
GHTraffic: A Dataset for Reproducible Research in Service-Oriented Computing

Thilini Bhagya, Jens Dietrich, Hans Guesgen
Massey University

Palmerston North, New Zealand
Email: {t.bhagya, j.b.dietrich, h.w.guesgen}@massey.ac.nz

Steve Versteeg
CA Technologies

Melbourne, Australia
Email: steve.versteeg@ca.com

Abstract—We present GHTraffic, a dataset of significant size
comprising HTTP transactions extracted from GitHub data
and augmented with synthetic transaction data. The dataset
facilitates reproducible research on many aspects of service-
oriented computing. This paper discusses use cases for such a
dataset and extracts a set of requirements from these use cases.
We then discuss the design of GHTraffic, and the methods and
tool used to construct it. We conclude our contribution with
some selective metrics that characterise GHTraffic.

Keywords-HTTP; dataset; Web services; REST; benchmark-
ing; reproducibility; service-oriented computing; service virtu-
alisation; API; GitHub;

I. INTRODUCTION

Service-Oriented Computing (SOC) is a popular approach
to facilitate the development of large, modular applications
using diverse technologies. There is a range of technologies
that have been used in SOC, with early attempts to establish
standards around the SOAP [1] and WSDL [2] protocols. In
recent years, RESTful services [3], a more lightweight ap-
proach closely aligned with the Hypertext Transfer Protocol
(HTTP) [4], have become mainstream.

When using HTTP-based services, different parts of the
application cooperate by sending and responding to HTTP
requests, typically in order to access and manipulate re-
sources. The ubiquitousness of the HTTP means that clients
and servers can be easily implemented in a wide range of
languages and deployed on many platforms. While this is
useful in itself to architect and design large applications,
this approach is now increasingly used to facilitate the de-
velopment of product ecosystems around successful services.
Examples include the APIs that can be used to access the
services of Google, Facebook, Amazon, and Netflix.

This has created new challenges for both the research
and the engineering community. Of particular interest are
scalability, reliability, and security of (systems using and
providing) services.

Like other fields of computing research, studies of SOC
should aim for reproducibility [5], [6]. There is a wider
push for reproducibility in computing research, with some
disciplines now including research artefact evaluation as part
of the standard peer-review process [7]. One way to facilitate
the reproducibility and also the dissemination of research
is the provision of standardised datasets. By using carefully

sourced and/or constructed datasets, research results become
(1) easier to reproduce (2) comparable (i.e., results from
different studies can be compared), and (3) generalisable
(i.e., we can assume with a certain amount of confidence
that results from a study can be applied to other data/systems
that were not studied).

The purpose of this paper is to provide such a dataset,
GHTraffic. We extract a base dataset from a successful,
large-scale service, GitHub, by reverse-engineering API in-
teractions from existing repository snapshots. We then enrich
the dataset to include API interactions that cannot be recov-
ered from snapshots, namely (non-state-changing) queries.
This results in a large, rich, and diverse dataset. We argue
that this can be used for a wide range of studies, including
performance benchmarking and service virtualisation.

The rest of the paper is organised as follows. Use cases
and requirements are discussed in detail in Section II,
followed by an overview of related work in Section III. The
construction of the dataset is discussed in Section IV. Sec-
tion V and VI present the results of some measurements on
the dataset and provide basic instructions how to obtain and
use GHTraffic. We discuss threats to validity in Section VII
and Section VIII concludes our contribution.

II. USE CASES AND REQUIREMENTS

A. Performance Benchmarking

Modern enterprise applications usually cooperate with a
variety of software services such as Web servers, application
servers, databases, proxies, and Web service clients to per-
form their functionalities. These services need to be tested in
order to ensure that they are able to deal with large data and
transaction volumes. In particular, performance benchmark-
ing can provide useful indications about how services behave
under different load conditions. A typical benchmarking tool
generates synthetic workloads or replays recorded real-world
network traffic in order to simulate realistic workloads and
measures performance-related metrics, such as latency and
throughput.

A dataset that is large, complex, and extracted from actual
network traffic facilitates the benchmarking of such systems
with non-trivial, realistic workloads.

ar
X

iv
:1

80
6.

03
44

9v
1 

 [
cs

.S
E

] 
 9

 J
un

 2
01

8



B. Functional Testing

A standard dataset can also be employed for functional
testing. For instance, it could be used to test a generic
REST framework with a CRUD back-end provided by a
(non-SQL) database. This would take advantage of the fact
that such a dataset encodes a certain semantics, usually
a combination of the standard HTTP semantics (for in-
stance, the idempotency of certain methods) plus additional,
application-specific rules and constraints. In other words,
a suitable dataset can provide an oracle of correct system
and service behaviour. As an example, consider an HTTP
GET request to a named resource. This request should
result in a response with 200 status code if there was an
earlier successful POST transaction for the resource and no
successful DELETE transaction between the POST and the
GET, and 404 otherwise. A suitable dataset should contain
transaction sequences to reflect such behavioural patterns.

C. Service Virtualisation

Service Virtualisation (SV) [8] is an approach to build
a semantic model of a service based on recorded traffic.
For instance, SV will try to simulate the behaviour of an
actual service by generating responses using models inferred
from recorded transactions. This inference is usually done by
means of supervised machine learning. The main application
is to test systems that heavily rely on external black-box
services in isolation. This corresponds to (automatically
created) mock objects popular in application testing [9].

A suitable standardised dataset could be used to test SV.
It would provide an oracle of actual service behaviour to be
used in order to assess the quality of inferred behaviour.

D. Requirements

From the use cases above, we extract the following set of
requirements to guide the construction of GHTraffic.
R1 Large, yet manageable: a good dataset should be of

significant size to facilitate the use cases outlined and
obtain results that are generalisable. However, this often
conflicts with usability as experiments on large datasets
are more difficult to set up and time-consuming. This
can be addressed by providing several editions of
different sizes.

R2 Ease of use: a good dataset should be presented in a
format that is easy to process and preferably includes
scripts to facilitate the processing and analysis of data,
and a schema that (formally) describes the format used
to represent data.

R3 Reproducible, independent, and derived from prin-
ciples: a good dataset should not be produced ad-hoc,
but extracted from real-world data or synthesised using
a well-defined process unbiased by its use for one
particular experiment.

R4 Current: a good dataset should reflect the state-of-the-
art use of HTTP-based services. While this is difficult

to assess in general, we argue that by extracting the
dataset from the traffic of one of the most successful
active Web services known for its excellent scalability
and robustness, this can be achieved.

R5 Precise and following standards: a good dataset
should contain transactions that comply with the syntax
and semantics of HTTP, and the service(s) used.

R6 Diverse: a good dataset should support a wide set of
HTTP features, such as various HTTP methods and
status codes. In particular, it should go beyond the
exclusive use of POST and GET requests which is
a characteristic of older-generation Web applications
designed for browser-based clients.

III. RELATED WORK

SPECweb2009 [10] is a standardised Web server bench-
mark produced by the Standard Performance Evaluation
Corporation (SPEC). It is designed to evaluate a Web
server ability to serve static and dynamic page requests.
The benchmark comprises four distinct HTTP workloads to
simulate three common types of consumer activities. The
first workload is based on online banking, the second one is
based on an e-commerce application, and the third one uses
a scenario where support patches for computer applications
are downloaded. All these workloads were developed by
analysing log files of several popular Internet servers. The
benchmark uses one or more client systems to generate
HTTP workload for the server according to the specified
workload characteristics. Each client sends HTTP requests to
the server and then validates the response received. However,
SPECweb2009 uses only HTTP 1.1 GET and POST requests
and all of these requests are expected to result in responses
with a 200 status code. In particular, server errors are
communicated back to clients by generating error pages that
return 200.

TPC Benchmark W (TPC-W) [11] from the Transaction
Processing Council is a notable open-source Web benchmark
specifically targeted at measuring the performance of e-
commerce systems. TPC-W simulates the principal trans-
action types of a retail store that sells products over the
Internet. The workload of this benchmark specifies emulated
browsers that generate Web interactions which represent typ-
ical browsing, searching, and ordering activities. It creates
different GET and POST requests for specific documents and
collects performance data. All these requests are expected to
result in responses with 200 status code.

Rice University Bidding System (RUBiS) [12] is another
open-source Web benchmark. It is based on an online
auction site, modelled after eBay. This benchmark imple-
ments the core functionality of an auction site, in particular,
selling, browsing, and bidding. The benchmark workload
relies on a number of browser emulators that mimic the
basic network interactions of real Web browsers. Read and



write interactions are implemented using HTTP GET and
POST requests.

DARPA dataset [13] by the MIT Lincoln Laboratory
is a widely used evaluation dataset in intrusion detection
research. There were three major releases. Each release
contains tcpdump files carrying a wide variety of normal
and malicious Web traffic simulated in a military network
environment. These network packet dumps can be used as a
direct input to packet filtering engines like Wireshark to ex-
tract sub-datasets which contain only HTTP request/response
message traces as relevant to our work. In particular, an
HTTP dataset which comprises 25,000 transactions can
be obtained from DARPA 2000 tcpdump files. All these
transactions used HTTP 1.0 GET requests and returned 200.

CSIC 2010 [14] by the Information Security Institute of
Spanish Research National Council is another publicly avail-
able dataset, designed for the purpose of testing intrusion
detection systems. It contains normal and anomalous HTTP
1.1 POST and GET requests targeting an e-commerce Web
application. However, the dataset does not contain response
data.

Another example of an HTTP message traces dataset is
described in the work of Versteeg et al. [15], [16]. The
authors used a relatively small dataset to study Opaque
SV. This dataset consists of 1,825 request/response message
traces collected through the Twitter REST API1. It contains
both POST and GET requests which return 200. However,
the dataset does not cover all the HTTP methods such as
PUT and DELETE. Besides, it is not publicly available for
research purposes due to Twitter’s terms of service.

Table I summarises related benchmarks and datasets
showing their request types, response codes, and transaction
count. It is apparent that all these datasets only use a small
fraction of the HTTP in terms of methods and status codes.
They are somehow biased towards performance testing for
older Web server where (static) pages are retrieved and in
some cases created. They do not reflect the richness of
modern Web APIs that take advantage of a much larger part
of the HTTP.

Standard datasets have been widely used to support
research in many other areas of computer science. For
instance, the programming language and software engineer-
ing communities use datasets such as DaCapo [17] and
Qualitas Corpus/XCorpus [18], [19] for benchmarking
and empirical studies on source code. Sourcerer [20] is
an infrastructure for large-scale collection and analysis of
open source code. The Sourcerer database is populated with
more than 2000 real-world open source projects taken from
Sourceforge, Apache, and Java.net.

The machine learning community uses several standard-
ised datasets. This includes UCI Machine Learning Repos-
itory [21] by the Center for Machine Learning and In-

1https://developer.twitter.com/en/docs [accessed Feb. 02 2018]

Table I
OVERVIEW OF HTTP BENCHMARKS AND DATASETS

Name HTTP Method Response Code Count

TPC-W GET, POST 200 13,500,000

RUBiS GET, POST 200 4,030,000

DARPA 2000 GET 200 25,000

CSIC 2010 GET, POST - 36,000

Opaque SV GET, POST 200 1,825

telligent Systems at the University of California, Irvine.
It provides a collection of benchmark datasets which can
be used for the empirical analysis of learning algorithms.
Another example is Kaggle2.

IV. METHODOLOGY

A. Input Data Selection

Over the past few years, GitHub3 has emerged as the
dominant platform for collaborative software engineering.
It contains a rich set of features to manage code-related
artefacts, including commits, pull requests, and issues.

There are several clients provided by GitHub that can be
used to access its services, including the Web front-end and
the desktop app. Many developers also use the standard
git command line interface (CLI). In order to facilitate
the development of a rich product ecosystem to access its
services, GitHub also provides a REST API4. This allows
third parties to integrate GitHub services into their products.
Examples include mobile clients as well as IDE and build
tool integrations (plugins).

The GitHub REST API provides a rich set of services to
create, read, update, and delete resources related to the core
GitHub functionality. It employs a large subset of HTTP
features for this purpose and is therefore semantically richer
than the datasets discussed on Section III. Unfortunately,
GitHub does not provide direct access to the recorded API
interactions, so this information cannot be directly used for
dataset construction.

An interesting use of the GitHub REST API for research
purposes is GHTorrent [22]. This project uses the API
to harvest information from repositories and stores that
information by creating snapshots. These snapshots can
then be downloaded and imported into a local MongoDB
or MySQL database and queried. As of Feb. 02 2018,
GHTorrent offers more than fifteen terabytes of download-
able snapshots. These snapshots have already been used in
empirical studies, examples include Gousios et al. work
on the pull-based software development model [23] and
Vasilescu et al. work on the use of crowd-sourced knowledge
in software development [24].

2https://www.kaggle.com/datasets/ [accessed Feb. 02 2018]
3https://github.com/ [accessed Feb. 02 2018]
4https://developer.github.com/v3/ [accessed Feb. 02 2018]

https://developer.twitter.com/en/docs
https://www.kaggle.com/datasets/
https://github.com/
https://developer.github.com/v3/


While GHTorrent provides a static view on the state of
GitHub at certain points in time, we are interested in a
more dynamic view of how interactions of clients with
the repository have created this state. The basic idea is
to reverse-engineer the respective API interactions (i.e.,
HTTP transactions) by cross-referencing GHTorrent data
with GitHub API functions. This has some obvious limi-
tations. Firstly, we do not know whether all of these records
were created via the REST API. They could have been
created or altered using a different, or older version of the
API, or via GitHub internal systems that bypass the API. We
do not consider this as a significant limitation. As far as the
data inferred transactions are concerned, this will only have
an impact on the user-agent header. Secondly, the static data
of the snapshots means that certain API interactions are not
visible. This includes all read access (i.e., GET requests),
requests that fail (e.g., a DELETE request resulting in a
404 response code will have no effect on the database), and
shadowed requests (e.g., a successful PUT request followed
by a successful DELETE request). To deal with those un-
observable requests, we decided to augment the dataset with
synthetic data.

B. Scope

GHTorrent collects a large amount of data on the terabyte
scale. To make the data volume more manageable (R1),
we decided to focus on a particular subset of GHTorrent,
the issue tracking system. The issue tracking system itself
references other entities5 of the overall data model. The
respective model is depicted in Figure 1. It is a refined
version of the relational schema used in GHTorrent6.

Issues reference multiple other entities such as comments,
milestones, labels, and users. While it is important to model
some of them to facilitate our use cases, we decided to
limit this to user, milestone, and label data. In particular,
while issue comments look like integral parts of the issue
tracking system, they are modelled in a relational style as
one-to-many relationships via back-references. This means
that comments reference the issue they are associated with,
but issues do not directly reference comments7.

The design of GHTraffic is driven by the use cases and the
requirements derived from them. We wanted to construct a
dataset that is large and diverse, and uses the features seen in
modern Web services. This can be achieved by restricting the
dataset to user, milestone, and label. Adding issue comments
and other related data does increase the size further but does
not add new features to the dataset. On the other hand, the
increased size makes the dataset less manageable. As we will

5Entity is used in this paragraph in the context of entity-relationship data
modelling [25], as opposed to the use of entity in the context of HTTP as
defined by [4, Sect. 7]

6http://ghtorrent.org/relational.html [accessed Feb. 02 2018]
7The JSON representation of an issue contains a field comments, but

this contains only the number of comments for the respective issue. This
number can then be used to construct comments queries.

Figure 1. GitHub’s data schema (UML 2.0). The stereotypes indicate
which entities were included in the construction of GHTraffic dataset.

demonstrate in Section V, the dataset is already sufficiently
large.

Data represented in different entities is usually inlined
in data returned by API calls. This means that if issue
information is returned via the API, the JSON representation
of the issue contains information about the issue and a
summary of the users, labels, and milestones associated
with it. Part of this information are URLs that can be used
to query the full information for the respective entity. We
treat these URLs as external, un-resolved references in the
sense that our dataset does contain transactions to create,
modify, delete or query these resources. Note that the GitHub
API already uses references to external resources for which
resolution cannot be guaranteed, an example for this is the
gravatar_id attribute pointing to a picture of the user
provided by the gravatar8 service.

8https://pt.gravatar.com/ [accessed Feb. 02 2018]

http://ghtorrent.org/relational.html
https://pt.gravatar.com/


Figure 2. The processing pipeline

The GHTraffic dataset is based on the Aug. 04 2015
GHTorrent snapshot9. This is the largest release of issues
MongoDB database dumps as of Feb. 02 2018.

C. Processing Pipeline

An abstract overview of the infrastructure used to create
the GHTraffic dataset is shown in Figure 2. GHTorrent
snapshots are accessed by two core components, the Ex-
tractor and the Generator, the purpose of both is to create
HTTP transactions. While the extractor builds transactions
directly from snapshot data, the generator infers synthetic
transactions. In order to achieve this, it still needs access
to the snapshot data. The reason for this is to get access to
resource identifiers to be used in order to generate URLs. For
instance, the generator creates queries, i.e., GET requests to
query issues. If the respective resource names (i.e., issues
ids) were generated randomly, almost all of those requests
would fail with a 404. This is not very realistic: in practice,
most GET requests would try to access existing resources
and succeed. In order to model this, the generator needs to
access the GHTorrent snapshot.

The transactions generated by both the extractor and the
generator instantiate a simple model depicted in Figure 3.
This model is implemented in Java, i.e., each transaction has
a transient in-memory representation as a Java object when
the dataset is created. At the centre of this model are HTTP
transactions, basically request/response pairs.

At the end of the pipeline is an Exporter component
that processes the transactions represented as Java objects
and persists them by encoding/serialising using JSON. The
structure of the JSON files produced is defined by JSON
schemas [26]. Note that there are separate schemas for each
HTTP method.

The implementation of the components discussed have
some abstractions to facilitate alternative extraction, infer-
ence, and data representations. The overall processing model
is lazy and stream-like, i.e., only a small number of records
remain in memory at any time in order to make processing
scalable.

Processing can be customised by employing data filters
(predicates). Only records matching certain criteria are pro-
cessed. The main use case for this is filtering by URL and

9The respective dump is available from http://ghtorrent-downloads.
ewi.tudelft.nl/mongo-full/issues-dump.2015-08-04.tar.gz [accessed Feb. 02
2018]. The download size is 6,128 MB which results in a 48.29 GB database
with 21,077,018 records after restoring.

Figure 3. GHTraffic schema

here in particular by the project. This allows us to build
different editions of the dataset with certain target sizes.
While there is a potentially easier way of doing this by
just restricting the number of records being processed and
included, using filters has an inherent advantage. GitHub
data is fragmented by project and by filtering it accordingly,
we are able to extract transactions that manipulate the
same resources, reflecting the same issue being created and
updated. This was, we can obtain coherent subsets of the
overall dataset that still reflect the service semantics derived
from issue tracking workflows.

D. Extraction

Each data record has created_at, updated_at, and
closed_at timestamps which enable us to trace lifecycle
events of the issue. Using this data, the GHTraffic scripts
produce transaction records. An overview of the process is
shown in Figure 4. For instance, a POST transaction record
is created in order to represent the creation of an issue at the
time stipulated in the created_at attribute. The value is
converted to the standard date format used by the HTTP [4,
Sect. 3.3] and set as the value of Date header.

Both the request and the response used headers as
specified in the GitHub API documentation. This is a
mix of standard HTTP headers and API-specific headers
with names starting with “x-”. In case the header values
cannot be inferred from snapshot data, we use synthetic
data. For example, we generate random token strings and
use them as values for the Authorization headers.
There is also a list of user agent strings to assign ran-

http://ghtorrent-downloads.ewi.tudelft.nl/mongo-full/issues-dump.2015-08-04.tar.gz
http://ghtorrent-downloads.ewi.tudelft.nl/mongo-full/issues-dump.2015-08-04.tar.gz


Figure 4. Extractor algorithm to process records

domly as the value of the User-Agent headers. Fur-
ther, for the request body, the script extracts the val-
ues of the title, body, assignee, milestone,
labels parameters from the snapshot record and encodes
it in JSON as stipulated in the API. The response creation
process is analogous. Most of the values for the JSON-
encoded response body are filled out with data directly taken
from the snapshot. Besides, the GHTraffic script assigns the
created_at value to the updated_at field. Further,
it explicitly specifies closed_at: null, closed_by:
null, state: open and locked: false.

Every time a GitHub user updates an existing issue its
updated_at timestamp gets renewed with the date and
time of the update. Marking an issue as closed is a special
type of update, as an issue is not deleted, but its status
is changed to close. In order to extract PATCH transac-
tions used to close issues, the script queries issues whose
closed_at value is not null and only those are processed
by the extractor. The request and response messages are
formed by following the GitHub Issues API documentation.
Particularly, the closed_at value is converted to the
standard HTTP date format and set as the value of Date
response header and the value of closed_at, assign to the
updated_at field to set closed_at and updated_at
columns’ values same.

Besides, an update might be a changing the title of an
issue, changing its description, specifying users to assign
the issue to, etc. However, we could not extract exactly what
input data was used for editing an issue, therefore, we did
not generate such transaction types.

E. Synthesising Queries

Only successful POST and PATCH transactions can be
constructed by reverse-engineering the GHTorrent snapshot.
In order to generate additional transaction records such
as queries and delete requests, we had to resort to using
synthetic data. The aim of generating synthetic data is to
mimic transactions concerning several other HTTP request
methods that are covered by the API and requests that fail,
which indicated by an error HTTP status code.

Figure 5. Algorithm to generate synthetic data

Figure 5 shows the process of synthetic data generation.
The script generated GET and HEAD transactions for each
record in the snapshot. The process is analogous to the pro-
cess described in Section IV-C. However, the Date response
header is set to the system date and time at which the request
is formed. Similarly, PUT transactions for locking an issue
are generated for records with locked value set to false
and followed by DELETE transactions for unlocking the
respective issues using the format described in the GitHub
API.

Furthermore, the script produces unsuccessful transactions
for all those HTTP methods by specifying requests:

• without authorisation token
• with badly formatted URL
• without request body
• with invalidly formatted JSON body

All the respective transactions have an error status code as
defined in the API and are generated from a sample of
40% random records from the snapshot10. More specifically,
a message explaining the error is added to the response
body as specified in the GitHub API. For this purpose,
we performed experiments on a toy project repository for
creating synthetic data that closely resemble real-world
representation as we found that certain aspects of the GitHub
Issue API are undocumented. Additionally, we generated a
small number of GET requests that returned 500 status code,
in order to represent system failures.

10The generator component needs to use at least 40% of GHTorrent
snapshot records in order to extract an adequate amount of unsuccessful
transactions on particular projects



F. Data Representation and Meta-Data

The target format of the GHTraffic dataset is de-
scribed by the UML class diagram as shown in Fig-
ure 3. HTTPTransaction is the base element of the
model. A transaction contains a single Request and
Response. Each message could have any specific number
of MessageHeaders. Additionally, a MessageBody is
used to represent data associated with a request/response.
MetaData is used to provide some additional informa-
tion about the transaction record. The source attribute
is set to GHTorrent, specifying the source of informa-
tion. The type attribute is set to either real-world or
synthetic depending on whether the data was directly
derived from a GHTorrent record or synthesised as described
above. The processor is the name of the script used to
generate the record, i.e., this is the fully qualified name of
a Java class. Finally, the timestamp field holds date and
time when the record was created.

The actual JSON format of the dataset is defined by a set
of JSON schemas for each transaction type (i.e., for each
HTTP method). For space limitations, we do not include
those schemas, but they can be found in the repository,
in schemas folder. These schemas comply with the JSON
Schema draft 4 specification [27].

V. METRICS

The GHTraffic dataset comprises three different edi-
tions: Small (S), Medium (M), and Large (L). The S
dataset includes HTTP transaction records created from
google/guava [28] repository and takes up to 49.9 MB
of disk space. Guava is a popular Java library containing
utilities and data structures. It is a medium-sized large
active project, and sourcing an edition from a single project
has the advantage of creating a coherent dataset. The
M dataset of size 345.2 MB includes records from the
npm/npm [29]. It is the popular de-facto standard pack-
age manager for JavaScript. The L dataset contains 3.73
GB of data that were created by selecting eight reposito-
ries containing large and active projects on GitHub as of
2015, including rails/rails [30], docker/docker [31], rust-
lang/rust [32], angular/angular.js [33], twbs/bootstrap [34],
kubernetes/kubernetes [35], Homebrew/homebrew [36], and
symfony/symfony [37].

Table II, III, and IV presents several metrics about the
current status of these three datasets.

VI. ACCESSING AND USING GHTRAFFIC

The different editions of the GHTraffic dataset can be
downloaded by using the following URLs11:

• https://zenodo.org/record/1034573/files/ghtraffic-S-1.0.0.zip

11The dataset is published on Zenodo [38]. It is a data repository platform
hosted at the European Organization for Nuclear Research Data Center,
which was specifically designed to provide long-term preservation of all
forms of research output.

Table II
TRANSACTIONS PER HTTP METHOD

Method S M L

POST 7,193 32,130 508,664

GET 3,117 22,692 344,474

PATCH 4,286 30,807 468,080

DELETE 2,341 16,457 246,180

PUT 3,662 15,945 238,115

HEAD 1,796 15,130 245,127

Table III
TRANSACTIONS PER HTTP RESPONSE CODE

Response Code S M L

200 4,649 22,163 391,903

201 1,796 8,808 150,662

204 3,588 5,756 82,554

400 2,717 13,807 196,474

401 547 19,302 291,831

404 5,909 43,658 646,346

422 1,868 12,626 196,678

500 1,321 7,041 94,192

Table IV
TRANSACTIONS PER RECORD TYPE

Type S M L

Real-world 2,853 13,355 241,241

Synthetic 19,542 119,806 1,809,399

• https://zenodo.org/record/1034573/files/ghtraffic-M-1.0.0.zip
• https://zenodo.org/record/1034573/files/ghtraffic-L-1.0.0.zip

We also provide access to the scripts used to generate GH-
Traffic, including a VirtualBox image with a pre-configured
setup. Note that due to the use of random data generation
these scripts will produce slightly different datasets at each
execution. Using the scripts, users can modify the configu-
ration properties in config.properties file in order to create a
customised version of GHTraffic dataset for their own use.
The readme.md file included in the distribution provides
further information on how to build the code and run the
scripts. Scripts can be accessed by cloning the repository
https://bitbucket.org/tbhagya/ghtraffic.git or by downloading
the pre-configured VirtualBox image from https://zenodo.
org/record/1034573/files/ghtraffic-artifact-1.0.0.zip.

VII. THREATS TO VALIDITY

As depicted in Table IV, the size of synthetic data
exceeds the size of data extracted from the snapshot by
a factor of nine. This leaves the possibility that GHTraffic
does not reflect realistic workloads. To mitigate this threat,
we ensured that the request/response format for all these
transaction types was sampled and validated using a toy
GitHub repository. While this does not mean that these

https://zenodo.org/record/1034573/files/ghtraffic-S-1.0.0.zip
https://zenodo.org/record/1034573/files/ghtraffic-M-1.0.0.zip
https://zenodo.org/record/1034573/files/ghtraffic-L-1.0.0.zip
https://bitbucket.org/tbhagya/ghtraffic.git
https://zenodo.org/record/1034573/files/ghtraffic-artifact-1.0.0.zip
https://zenodo.org/record/1034573/files/ghtraffic-artifact-1.0.0.zip


transactions have actually occurred, it guarantees that they
are syntactically and semantically correct. The representa-
tion of the transactions has information about whether they
are synthetic or not, and users of GHTraffic can use this to
completely remove or reduce the ratio of synthetic data by
applying filters.

We acknowledge that GHTraffic was generated from a 2-
year-old snapshot of GHTorrent. As noted earlier, this design
decision was made to produce a dataset large enough to
facilitate the use cases described, but still manageable with
typical resources available to researchers and practitioners.
We also provide access to the scripts used to generate GH-
Traffic, and users can utilise these scripts in order to generate
customised versions from newer instances of GHTorrent if
needed.

VIII. CONCLUSION

In this paper, we have described the GHTraffic dataset
suitable for experimenting on various aspects of service-
oriented computing. It is derived from reverse-engineering
a GHTorrent snapshot according to the GitHub Issue API
specification. We hope that this dataset will find uses in
many areas of research.

In future work, it would be interesting to extend this by
adding similar datasets from other service providers, using
similar processes and tools.

REFERENCES

[1] D. Box et al., “Simple object access protocol (SOAP)
1.1,” 2000, accessed Feb. 02 2018. [Online]. Available:
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[2] E. Christensen et al., “Web services description language
(WSDL) 1.1,” 2001, accessed Feb. 02 2018. [Online].
Available: https://www.w3.org/TR/wsdl

[3] R. T. Fielding and R. N. Taylor, Architectural styles and the
design of network-based software architectures. University
of California, Irvine Doctoral dissertation, 2000.

[4] R. T. Fielding et al., “Hypertext transfer protocol–HTTP/1.1
(RFC2616),” 1999, accessed Feb. 02 2018. [Online].
Available: https://tools.ietf.org/html/rfc2616

[5] R. D. Peng, “Reproducible research in computational sci-
ence,” Science, 2011.

[6] C. Collberg and T. A. Proebsting, “Repeatability in computer
systems research,” Communications of the ACM, 2016.

[7] S. Krishnamurthi and J. Vitek, “The real software crisis:
Repeatability as a core value,” Communications of the ACM,
2015.

[8] J. Michelsen and J. English, Service Virtualization: Reality Is
Overrated. Apress, 2012.

[9] T. Mackinnon, S. Freeman, and P. Craig, “Endo-testing: unit
testing with mock objects,” 2000.

[10] “SPECweb2009,” accessed Feb. 02 2018. [Online]. Available:
https://www.spec.org/web2009/

[11] W. D. Smith, “TPC-W: Benchmarking an ecommerce solu-
tion,” 2000.

[12] “RUBiS: Rice University Bidding System,” 2013, accessed
Feb. 02 2018. [Online]. Available: http://rubis.ow2.org/

[13] “DARPA Intrusion Detection Data Sets,” 2000, accessed Feb.
02 2018. [Online]. Available: https://www.ll.mit.edu/ideval/
data/

[14] C. Gimnez, A. P. Villegas, and G. Maranon, “CSIC 2010,”
2010.

[15] S. C. Versteeg et al., “Opaque service virtualisation: a prac-
tical tool for emulating endpoint systems,” in Proceedings
ICSE ’16. ACM, 2016.

[16] S. C. Versteeg, J. S. Bird, N. A. Hastings, M. Du, and J.-
D. Dahan, “Entropy weighted message matching for opaque
service virtualization,” 2017, US Patent 9,582,399.

[17] S. M. Blackburn et al., “The DaCapo benchmarks: Java
benchmarking development and analysis,” in Proceedings
OOPSLA’06. ACM, 2006.

[18] E. Tempero et al., “The Qualitas Corpus: A curated col-
lection of Java code for empirical studies,” in Proceedings
APSEC’10. IEEE, 2010.

[19] J. Dietrich, H. Schole, L. Sui, and E. Tempero, “XCorpus–An
executable Corpus of Java Programs,” 2017.

[20] S. Bajracharya et al., “Sourcerer: a search engine for open
source code supporting structure-based search,” in Proceed-
ings OOPSLA ’06. ACM, 2006.

[21] A. Frank, “UCI machine learning repository,” 2010, accessed
Feb. 02 2018. [Online]. Available: http://archive.ics.uci.edu/
ml/index.php

[22] G. Gousios, “The GHTorrent dataset and tool suite,” in
Proceedings MSR’13, 2013.

[23] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory
study of the pull-based software development model,” in
Proceedings ICSE’14. ACM, 2014.

[24] B. Vasilescu, V. Filkov, and A. Serebrenik, “StackOverflow
and GitHub: Associations between software development
and crowdsourced knowledge,” in Proceedings SocialCom’13.
ASE/IEEE, 2013.

[25] P. P.-S. Chen, “The entity-relationship model–toward a unified
view of data,” TODS, 1976.

[26] A. Wright, “JSON Schema: A Media Type for Describing
JSON Documents,” Technical Report. Internet Engineering
Task Force, Tech. Rep., 2016.

[27] F. Galiegue and K. Zyp, “JSON Schema: core definitions and
terminology draft-zyp-json-schema-04,” Working Draft, 2013.

[28] K. Boumillion and J. Levy, “Guava,” 2010, accessed Feb. 02
2018. [Online]. Available: https://github.com/google/guava

[29] “npm,” accessed Feb. 02 2018. [Online]. Available: https:
//github.com/npm/npm

[30] “Rails,” accessed Feb. 02 2018. [Online]. Available:
https://github.com/rails/rails

[31] “The Moby Project,” accessed Feb. 02 2018. [Online].
Available: https://github.com/docker/docker

[32] “The Rust Programming Language,” accessed Feb. 02 2018.
[Online]. Available: https://github.com/rust-lang/rust

[33] “AngularJS,” accessed Feb. 02 2018. [Online]. Available:
https://github.com/angular/angular.js

[34] “Bootstrap,” accessed Feb. 02 2018. [Online]. Available:
https://github.com/twbs/bootstrap

[35] “Kubernetes,” accessed Feb. 02 2018. [Online]. Available:
https://github.com/kubernetes/kubernetes

[36] “Homebrew (Legacy),” accessed Feb. 02 2018. [Online].
Available: https://github.com/Homebrew/homebrew

[37] “Symfony,” accessed Feb. 02 2018. [Online]. Available:
https://github.com/symfony/symfony

[38] “Zenodo,” accessed Feb. 02 2018. [Online]. Available:
https://zenodo.org/

https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/wsdl
https://tools.ietf.org/html/rfc2616
https://www.spec.org/web2009/
http://rubis.ow2.org/
https://www.ll.mit.edu/ideval/data/
https://www.ll.mit.edu/ideval/data/
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
https://github.com/google/guava
https://github.com/npm/npm
https://github.com/npm/npm
https://github.com/rails/rails
https://github.com/docker/docker
https://github.com/rust-lang/rust
https://github.com/angular/angular.js
https://github.com/twbs/bootstrap
https://github.com/kubernetes/kubernetes
https://github.com/Homebrew/homebrew
https://github.com/symfony/symfony
https://zenodo.org/

	I Introduction
	II Use Cases and Requirements
	II-A Performance Benchmarking
	II-B Functional Testing
	II-C Service Virtualisation
	II-D Requirements

	III Related Work
	IV Methodology
	IV-A Input Data Selection
	IV-B Scope
	IV-C Processing Pipeline
	IV-D Extraction
	IV-E Synthesising Queries
	IV-F Data Representation and Meta-Data

	V Metrics
	VI Accessing and Using GHTraffic
	VII Threats to Validity
	VIII Conclusion
	References

