑆𝑡𝑔𝑖, 𝑇𝑖, and 𝑅𝑒𝑝𝑖 as the attributes of 
the service or the quality of the service.  

Definition 4. (Subscriber’s Request). A subscriber’s request 𝑅 
is a 2-tuple (𝑆𝑡𝑔𝑅, 𝑇𝑅), where 𝑆𝑡𝑔𝑅 denotes the storage space 
required in the time interval 𝑇𝑅 = [𝑎𝑅, 𝑏𝑅].  

Definition 5. (Composite Service). Given a subscriber’s request 
𝑅, a Composite Service 𝐶𝑆 is a set of VSs, {𝑉𝑆1, 𝑉𝑆2, . . . , 𝑉𝑆𝑘}, 
such that the following global constraints are satisfied (denoted 
as 𝐶𝑆 ⊢  𝑅): 

 𝑉𝑆𝑖 ∈ 𝑆𝑅, 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑛  

 ∑ 𝑆𝑡𝑔𝑖
𝑘
𝑖=1 ≥ 𝑆𝑡𝑔𝑅  , at any time instant in [𝑎𝑅 , 𝑏𝑅]. 

 𝑎𝑅 ≥ 𝑚𝑖𝑛[𝑎𝑖] and 𝑏𝑅 ≤ 𝑚𝑎𝑥[𝑏𝑖] ∀ 𝑉𝑆𝑖  ∈ 𝐶𝑆. 

B. Static VS Selection and Composition 

In this section we briefly introduce the utility model and the 
composition approach we developed in [12]. This model is the 
base for our self-adaptive VSC approaches.  

The utility model provides a systematic approach for 
selecting the VSs that are composed to satisfy a request. The 
idea is to measure the amount of contribution that each service 
exhibits to satisfy the request. When a subscriber submits a 
composition request, the system creates an empty 𝐶𝑆, retrieves 
the available services from the service repository, and 
computes the utility for each service attribute using the utility 
functions (4) and (5). In this paper, we term these utilities as 
the promised utilities. 

1) Storage utility: 

𝑈𝑠𝑡𝑔(𝑉𝑆𝑖) =  {
𝑒−𝛽(𝑆𝑡𝑔𝑖−𝑆𝑡𝑔

𝑅), 𝑆𝑡𝑔𝑖 ≥ 𝑆𝑡𝑔
𝑅

𝑒𝛼(𝑆𝑡𝑔𝑖−𝑆𝑡𝑔
𝑅), 𝑆𝑡𝑔𝑖 < 𝑆𝑡𝑔

𝑅

𝑤ℎ𝑒𝑟𝑒 0 < 𝛽 < 𝛼 < 1

 (4) 

2) Time utility 

𝑈𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) =

{
 
 
 

 
 
 

0, 𝑏𝑖 ≤ 𝑎𝑅 𝑜𝑟 𝑏𝑅 ≤ 𝑎𝑖

𝑒𝛾(𝑏𝑖−𝑏
𝑅),  𝑎𝑖 < 𝑎𝑅 , 𝑎𝑅 < 𝑏𝑖 < 𝑏

𝑅  

𝑒𝛾(𝑎
𝑅−𝑎𝑖),  𝑏𝑖 > 𝑏

𝑅  , 𝑎𝑅 < 𝑎𝑖 < 𝑏𝑅

𝑒𝛼(𝑏𝑖−𝑎𝑖)

𝑒𝛼(𝑏
𝑅−𝑎𝑅)

,  𝑎𝑖 ≥ 𝑎𝑅 , 𝑏𝑖 ≤ 𝑏
𝑅

𝑒−𝛽(𝑏𝑖−𝑎𝑖)

𝑒−𝛽(𝑏
𝑅−𝑎𝑅)

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑤ℎ𝑒𝑟𝑒 0 < 𝛽 < 𝛾 < 𝛼 < 1.

 (5) 

After computing the utilities, the system finds the non-
dominant set of services using (6), and randomly selects one of 
them and adds it to CS. Then, if the above global constraints 
are satisfied, the system returns CS to the subscriber, otherwise 
the process is repeated. If no composite service can be found to 
satisfy the request 𝑅, the system notifies the subscriber.   

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
 

 {𝑈𝑠𝑡𝑔(𝑉𝑆𝑖), 𝑈𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) , 𝑅𝑒𝑝(𝑉𝑆𝑖)}
 

(6) 

VI. SELF-AWARE VOLUNTEERED SERVICES COMPOSITION 

In this section, we present the self-adaptive VSC 
approaches, namely, the stimulus- and the time-aware VSC as 
a realization of the corresponding awareness levels of the self-
aware framework. 

A. Stimulus-aware VSC 

The service selection in this approach is based on the 
promised utilities of the volunteers. When a subscriber submits 
a request 𝑅, the system searches for a composite service that 
satisfies 𝑅 as described in the above section. 

With regards to self-adaptability, the stimulus-aware 
adaptation is considered as the basic level of adaptation as it is 



the adaptation approach supported in the current volunteer 
computing systems [13]. The adaptation actions are limited to 
replacing the violating service by another one in order to 
maintain the corresponding composite service. To clarify, 
when a change in the promised storage or availability of a 
service 𝑉𝑆𝑖  occurs, the self-expression initiates an adaptation 
action in order to replace the violating service 𝑉𝑆𝑖 by re-
executing the above steps. If the adaptation process is 
successful, then the violating service is replaced, otherwise the 
subscriber is notified that the violation cannot be treated.  

B. Time-aware VSC 

The aim of the time-aware approach is to use the historical 
performance of the services to select the most appropriate 
services, i.e. services that provide what they promise. In our 
approach, we express the services performance in terms of 
dependability. We consider a service 𝑉𝑆𝑖   to be dependable if 
𝑉𝑆𝑖   provides the storage and availability it promises. In this 
section, we introduce a formal definition of dependability then 
the time-aware VSC approach. 

1) VS dependabilities 
The dependability evaluation provides a useful method for 

examining the behaviour of the service provider, i.e. the 
volunteer. We consider a service 𝑉𝑆𝑖 to be dependable if 𝑉𝑆𝑖 
provides the storage and availability it promises. We use the 
dependability measure to express the extent to which a selected 
service fulfils the promised resources and quality of service. As 
the deviation from the promised quality can be in any attribute, 
there will be a dependability measure for each service attribute. 
We introduce the definition of dependability as follows. Given 
that a volunteer service 𝑉𝑆𝑖 has been selected in a composite 
service 𝐶𝑆 to serve the request 𝑅. Assume that 𝑈𝑠𝑡𝑔

𝑃 (𝑉𝑆𝑖) is the 

storage utility promised by the volunteer of  𝑉𝑆𝑖. Assume also 
that the actual storage utility provided by 𝑉𝑆𝑖, captured by the 
self-aware framework sensors, during serving  𝑅 is 𝑈𝑠𝑡𝑔

𝐴 (𝑉𝑆𝑖). 

Then the storage dependability of 𝑉𝑆𝑖, 𝐷𝑠𝑡𝑔(𝑉𝑆𝑖), is defined as 

in (7). The availability time dependability, 𝐷𝑡𝑖𝑚𝑒(𝑉𝑆𝑖), is 
defined similarly as in (8). 

𝐷𝑠𝑡𝑔(𝑉𝑆𝑖) =  {

𝑈𝑠𝑡𝑔
𝑃 (𝑉𝑆𝑖) − 𝑈𝑠𝑡𝑔

𝐴 (𝑉𝑆𝑖)

𝑈𝑠𝑡𝑔
𝑃 (𝑉𝑆𝑖)

, 𝑈𝑠𝑡𝑔
𝐴 (𝑉𝑆𝑖) < 𝑈𝑠𝑡𝑔

𝑃 (𝑉𝑆𝑖)

1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

𝐷𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) =  {

𝑈𝑡𝑖𝑚𝑒
𝑃 (𝑉𝑆𝑖) − 𝑈𝑡𝑖𝑚𝑒

𝐴 (𝑉𝑆𝑖)

𝑈𝑡𝑖𝑚𝑒
𝑃 (𝑉𝑆𝑖)

, 𝑈𝑡𝑖𝑚𝑒
𝐴 (𝑉𝑆𝑖) < 𝑈𝑡𝑖𝑚𝑒

𝑃 (𝑉𝑆𝑖)

1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

2) Knowledge management using dynamic histograms 
Our aim is to capture the periodic performance patterns of 

the VSs, in terms of dependabilities, so that the system can use 
such historical knowledge to determine the time intervals in 
which a service is most likely to fulfil the request requirements 
and the time intervals in which that service is most likely to 
violate the request requirements. To achieve that, a dynamic 
histogram is created for each service attribute. Initially each 
dynamic histogram contains one bucket, then the dynamic 
histogram evolves by dividing/merging buckets as the 
dependabilities’ data points arrive. For each service, a new data 
point will arrive in two cases, (i) a service violates the 
promised utilities or (ii) a request, in which the service is 

involved to satisfy, has been satisfied. In both cases, the 
dependabilities will be computed using (7) and (8) and inserted 
into the appropriate bucket(s) using Algorithm 3. After a 
certain period of time, the dynamic histogram converges to a 
state in which the buckets represent the service’s pattern 
periods. The length of the convergence period depends on how 
often the service is used.  

3) Time-aware service selection 
When a subscriber submits a request, the following key 

steps are executed in order to satisfy the request: 

Step 1: For each 𝑉𝑆𝑖  ∈ 𝑆𝑅, compute the 𝑈𝑠𝑡𝑔 and 𝑈𝑡𝑖𝑚𝑒  using 

the utility functions (4) and (5) respectively. Compute also the 
average reputation 𝑅𝑒𝑝(𝑉𝑆𝑖). 
Step 2: For each 𝑉𝑆𝑖  ∈ 𝑆𝑅 find the appropriate buckets from 
the corresponding dynamic histogram. Each bucket overlaps 
with request interval is considered an appropriate bucket.  
Step 3: For each bucket, estimate the representative 𝐷𝑠𝑡𝑔 and 

𝐷𝑡𝑖𝑚𝑒 for each 𝑉𝑆𝑖  ∈ 𝑆𝑅 by counting the number of data points 
which have a value greater than or equal to the dependability 
threshold 𝐷𝑡ℎ, which is provided by the subscriber, and dividing 
that number by the total number of data points in the bucket.  
Step 4: Find the average storage dependability,  𝐴𝑉𝐷𝑠𝑡𝑔, for 

each  𝑉𝑆𝑖 by summing the representative storage dependability 
of each bucket and dividing over the number of buckets. 
Similarly find  𝐴𝑉𝐷𝑡𝑖𝑚𝑒. 
Step 5: Find the non-dominant set of services using (9), select 
one of them randomly, and add it to 𝐶𝑆. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
 

{𝑈𝑠𝑡𝑔(𝑉𝑆𝑖),   𝑈𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) , 𝑅𝑒𝑝(𝑉𝑆𝑖)

 𝐴𝑉𝐷𝑠𝑡𝑔,   𝐴𝑉𝐷𝑡𝑖𝑚𝑒}  

(9) 

After executing the above steps, the subscriber request will 
be partially satisfied, then the request requirements will be 
recalculated in order to update the remaining requirements, and 
the above steps will be repeated to select the next service. After 
selecting each service, the global constraints (see Definition 5) 
will be checked. If they are satisfied, the composite service 𝐶𝑆 
will be returned; otherwise the above steps will be repeated. If 
all the services are visited and the global constraints are still 
not satisfied, an empty 𝐶𝑆 will be returned and the subscriber 
will be notified that the request cannot be satisfied. 

4) Time-aware adaptation 
The self-adaptability in the time-aware approach is two-

fold, in terms of the question: “When should we adapt?” 

a) Reactive adaptation: When a change in the promised 
quality of a service is reported to the time-awareness 
component (see Fig. 2), the actual utilities will be computed 
using (4) and (5) and subsequently the dependabilities using 
(7) and (8). Then the dependabilities will be stored in the 
corresponding dynamic histogram. After that, an adaptation 
action will be carried out by the self-expression component. 
This adaptation action involves executing the time-aware 
service selection steps (section VI.B.3) in order to replace the 
service that violated the requirements. 

b) Proactive adaptation: The system performs proactive 
adaptation in order to adapt a composite service before a 
violation occurs. The proactive adaptation is trigged in  two 



cases, (1) the dependability of a service involved in a 𝐶𝑆 is 
expected to drop, according to the performance pattern 
captured in the service dynamic histogram, or (2) a service has 
become availabe in the 𝑆𝑅 which is expected to perform better 
than an existing one, according to its perfomance patterns. In 
both cases, the system will execute the time-aware service 
selection steps (section VI.B.3) in order to adapt the 𝐶𝑆. 

VII. EXPERIMENTAL EVALUATION 

In this section, we conduct experiments in order to evaluate 
the performance of the stimulus-aware and time-aware 
approaches using simulations. Simulating the selection and 
adaptation actions has the advantage of conducting scalable 
experiments which are expensive to conduct on real systems. 
However, the results can be used to guide the real application. 
The experiments were conducted on a desktop PC with an Intel 
core i5-3570 3.5 GHZ processor, 4G RAM, Windows 7, Java 
Standard Edition V1.7.0. 

A. Experimentations Context  

We implement the example described in section II as a 
publish/subscribe model in which 𝑛 services are published and 
m subscribers request their composition goals. The attributes’ 
values of the n services were generated randomly. TABLE I.  
shows the ranges of the services attributes values. In the 
experiments we assume that 1000 service are available, which 
is a reasonable number to indicate scalability compared with 
the literature, e.g. the number of services in [18] is 5. We vary 
the number of requests m. The performance of the services is 
assumed to have a periodical daily or weekly pattern according 
to the long term data traces analysis conducted in [8]. For each 
test case, the experiment was conducted 100 times and the 
average was computed. 

B. Comparison Criteria 

The experiments compare the above approaches in the 
following criteria: 

1) Average dependability: defined as the average 
summation of the dependability of each selected VS divided 
by the number of selected VSs. This metric is a pointer to the 
correctness of the time-aware approach. That is the time-aware 
approach should tend to select the more dependable services. 

2) %Satisfies requests: defined as the number of requests 
that the system can successfully satisfy divided by the total 
number of requests. This metric is related to the  efficiency  of  

 

TABLE I.  RANGE OF ATTRIBUTES VALUES 

 Service Subscriber 

Attribute min max min max 

Storage 5 20 20 30 

Time 1 Jan. 31 Dec. 1 Jan. 31 Dec. 

Reputation 0 4 - - 

 
selecting services, i.e. selecting dependable services will lead 
to fewer violations and hence more requests will be satisfied. 

3) Time cost: defined as the average summation of the 
time needed to generate the composite services and the time 
needed to adapt to the constraints violations (whether 
reactively or proactively) in milliseconds. 

C. Results and Discussion 

1) Comparison in average dependability: The first set of 
experiments evaluates the tendency of selecting the the highly 
dependable services over time. Fig. 3 (a), (b), and (c) shows 
the average dependability of the selected services for varying 
number of requests 𝑚. The figure shows that the average 
dependability in the two approaches is nearly the same in the 
initial interval of the simulation time. The reason in that the 
knowledge size is zero or small to efficiently predict the 
services performance. After a while of accumulating the 
knowledge, the average dependability in the time-aware case 
gets higher than the stimulus-aware case. Therefore, the time-
aware approah has the advantage of selecting the dependable 
services when the required knowledge about the services 
dependability becomes available. 

2) Comparison in throughput: The second set of 
experiments compares the throughput over time.  Fig. 4(a), 
(b), and (c) shows the average throughput for 𝑚 requests. The 
figures show that the average throughput is almost the same in 
the initial period of time. After a while of accumulating the 
knowledge, the average throughput in the time-aware case gets 
higher than the stimulus-aware case. Thereforce, having the 
advantage of selecting the dependable services using the time- 
aware appoach results in reducing the constraints violations 
and so satisfying more requests. 

3) Comparison in time cost: The third set of experiments 
evaluates the time cost of the two approaches. Suppose that we 
have 𝑛 services, 𝑡 buckets for each service in the dynamic 
histogram, and 𝑝 data points in each bucket. For the stimulus-
aware approach the time complexity is 𝑂(𝑛). For the time-
aware approach the time complexity is 𝑂(𝑛𝑡𝑝) in the worst 
case in theory. These time complexities are for one iteration of 
the   corresponding   algorithms   since    the   presented   VSC 
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approaches   are    greedy-approaches,   i.e.    the   number   of 
iterations needed to satisfy the request is unknown. Turning to 
the simulation results, Fig. 5 (a), (b), and (c) show the time 
cost for varying 𝑚 requests. The figure shows that the 
stimulus-aware approach has the least time cost. It is notable 
also that the time cost in the time-aware approach increases 
linearly over time, whereas the time cost in the stimulus-aware 
approach is not affected. 

4) Discussion: The experimentation results show that 
using the dynamic histograms for dynamic knowledge 
management helps to refine the performance models learnt at 
runtime. As the previous figures show, the advantages of 
selecting dependable services and satisfying more requests are 
noticed after the knowledge in the dynamic histograms is 
refined. However, the improvements are accompanied with an 
overhead which is mainly the time cost of updating the 
dynamic histogram. In our on-going research, a brain-like 
component, called meta-self-awareness, will be implemented 
in the self-awareness framework in order to assess whether the 
level of overhead is acceptable compared to the users’ 
requirements. Then, it will be the responsibility of the meta- 
self-awareness component to switch between the awareness 
approaches based on overhead/advantages assessment. 

VIII. RELATED WORKS 

A. Volunteer Computing Paradigms 

In this section, we present an overview of the deemed 
volunteer computing frameworks. BOINC is the earliest VC 
middleware [19]. It enables for creating public-resource 

computing projects. Through this middleware, users can 
participate their PCs and specify their contributions to the 
projects. SETI@home [2], Storage@home [3], and others are 
examples of VC projects that use BOINC. Cloud@Home [20] 
is a computing paradigm that has been proposed to enable 
resource sharing on either voluntary or commercial basis. 
Social Cloud [21] is a paradigm that takes advantage of pre-
existing social networks trust relationships to share resource 
among users. None of the existing approaches address the 
dynamisms of the volunteering environment and the 
knowledge management problem. They do not provide answers 
on how to deal with the changes in the environment and how to 
adapt to those changes. 

B. Self-adaptive Frameworks 

The increased complexity of service-oriented applications 
stimulated the researchers to investigate for self-adaptive 
solutions; resulted in an extensive literature on self-adaptive 
systems. The dominant ones have been surveyed in [22] [23]. 
In the event that knowledge acquisition and management are 
pre-requisites for self-adaptation, self-awareness has been 
considered as an enabler for self-adaptation. Early works on 
self-awareness, e.g. [24], [10], and [25] outlined the vision for 
designing systems with built in self-aware systems. 
Afterwards, many approaches have been proposed to extend 
and realize the self-awareness vision. For example, In [26] 
Bicocchi et al. proposed an awareness framework for 
knowledge collection and classification in urban environments 
to reason about adaptation and to improve the energy 
efficiency in pervasive scenarios. In [27], Kounev et al. 
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presented a model-based approach to designing self-aware 
systems using an architecture-based modelling language. 
Works in [28] and [29] intended to characterize different levels 
of awareness. For example, in [29] Lewis et al. proposed a 
reference framework for architecting self-aware systems. The 
architecture defines different levels of awareness inspired by 
Neisser's five human self-awareness levels [30] which enables 
fine-grain knowledge representation. Our work extends this 
framework by realizing the different levels of awareness [29].  

IX. CONCLUSION 

We have contributed to a self-adaptive approach, namely 
the time-awareness, which makes novel use of the principles of 
self-awareness and dynamic histograms to dynamically manage 
knowledge in self-adaptive VC. The approach is able to capture 
the evolving knowledge and manage it at runtime using 
dynamic histograms. The knowledge is used to reason about 
the reactive and proactive adaptation decisions. The 
experimental results show that the time-aware approach can 
bring to a self-adaptive application the advantages of satisfying 
more requests since it tends to select services that exhibit high 
dependability and low probability of violating the requests 
constraints. A scenario of volunteered storage composition is 
introduced to illustrate and evaluate the approach. In future 
work, we will work on implementing other levels of awareness, 
e.g. meta-self-awareness which will act as a brain that enables 
switching between different awareness levels at runtime. 
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