
HAL Id: tel-03222090
https://theses.hal.science/tel-03222090

Submitted on 10 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intégration de données basée sur la qualité pour
l’enrichissement des sources de données locales dans le

Service Lake
Hiba Alili

To cite this version:
Hiba Alili. Intégration de données basée sur la qualité pour l’enrichissement des sources de données
locales dans le Service Lake. Base de données [cs.DB]. Université Paris sciences et lettres; École Na-
tionale des Sciences de l’Informatique (La Manouba, Tunisie), 2019. Français. �NNT : 2019PSLED019�.
�tel-03222090�

https://theses.hal.science/tel-03222090
https://hal.archives-ouvertes.fr

Préparée à l’université Paris-Dauphine et l’Université de la Manouba

Quality-based Data Integration for
Enriching User Data Sources in Service

Lakes

Soutenue par

Hiba ALILI
Le 27/11/2019

École doctorale no543

ED de Dauphine

Spécialité

Informatique

Composition du jury :

Djamel BENSLIMANE
Professeur des Universités,
Université Claude Bernard Lyon 1 Rapporteur

Genoveva VARGAS-SOLAR
Professeur,
Université Grenoble-Alpes Rapporteur

Zoubida KEDAD
Professeur,
Université de Versailles Examinateur

Dimitris KOTZINOS
Professeur,
Université Cergy-Pontoise Président du Jury

Daniela GRIGORI
Professeur,
Université Paris Dauphine Directeur

Henda HAJJAMI BEN GHEZALA
Professeur,
Université de la Manouba Directeur

Khalid BELHAJJAME
Maître de Conférences,
Université Paris Dauphine Co-encadrant

Rim DRIRA
Maître Assistant,
Université de la Manouba Co-encadrant

Acknowledgements

This dissertation would not exist without the support of many people over four years.

Foremost, I would like to express my sincere gratitude to my supervisors Khalid
Belhajjame, Rim Drira, Daniela Grigori and Henda Hajjami Ben Ghezala for allowing
me to carry out this thesis. Thank you for your patience in supervising this work, your
advises, your insightful comments and for the many hours spent helping this work.
Thank you for your endless patience in improving my writing, for your comments on
chapter drafts and for your great efforts to explain things clearly and simply.

My humble gratitude goes to the faculty members of the LAMSADE lab for all of their
scientific support, friendship and encouragement. Particularly, I would like to thank
Juliette Rouchier, Joyce El Haddad and Furini Fabio for following my advancement
during each year of my thesis.

I thank my fellow labmates in LAMSADE and RIADI for the stimulating discussions,
for the sleepless nights we were working together before deadlines, for their encourage-
ment and moral support, and for all good and bad times we get together. A particular
acknowledgment goes to to all my outside-the-university friends for their friendship,
their support and the important role they play in my life.

Lastly, and most importantly, I would like to thank my parents, my brothers for their
steadfast support, their love and patience. I dedicate this work to them.

2 Acknowledgements

Abstract

In the Big Data era, companies are moving away from traditional data-warehouse so-
lutions whereby expensive and time-consuming ETL (Extract, Transform, Load) pro-
cesses are used, towards data lakes in order to manage their increasingly growing data.
Yet the stored knowledge in companies’ databases, even though in the constructed data
lakes, can never be complete and up-to-date, because of the continuous production of
data. Local data sources often need to be augmented and enriched with information
coming from external data sources. Unfortunately, the data enrichment process is one
of the manual labors undertaken by experts who enrich data by adding information
based on their expertise or select relevant data sources to complete missing information.
Such work can be tedious, expensive and time-consuming, making it very promising
for automation.

This thesis presents an active user-centric data integration approach to automatically
enrich local data sources, in which the missing information is leveraged on the fly from
web sources using data services. Accordingly, our approach enables users to query for
information about concepts that are not defined in the data source schema. In doing
so, we take into consideration a set of user preferences such as the cost threshold and
the response time necessary to compute the desired answers, while ensuring a good
quality of the obtained results.

The first part of this thesis describes the enrichment of data sources’ schemas with
the concepts required for the processing of users’ data queries. To do so, we have
developed two algorithms. The first allows to identify the missing data, more specif-
ically the missing concepts and associated attributes that are required by the user
queries, but that are not provided by his data source. The second algorithm enriches
the schema of the user data source by adding the missing elements determined by the
first algorithm. In a second part of the thesis, we show how the Service Lake can be
leveraged to enrich local datasets. We propose a new quality-based service composition
approach to identify the relevant data services that can be used to populate the miss-

4 Abstract

ing information. In doing so, we adapted local-as-view data integration techniques.
Moreover, we elaborated a knapsack-based algorithm to select the services that yield
good quality results without exceeding a given budget (time and monetary cost). The
retrieved information is seamlessly and transparently integrated into the local dataset.

The following part addresses the structural and semantic heterogeneities that may
exist between the data types provided by different data services and the data types
stored in local data sources. This problem presents one of the major issues faced while
selecting and composing the relevant data services for answering users’ queries. We
propose to define views for all the data services available in the Service Lake over
the relations in the local data source schema. The first step relies on the matching
results computed by COMA++ between the schema of the local data source and the
input/output parameters of the data service. Using the matching obtained in the first
step, the second step automatically creates a node/edge-weighted graph, depicting the
schema of the local data source such that the weights of the nodes represent an ag-
gregated matching score on the node attributes. Then, we study finding the top-k
minimum cost connected trees that contain all service parameters at least once in the
graph. We do so by exploring Steiner trees.

Last but not least, our contribution, MoDaaS, presents a model-driven framework
for the modeling and the description of data services and DaaS services in particular.
We developed MoDaaS to encourage providers to adopt a standard model for the mod-
eling of their services’ capabilities and concerns according to a shared ontology, thus
enabling them to automatically generate service views in order to assist the integration
and data exchange between heterogeneous services.

Key words : User-Centric Data Integration, Data Provisioning Service Lakes, Schema
Enriching, Data Services, Data as a Service(DaaS), Service Views, Composition, Or-
chestration, Data Quality, Quality of Service(QoS), Query Processing, User preferences,
Steiner Trees, Cloud Computing, Semantic Annotation, Domain Ontologies, Model
Driven Engineering(MDE), Reuse and Specialization

Résumé

De nos jours, d’énormes volumes de données sont créés en continu et les utilisateurs
s’attendent à ce que ceux-ci soient collectés, stockés et traités quasiment en temps réel.
Ainsi, les lacs de données sont devenus une solution attractive par rapport aux entrepôts
de données classiques coûteux et fastidieux (nécessitant une démarche ETL), pour les
entreprises qui souhaitent stocker leurs données. Malgré leurs volumes, les données
stockées dans les lacs de données des entreprises sont souvent incomplètes voire non
mises à jour vis-à-vis des besoins (requêtes) des utilisateurs. Les sources de données
locales ont donc besoin d’être enrichies. Par ailleurs, la diversité et l’expansion du nom-
bre de sources d’information disponibles sur le web a rendu possible l’extraction des
données en temps réel. Ainsi, afin de permettre d’accéder et de récupérer l’information
de manière simple et interopérable, les sources de données sont de plus en plus intégrées
dans les services Web. Il s’agit plus précisément des services de données, y compris
les services DaaS (Data as a Service) du Cloud Computing. L’enrichissement manuel
des sources locales implique plusieurs tâches fastidieuses telles que l’identification des
services pertinents, l’extraction et l’intégration de données hétérogènes, la définition
des mappings service-source, etc.

Dans un tel contexte, nous proposons une nouvelle approche d’intégration de don-
nées centrée utilisateur. Le but principal est d’enrichir les sources de données locales
avec des données extraites à partir du web (également le Cloud) via les services de
données. Cela permettrait de satisfaire les requêtes des utilisateurs tout en respectant
leurs préférences en terme de coût d’exécution et de temps de réponse, en garantissant
la qualité des résultats obtenus.

Dans une première partie de la thèse, nous décrivons le processus d’enrichissement
des schémas des sources de données locales avec de nouveaux concepts nécessaires au
traitement des requêtes de données des utilisateurs. Ce processus est basé sur deux
algorithmes que nous avons développés. Le premier algorithme permet d’identifier
l’information requise pour le traitement des requêtes mais qui n’existe pas dans la

6 Résumé

source locale. Le deuxième algorithme permet d’enrichir le schéma de la source de
données en rajoutant les éléments manquants déterminés par le premier algorithme.

Ensuite, nous démontrons comment le lac de services (Service lake) peut être exploité
pour enrichir les sources de données locales. Dans ce cadre, nous proposons une nou-
velle approche de composition de services orientée qualité afin d’identifier ceux qui
sont pertinents et qui peuvent être utilisés pour obtenir l’information manquante. En
particulier, nous avons adapté une approche LAV (Local As View) pour l’intégration
de données, ainsi qu’une des solutions du problème de sac à dos pour la sélection des
services pertinents. Ainsi, les données récupérées sont intégrées de manière transpar-
ente dans la base de données locale.

Afin de traiter l’hétérogénéité qui peut exister entre les données retournées par dif-
férents services et celles stockées dans les sources de données locales, nous proposons
de définir des vues de services en terme des relations du schéma local. La première étape
repose sur les résultats de matching calculés par COMA ++ entre la source de données
et le service de données en question. Etant donné les mappings obtenus, on crée dans
la deuxième étape un graphe pondéré. Par la suite, les top-k Steiner trees sont calculés.

Enfin, nous présentons MoDaaS qui est une plateforme de modélisation et de descrip-
tion des services de données, en particulier des services DaaS. Nous avons développé
MoDaaS pour encourager les fournisseurs à adopter un modèle standard pour la mod-
élisation des caractéristiques de leurs services , et ce selon une ontologie partagée, leur
permettant ainsi de générer automatiquement des vues de service.

Mots clés: Intégration de données centrée sur l’utilisateur, Lacs de données, En-
richissement des schémas, Services de données, Données en tant que service (DaaS),
Vues de service, Composition, Orchestration, Qualité de données, Qualité de service
(QoS), Traitement des requêtes, Préférences d’utilisateur, Arbres Steiner, Nuage In-
formatique, Annotation sémantique, Ontologies de domaine , Ingénierie dirigée par les
modèles (IDM), réutilisation et spécialisation.

Résumé Etendu

De nos jours, d’énormes volumes de données sont créés en continu et les utilisateurs
s’attendent à ce que ceux-ci soient collectés, stockés et traités quasiment en temps réel.
Ainsi, les lacs de données sont devenus une solution attractive par rapport aux entrepôts
de données classiques coûteux et fastidieux (nécessitant une démarche ETL, Extract-
Transform-Load), pour les entreprises qui souhaitent stocker leurs données. Malgré
leurs volumes, les données stockées dans les lacs de données des entreprises sont sou-
vent incomplètes voire non mises à jour vis-à-vis des besoins (les requêtes de données)
des utilisateurs. Les sources de données locales ont donc besoin d’être enrichies. Par
ailleurs, la diversité et l’expansion du nombre de sources d’information disponibles sur
le web a rendu possible l’extraction des données en temps réel. Ainsi, afin de permettre
d’accéder et de récupérer l’information de manière simple et interopérable, les sources
de données sont de plus en plus intégrées dans les services Web. Il s’agit plus précisé-
ment des services de données, y compris les services DaaS (Data as a Service) du Cloud
Computing. L’enrichissement manuel des sources locales implique plusieurs tâches fas-
tidieuses telles que l’identification des services pertinents, l’extraction et l’intégration
de données hétérogènes, la définition des mappings service-source, etc.

Plus précisément, nous considérons le scénario dans lequel un utilisateur (par exemple
un employé) souhaite interroger un ensemble de données locale alors que cet ensemble
de données ne contient pas des réponses complètes à toutes les requêtes de l’utilisateur.
Cet ensemble de données peut être dans n’importe quel format, (par exemple, un fichier
CSV, un document XML, une base de données relationnelle ou un graphique RDF).
Généralement, les ensembles de données locaux doivent être complétés et enrichis avec
des informations provenant de sources de données externes.

Considérons un ensemble de données contenant les tables relationnelles suivantes, où
les attributs soulignés représentent des clés primaires. Nous supposons que les person-
nes, les auteurs et les livres sont identifiés de manière unique par leur identifiant. La clé
étrangère authorID fait référence à une personne et l’auteur fait référence à l’authorID

8 Résumé Etendu

de la table Author.

Schéma Relationnel
Person(personID, first name, last name, date of birth, country)
Author(authorID, name, university, email, domain)
Book(iD,title, author,topic)
Clés Etrangères
Table Author: authorID references personID of Person
Table Book: author references authorID of Author

Considérons maintenant un utilisateur, qui est familier avec l’ensemble de données
présenté ci-dessus, et qui est intéressé à émettre un ensemble de requêtes, présentées
ci-dessous. L’utilisateur exprime ses requêtes de données en utilisant une syntaxe de
langage de requête de type SQL dans laquelle les éléments requis par les requêtes mais
qui ne sont pas réprésentés dans le schéma de la base de données sont pré-fixées par
un point d’interrogation ′?′.

Q1 : SELECT title, topic FROM Book.

Q2 : SELECT ?iSBN, title FROM Book WHERE topic = ′Webservices′.

Q3 : SELECT title, author, ?publisher FROM ?Publisher, Book WHERE ?Publisher
.?name = Book.?publisher.

L’exécution de Q1 ne pose pas de problème. Par contre, les requêtes Q2 et Q3 ne
peuvent pas être entièrement évaluées en se basant seulement sur la base de données
locale introduite par l’utilisateur. La raison est que cet ensemble de données ne fournit
pas tous les éléments nécessaires pour la l’évaluation de ces requêtes (i.e., les valeurs
ISBN et éditeur n’existent dans aucun des tables de la base locale. De plus, la table
Publisher n’est pas représentée dans le schéma). Différents services peuvent fournir
une telle information. Également, un seul service ne garantit pas toujurs de répondre
complètement aux requêtes des utilisateurs, ce qui rend indispensable la composition
de plusieurs services web. Les services Web sont hétérogènes et généralement construits
indépendamment du contexte dans lequel ils seront utilisés. Cela conduit à plusieurs
problèmes de compatibilité (syntaxique, structurel ou sémantique). Ainis, cette grande
disponibilité de services hétérogènes rend le processus de sélection et de composition
des services une tâche non triviale. Heureusement, les données sont souvent associées

Résumé Etendu 9

à certains critères(e.g., la qualité, le coût, la confidentialité et la sécurité, etc.) qui
doivent être explicitement décrits et modélisés pour pouvoir sélectionner les meilleurs
services satisfaisant les préférences des utilisateurs.

C’est dans cette optique que s’est situé notre projet de recherche, il consistait à proposer
une nouvelle approche d’intégration de données centrée utilisateur. Le but principal
est d’enrichir les sources de données locales avec des données extraites à partir du web
(également le Cloud) via les services de données. Cela permettrait de satisfaire les re-
quêtes des utilisateurs tout en respectant leurs préférences en terme de coût d’exécution
et de temps de réponse, en garantissant la qualité des résultats obtenus.

Dans une première partie, nous décrivons le processus d’enrichissement des schémas
des sources de données locales avec de nouveaux concepts nécessaires au traitement
des requêtes de données des utilisateurs. Ce processus est basé sur deux algorithmes
que nous avons développés. Le premier algorithme permet d’identifier l’information
requise pour le traitement des requêtes mais qui n’existe pas dans la source locale. Le
deuxième algorithme permet d’enrichir le schéma de la source de données en rajoutant
les éléments manquants déterminés par le premier algorithme.

Ensuite, nous démontrons comment le lac de services (Service lake) peut être exploité
pour enrichir les sources de données locales. Dans ce cadre, nous proposons une nou-
velle approche de composition de services orientée qualité afin d’identifier ceux qui
sont pertinents et qui peuvent être utilisés pour obtenir l’information manquante. En
particulier, nous avons adapté une approche LAV (Local As View) pour l’intégration
de données, ainsi qu’une des solutions du problème de sac à dos pour la sélection des
services pertinents. Ainsi, les données récupérées sont intégrées de manière transpar-
ente dans la base de données locale.

Afin de traiter l’hétérogénéité qui peut exister entre les données retournées par dif-
férents services et celles stockées dans les sources de données locales, nous proposons
de définir des vues de services en terme des relations du schéma local. La première étape
repose sur les résultats de matching calculés par COMA ++ entre la source de données
et le service de données en question. Etant donné les mappings obtenus, on crée dans
la deuxième étape un graphe pondéré. Par la suite, les top-k Steiner trees sont calculés.

Enfin, nous présentons MoDaaS qui est une plateforme de modélisation et de descrip-
tion des services de données, en particulier des services DaaS. Nous avons développé
MoDaaS pour encourager les fournisseurs à adopter un modèle standard pour la mod-
élisation des caractéristiques de leurs services , et ce selon une ontologie partagée, leur

10 Résumé Etendu

permettant ainsi de générer automatiquement des vues de service.

EuDaSL: Système d’Enrichissement automatique des
Sources de Données Utilisateurs

Data Providing Service Lake

Nous introduisons dans cette thèse un nouveau paradigme que nous appelons le Data
Providing Service Lake ou le Lac de Service de Données, par analogie avec le lac de
données.

Figure 1 – Le Lac de Service

Un lac de service de données, ou le lac de service tout court, est un dépôt de stockage
de services web de données hétérogènes fournissant un accès à la demande et en temps
réel des informations de haute qualité. Les données renvoyées sont extraites à partir des
sources web dans leur format natif et stockées dans les données brutes, telles quelles.
L’idée principale des lacs de services est de tirer profit des services de données dans
le lac, tandis que ces services rendent les données de sources web disponibles par le
biais d’API encapsulées et de ne pas accorder trop d’attention à la création de schémas
globales qui définissent des points d’intégration entre différents services web fournissant
ainsi des ensembles de données hétérogènes. En conséquence, au lieu de placer les
données récupérées à partir des différents sources hétérogènes dans un entrepôt de
données spécialement conçu à cet effet, nous les déplaçons dans le lac, afin de les
analyser ultérieurement. Cela permettrait de faciliter et d’enrichir dynamiquement les
sources de données utilisateur en vue de répondre complètement et de satisfaire ses
requêtes de données tout en éliminant les coûts initiaux et l’ingestion des données .

Résumé Etendu 11

Architecture Globale

La figure 3.4 présente l’architecture globale de notre système d’intégration des don-
nées que nous appelons EuDaSL(Enriching U ser DAta sources in Service Lakes).
L’architecture de EuDaSL est composée principalement de quatre composants mettant

Figure 2 – Architecture Globale d’EuDaSL

en œuvre l’enrichissement des sources de données locales étant donné un ensemble de
requêtes de données: le moteur de traitement de requêtes (Query Processing Engine),
le module de composition de services de données (Quality based Service Composition),
le générateur de vues de services (ViewsGenerator) et la plateforme de modélisation
MoDaaS (MoDaaS Editor).

Processus d’Enrichissement

Suite à une requête de données, voire même un ensemble de requêtes, notre système
doit déterminer la partie de la requête (les concepts et les relations) qui ne peut pas
être satisfaite puisque l’information qu’elle cherche à trouver n’existe pas dans la source
de données introduite par l’utilisateur. Une fois, tous les concepts et les relations man-
quants sont déterminés, le système les définit dans le schéma de la source de données.
Ensuite, il procède à l’identification des services web de données candidates permet-
tant d’extraire cette information, à l’extraction des données à partir des sources web

12 Résumé Etendu

externes en invoquant les services web choisis et enfin il finit par l’intégration les don-
nées extraites dans la source de l’utilisateur. Notre système doit permettre entre autres
la composition de différents services de données dans le cas où un seul service web ne
permet pas d’avoir toute l’information recherchée.

La figure 3.5 illustre les différentes étapes du processus d’intégration proposé dans
l’ordre suivant:

Figure 3 – Processus d’Enrichissement

1) la détermination de l’information recherchée par l’utilisateur mais qui ne figure
pas dans la source de données introduite,

2) L’enrichissement du schéma de la source de données utilisateur, en introduisant
les concepts qui y manquent,

3) L’identification des services de données pertinents permettant de fournir l’information
manquante,

4) La reformulation des requêtes utilisateur pour inclure des appels web aux services
de données sélectionnés,

Résumé Etendu 13

5) L’exécution des appels web afin d’extraire les données, indispensables pour sat-
isfaire les requêtes des utilisateurs,

6) Et finalement l’intégration des données extraites via les services de données dans
la source de données locale.

Toutes ces étapes présentent des tâches fastidieuses ainsi que leur réalisation manuelle
nécessite beaucoup de temps, d’effort et d’expertise. Notre approche permet de rentabiliser
les efforts requis par ces tâches et réduire la complexité de programmation tout en
garantissant un coût d’exécution minimal et une meilleure qualité des résultats obtenus.

Identification des Données Manquantes (Missing Data)

Dans notre approche, la source de données est représentée en un ’graphe de schéma’ et
un ’graphe de données’.

Le graphe de schéma est un graphe orienté qui représente le schéma de la source
de données (cf. Figure 3.1), alors que graphe de données représente l’ensemble des
données/instances qui figurent dans la source tout en respectant la structure représentée
dans graphe de schéma. Cette distinction est nécessaire pour assurer une meilleure
performance des algorithmes développés.

Figure 4 – Un Exemple d’un Graphe de Schéma

14 Résumé Etendu

Figure 5 – Un Fragment du Graphe de Données

• Un premier algorithme (Algorithme 6) permet de parcourir l’ensemble des re-
quêtes des utilisateurs et le schéma de la source de données introduite pour
déterminer les concepts et les attributs qui sont demandés par l’utilisateur mais
ne sont pas représentés dans le ‘schema graph’.

Algorithme 1 : Searching for missing information
Require : QD= Q1, Q2, ..., Qn is a data request, GS= (V,E) is a schema graph
Ensure : MissElts= MissConcepts, MissAttributes, MissRelations

1 MissConcepts← ∅, MissAttributes← ∅, MissRelations← ∅
2 ForEach Qi in QD do
3 if Qi.concepts involves only one concept c then
4 if there is a node v ∈ V that corresponds to c then
5 ForEach Qi in QD do
6 attribute att ∈ Qi.attributes that does not belong to v.attributes
7 add (att, c, ’certain’) to MissAttributes
8 end

Résumé Etendu 15

7
8
9 else if c was already defined in MissConcepts then

10 foreach attribute att ∈ Qi.attributes do
11 if (att, concepts, certitude) was defined in MissAttributes such as

c ∈ concepts and certitude=’uncertain’ then
12 replace (att, concepts, uncertain) by (att, c, ’certain’)
13 else if att was not defined in MissAttributes then
14 add (att, c, ’certain’) to MissAttributes

15 else add c to MissConcepts and all attributes in Qi.attributes to
MissAttributes;

16 else foreach concept c ∈ Qi.concepts that does not have any representative
node v ∈ V do

17 add c to MissConcepts
18 foreach condition cond ∈ Qi.conditions do
19 get related attribute-concept pairs < att, c > in cond
20 foreach < att, c > such as (c is not missing from GS and att is missing)

or (c was defined as a missing concept however att was not defined as a
missing attribute related to c) do

21 add (att,c,’certain’) to MissAttributes
22 foreach linked concepts c1 and c2 in cond that are not related in GS by

an edge e ∈ E do
23 define a new edge e= (c1, c2, att1) in MissRelations where c1

represents the outgoing node, c2 is the incoming node and att1 is
the label of this edge

24 foreach a in Qi.attributes that does not belong to any c. attributes and was
not defined as a missing attribute related to c such as c ∈ Qi.concepts do

25 concepts ← ∅
26 foreach c in Qi.concepts do
27 compute the relatedness score("a", "c")
28 if c has a relatedness score higher than 0.5 then
29 add c to concepts

30 add(a, concepts, ’uncertain’) to MissAttributes
31 ;

• Un deuxième algorithme (Algorithme 7) permet d’enrichir et d’augmenter le
schéma de la source locale (schema graph) en définissant l’ensemble des ‘missing
concepts/ attributs’ et des ‘missing relations’ qui ont été déterminé par le premier
algorithme.

16 Résumé Etendu

Algorithme 2 : Enriching Schema Graph
Require : GS = (V, E), MissElts= MissConcepts, MissAttributes,

MissRelations
Ensure : GS (the enriched Schema Graph)

1 foreach c ∈ MissConcepts do
2 add a new node named c with the label ’M’ to V
3 foreach att ∈ MissAttributes do
4 foreach c ∈ attribute.concepts do
5 define a new attribute att additionally to initial attributes defined within

the concept c, having ’String’ as a type and ’Missing’ as a state

6 foreach rel ∈ MissRelations do
7 add a new edge e to E outgoing from rel.OutNode, incoming to rel.InNode

and labeled with rel.label

La figure 3.6 représente un exemple d’enrichissement du Schema Graph présenté dans
la Figure 3.1. Les noeuds, les attributs et les arrêtes en gris représentent respectivement
les nouveaux concepts, les nouveaux attributs et les relations qui sont indispensables
pour le traitement des requêtes de données posées par l’utilisateur mais qui ne sont pas
définis dans le schema graph initial de la base de données introduite.

Figure 6 – Un Exemple d’Enrichissement du Schema Graph

Résumé Etendu 17

Sélection & Composition des Services de Données
Pertinents en Vue de l’enrichissement des ensembles
de Données Utilisateur

Dans cette partie, nous décrivons notre approche de sélection et de composition des
services web de données. Une première étape consiste à déterminer les services de don-
nées candidats permettant d’obtenir tout ou une partie des données manquants de la
source de données locale. Une deuxième étape permet de construire les différentes com-
positions possibles et les plans de requête correspondants permettant ainsi de retrouver
toute l’information désirée. Quant à la dernière étape consiste à évaluer la qualité des
compositions en termes de qualité de données (QD) et de la qualité de service (QoS)
et ainsi sélectionner ceux permettant de satisfaire les requêtes de données, y compris
les contraintes des utilisateurs (e.g., temps de réponse, coût d’exécution).

Composition des Services de Données Pertinents

Étant donné une requête de données Q et un ensemble de services de données représen-
tés par leurs vues V = v1, v2, ..., vi, l’algorithme 8 permet d’identifier toutes les vues de
services candidats contenant tout ou une partie des conjonctions constituant la requête
Q.

Tout d’abord, l’algorithme commence par vérifier que l’information présente dans la
source de données de l’utilisateur est utilisée en premier lieu pour répondre à la requête
Q. Si certaines données manquent de la base de données locale, l’algorithme procède
pour identifier l’ensemble des vues des services de données dans le Service Lake per-
mettant de renvoyer ces données manquantes. Ensuite, l’algorithme crée toute les
combinaisons possibles des différents services sélectionnés. Une combinaison est censé
renvoyer tout l’ensemble des données manquantes. Dans ce qui suit, nous montrons
comment créer un plan d’exécution de requête à partir d’une composition de services.

Création des Plans d’Exécution (Query Plans)

La création des plans d’exécution (réalisée par l’algorithme 9) est un processus de
raffinement permettant de passer d’une combinaison de services, chacun renvoyant
une partie de l’information recherchée par la requête de données, vers une description

18 Résumé Etendu

Algorithme 3 : Identify Relevant Service Views
Require : Q(X)→ q1(X1), . . . , qm(Xm), CI is a conjunctive query

SV a set of service views
Ensure : {RelevantViews1, . . . , RelevantViewsm}

1 for every conjunct qi in Q do
2 RelevantViewsi ← ∅
3 if qi(Xi) is not missing then
4 there exists a relation R(Y) that corresponds to qi(Xi)
5 let M be the mapping defined on the variables of R(Y) as follows: if Y is

the j’th variable of R then
6 M(Y)← Xj where Xj is the j’th variable in Xi

7 add M(R) to RelevantViewsi

8 else
9 for every conjunct u(Y) in a body of a service view sv in SV do

10 if qi = u then
11 let M be the mapping defined on the variables of sv as follows: if

Y is the j’th variable of u and Y is not existential then
12 M(Y)← Xj where Xj is the j’th variable in Xi

13 else
14 M(Y) is a new variable that does not appear in Q or sv

15 add M(sv) to RelevantViewsi

exécutable où tous les services composants peuvent être exécutés. Un exemple d’un plan
d’exécution est montré dans la figure 4.2, où chaque nœud correspond à l’invocation
d’une opération d’un service de la composition, et les arcs servent à exprimer l’ordre
d’enchaînement des appels web.

Figure 7 – Un Exemple de Plan d’Exécution P1

L’exécution du Plan de requête P1 commence par l’invocation des services S1 et S2.
Une fois le service S2 retourne des valeurs (des données), le service S3 sera être exécuté
autant de fois que le nombre de données renvoyées par S2. De même, l’exécution du
service S4 ne peut être déclenchée qu’après la fin de l’éxécution des services S1 et S3,

Résumé Etendu 19

suivi par l’appel du service S5 permettant de renvoyer l’information recherchée par la
requête Q. Algorithme 9 consiste à définir le plan d’exécution rendant une composition

Algorithme 4 : Create Executable Query Plans
Require : a conjunctive plan Q‘ corresponding to a possible combination of

relevant views (R1, ..., Rl, V1, ..., Vm)
I/O parameters of a data service Vi is (ini, outi)

Ensure : a query plan P
1 BindAvail0 = The set of variables in Q‘ bound by values in the query and those

returned by local relations Ri, i ∈ [1..l]
2 Qout = The head variables of Q‘ (the same head variables of Q).
3 j = 2
4 while there exists also service views that were not chosen earlier do
5 foreach Vi in Q do
6 if Vi was not chosen earlier and the parameters in ini are in

BindAvaili_1 then
7 Vi is the j‘th service in the ordering
8 BindAvaili = BindAvaili_1 ∪ outi

9 j ← j + 1
10 if Qout 6⊆ BindAvailm then
11 plan is not executable

de service exécutable. Cependant, si aucun plan possible n’est trouvé, la composition
ne sera pas être considérée dans la suite du processus de sélection.

Sélection des Services basée sur la Qualité

Cette étape nécessite une première étape d’évaluation de la qualité des différentes
compositions de services exécutables, identifiées dans l’étape précédente, suivie par la
sélection de la meilleure combinaison des compositions qui maximise la qualité des
données retournées tout en respectant les préférences des utilisateurs.

On associe à chaque composition i un score de qualité qi et un coût ci. Le score
de qualité est défini comme une agrégation additive de différents critères de qualité de
service (QoS) tels que la disponibilité, la réputation, le temps de réponse et le coût
d’exécution des services composants par sommation pondérée. Pour ce faire, nous util-
isons la méthode SAW (Simple Additive Weighting), une méthode d’aide à la décision
multi-critères .

20 Résumé Etendu

Le problème est donc de choisir un ensemble de compositions de services de telle
manière que l’on ne dépasse pas le budget maximal de l’utilisateur tout en maximisant
la somme des qualités associées aux compositions sélectionnées. Ce problème est re-
formulé en tant qu’un problème de sac à dos (0-1 knapsack problem) comme suivant:

Étant donné plusieurs compositions de services possédant chacune un score de qualité
et un coût d’exécution et étant donné un coût d’exécution maximale C spécifié par
l’utilisateur pour le sac, quels compositions faut-il mettre dans le sac de manière à
maximiser le score de qualité totale sans dépasser le coût d’exécution maximal autorisé
pour le sac ?

Max
∑
i∈S

qi such that
∑
i∈S

ci ≤ C

L’algorithme 10 permet d’identifier la combinaison optimale des services permettant
de renvoyer le maximum de réponses pour un coût total ne dépassant pas le bud-
get maximal de l’utilisateur. Ainsi, les données récupérées sont intégrées de manière
transparente dans la base de données locale.

Spécification des Vues de Services de Données dans
le Service Lake

Les services Web sont hétérogènes et généralement construits indépendamment du
contexte dans lequel ils seront utilisés. Cela peut entraîner plusieurs problèmes de
compatibilité (syntaxique, structurel ou sémantique) et rend la sélection et la compo-
sition des services une tâche fastidieuse. Afin de traiter l’hétérogénéité qui peut exister
entre les données retournées par différents services et celles stockées dans les sources de
données locales, nous proposons de définir des vues de services en termes des relations
du schéma local.

Vue de Service: est une reformulation de la description du service de données (ses
paramètres d’entrée/ sortie) en fonction des concepts de la source de données introduite
par l’utilisateur.

La première étape repose sur les résultats de matching, ou aussi appelés mappings,

Résumé Etendu 21

Algorithme 5 : Select Plans
Require : n: the number of plans, which are labeled 1 to n

qa: an array containing the values of the qualities of the plans
ca: an array containing the costs of the plans
C : the maximum cost allowed

Ensure : Q, an array of the best qualities obtained considering a given plan
under a cost constraint

1 for (c = 0 to C) do
2 Q[0,c] = 0
3 for (i = 1 to n) do
4 for (c = 0 to C) do
5 if ((ca[i] ≤ c) and (qa[i] + Q[i-1,c - ca[i]] > Q[i-1,c])) then
6 Q[i,c] = qa[i] + Q[i-1,c - ca[i]]
7 keep[i,c] = 1
8 else
9 Q[i,c] = Q[i-1, c]

10 keep = [i,c] = 0

11 T = C for (i = n downto 1) do
12 if (keep[i,T] = 1) then
13 Print i
14 T = T - ca[i]

15 Return Q[n,C]

calculés par COMA ++ entre la source de données et le service de données en ques-
tion. Le processus de matching permet de définir la correspondance entre deux modèles
de données, dans notre cas décrire le lien entre le schéma global de la base de données
locale et les schémas des services de données.

Etant donné les mappings obtenus, on crée dans la deuxième étape un graphe pondéré,
tels que les poids sur les noeuds représentent les scores de matching correspondants.
Par la suite, les top-k Steiner trees sont calculés.

Problème de l’arbre de Steiner: étant donné le schema graph GS et les mappings
calculés par COMA++, l’objectif est de trouver les top-k arbres de Steiner reliant
tous les sommets de correspondance (contenant au minimum une correspondance d’un
paramètre de service) dans le graphe, classés par leurs scores de matching. Ainsi, les
arbres trouvés sont considérés les vues du service de données en question.

22 Résumé Etendu

La pertinence d’un arbre de solutions T peut être mesurée à l’aide des scores des
noeuds comme suit:

Rel(T) =
∑

v∈V(T)
score(v) (1)

Nous avons implémenté un algorithme pour calculer les top-k arbres de Steiner inter-
connectant différents sommets Vi, chacun représente un ou plusieurs paramètres de
service. L’objectif étant de maximiser le score de correspondance (le matching score),
cet arbre avec le meilleur score peut représenter la meilleure reformulation de la vue
de service en question.

Modélisation & Description des Services DaaS

Dans ce dernier travail, nous nous sommes intéressés à développer une approche dirigée
par les modèles pour la description et la modélisation des services de données, et
ainsi pour l’assistance à la sélection et la composition automatique des services DaaS.
Cette approche permet à la fois de simplifier et semi-automatiser la spécification des
vues de services DaaS. L’idée principale derrière est de décrire les services en tant
que des vues RDF paramétrés en se basant sur une ontologie de médiation afin de
capturer leur sémantique de manière déclarative et les vues définies sont ensuite utilisées
pour la description des différents services et elles sont exploitées dans la composition
automatique des services.

Dans ce qui suit,nous allons présenter une vue globale de la solution proposée.

MoDaaS : Vers un Modèle Générique de Description et Mod-
élisation des Services de Données (DaaS)

Afin de mettre en oeuvre l’approche retenue, nous avons choisi d’utiliser des stan-
dards et des outils issus de l’ingénierie dirigée par les modèles (IDM) afin d’assurer
la portabilité de la solution. En fait, l’IDM présente est une solution prometteuse
quand il s’agit de traiter les problématiques liées à la portabilité et à la gestion de
l’hétérogénéité. Nous avons adopté en particulier le principe de semi-automatisation
du processus de transformation de la méthodologie MDA (Model Driven Architecture).
L’approche MDA permet la séparation des spécifications fonctionnelles d’un système
des détails de son implémentation sur une plateforme donnée, ce qui nous a permis de
définir différents services DaaS implémentés par différents fournisseurs et générer les

Résumé Etendu 23

vues RDF corresponds en utilisant les concepts d’une même ontologie standard.

Nous commençons dans un premier temps par la description de l’architecture glob-
ale. Ensuite, nous décrivons les différents modules plus en détails.

Architecture Globale

Au cours de ce projet, deux outils ont été développés:

• MoDaaS Editor : un éditeur graphique permettant aux fournisseurs DaaS
de définir et de décrire leurs services de données. Cet éditeur se repose sur
le métamodèle "DaaSMetaModel". Ce dernier regroupe les concepts nécessaires
pour la définition d’un modèle DaaS en utilisant des classes personnalisables et
extensibles.

• Views Generator : un outil génératif permettant de générer automatiquement
les vues RDF des services de données à partir des modèles DaaS fournis en entrée.

La figure 6.2 présente les différents outils qui composent notre framework MoDaaS et
les relations entre eux.

Figure 8 – Overall Architecture of the MoDaaS Framework

DaaSMetaModel:

La figure 6.3 présente le méta-modèle au coeur de notre plateforme MoDaaS. DaaS-
MetaModel regroupe les différents concepts et propriétés des services de données du

24 Résumé Etendu

Figure 9 – DaaSMetaModel

nuage informatique DaaS. Les classes présentées dans ce méta-modèle permettent de
décrire le service DaaS, ses paramètres d’entrée et de sortie, ainsi que ses propriétés en
termes de qualité de service (QoS) et de la qualité de données (QD)

MoDaaSEditor:

L’éditeur graphique MoDaaSEditor permet aux utilisateurs et aux fournisseurs DaaS
de créer et de décrire leurs services de données à partir des différents éléments présentés
dans la palette correspondante (cf. Figure 6.4).

Figure 10 – MoDaaSEditor

Résumé Etendu 25

ViewsGenerator: Génération Automatique des Vues RDF

Le générateur ViewsGenerator permet de générer la vue de service (RDF) à partir
du modèle DaaS créé. Il prend en entrée le fichier DaaS.daas et retourne un fichier
view.rdf contenant l’ensemble des paramètres d’entrée et de sortie exprimés en fonction
des concepts de l’ontologie choisie.

Implémentaion & Validation

Afin de valider notre approche, nous avons réalisé trois différents cas d’étude concrets.
Il s’agit de la modélisation et la génération des vues RDF de trois différents services
DaaS en fonction des concepts de l’ontologie EDAM.

Implémentation

Après avoir étudié différents outils de modélisation et de transformation de modèles en
texte, nous nous sommes amenés à choisir :

• EMF (Eclipse Modeling Framework): le plugin de base de la métamodéli-
sation sous Eclipse.

• Ecore: utilisé pour la définition du méta-modèle DaaSMetaModel.

• Sirius: utilisé pour la définition et la mise en oeuvre d’une syntaxe concrète
graphique pour notre DSML (DaaSEditor).

• Acceleo: comme outil de transformation utilisé pour la génération automatique
des vues de services.

Dans ce qui suit, nous allons présenter des imprimes écran illustrant le processus de
modélisation et la génération des vues de services DaaS en utilisant les outils dévelop-
pés.

Description & Modélisation des Services DaaS

Dans cette partie, nous allons voir comment décrire le service DaaS getGenomeInfo
proposé par Amazon Web Services et générer sa vue RDF en utilisant notre plate-
forme MoDaaS.

26 Résumé Etendu

Figure 11 – Modélisation du service getGenomeInfo et Annotation sémantique selon
l’ontologie EDAM

Le processus débute par la création d’un modèle DaaS décrivant le service de don-
nées getGenomeInfo à partir des différents éléments de la palette présentée par notre
éditeur graphique MoDaaSEditor. Ces éléments présentent les différents paramètres
à savoir les paramètres d’entrée requis pour l’exécution du service et les paramètres
de sortie recherchés par la requête (de l’utilisateur). Ils permettent aussi de définir la
qualité de données fournies en sortie, la qualité de service (QoS) en tant que la répu-
tation du fournisseur, la disponibilité du service, etc.

La définition des caractéristiques de chaque composant du modèle créé se fait à partir
de la vue "Properties". Cette vue présente l’ensemble des propriétés à spécifier pour
chaque élément. En effet, il faut tout d’abord sélectionner le composant et par la
suite remplir les champs apparus dans "Properties". Suite à La création d’un nouveau
modèle DaaS, un nouveau fichier *.daas est créé pour représenter convenablement les
différentes propriétés et caractéristiques du service getGenomeInfo par ce modèle au
format XMI. La figure 6.8 présente le contenu du fichier iGenomes.daaS.

De plus, l’utilisateur peut à tout moment effectuer une validation du modèle créé grâce
à MoDaaSEditor qui fait appel à son tour au méta-modèle DaaSMetaModel pour véri-
fier la validité du modèle DaaS créé. La validation est lancée depuis MoDaaSEditor.

Résumé Etendu 27

Figure 12 – Modèle de description du service getGenomeInfo (*.daas) au format XMI

Génération des Vues RDF de Services DaaS Après avoir créé et validé le modèle
DaaS, l’outil ViewsGenerator permet de générer automatiquement la vue RDF du
service à partir de ce modèle selon une ontologie de domaine, à l’état actuel seulement
l’ontologie EDAM est supportée par notre plateforme de modélisation. Ainsi, pour
lancer la génération de la vue RDF, il suffit de cliquer sur le fichier iGenomes.daas
et puis "Generate View". Le listing 6.1 présente le code généré par ViewsGenerator à
partir du modèle DaaS créé.

1 get GenomeInfo ($genome_sequence , ?genome_index , ?Chromosome_sequence , ? gene_annotation
’) : ?<http :// edamontology . org /data_3210> <http ://www. w3 . org /2000/01/ rdf−schema#
l a b e l > "Genome index "

2 ?<http :// edamontology . org /data_0919> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l > "
Chromosome r e p o r t "

3 ?<http :// edamontology . org /data_0916> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l > "
Gene r e p o r t "

Listing 1 – Vue RDF du service getGenomeInfo

De cette façon, nous décrivons les services de données fournis par les fournisseurs de
DaaS en tant que des vues selon une ontologie de domaine afin de traiter l’hétérogénéité
des schémas. Plus précisément, les paramètres de chaque service DaaS sont matchés
avec les concepts qui les réprésentent dans l’ontologie de domaine choisie. Ces concepts
sont utilisés pour définir les vues RDF des services. Les vues de service générées sont
ensuite stockées dans un référentiel et peuvent donc être réutilisées automatiquement
par les outils de sélection et de composition automatiques.

Contents

1 Introduction 41
1.1 Research Context & Motivation . 41
1.2 Research Questions . 46
1.3 Contributions . 46
1.4 Outline of the Thesis . 48

2 Background & State of the Art 51
2.1 Data Integration . 52

2.1.1 Materialized Integration . 53
2.1.2 Virtual Integration . 54
2.1.3 Related Work . 57
2.1.4 Discussion . 64

2.2 Service Composition . 66
2.2.1 Service Oriented Computing . 66
2.2.2 Web Services Standards . 66
2.2.3 Data Providing Web Service . 67
2.2.4 DaaS, the Data as a Service model 68
2.2.5 Web Service Architectures . 69
2.2.6 Service Composition . 70
2.2.7 Challenges and Issues of Data Service Composition 71
2.2.8 Related Work . 72
2.2.9 Discussion . 76

2.3 Concluding Remarks . 77

3 User-Centric Data Integration in Service Lakes 79
3.1 Data Model . 80

3.1.1 Schema Graph . 80

30 CONTENTS

3.1.2 Data Graph . 81
3.1.3 Data Queries . 82

3.2 Data Provisioning Service Lakes . 83
3.3 Overall Architecture . 83
3.4 Query-Answering Process . 85
3.5 On Enriching Local Data Sources’ Schemas in Service Lakes 87

3.5.1 Identifying Missing Information 87
3.5.2 Enriching Local Data Sources 91
3.5.3 Case Study . 92

3.6 Concluding Remarks . 93

4 Quality-based Data Service Composition for Enriching User Data
Sources 95
4.1 Preliminary Steps . 96

4.1.1 Data queries . 96
4.1.2 Service Lake . 97
4.1.3 Data Service Views . 97

4.2 Selection and Composition of Data Services 99
4.2.1 Composition of Pertinent Data Services 100
4.2.2 Creation of Executable Query Plans 100

4.3 Quality based Selection of Query Plans 102
4.3.1 Measuring QoS values of a Service Composition 103
4.3.2 Selection of Query Plans . 106

4.4 Experimentation . 108
4.4.1 Testbed and Methodology . 108
4.4.2 Results and Discussion . 109

4.5 Concluding Remarks . 112

5 Automatic Specification of Data Services’ Views 113
5.1 Approach Overview . 114
5.2 Schema Matching . 115
5.3 Automatic Specification of Services’ Views 117

5.3.1 Steiner Trees Problem in Graphs 117
5.3.2 Automatic Definition of Services’ Views 119

5.4 Case Study . 126
5.4.1 Generation of Service Views using Ground Truth Matching . . . 126

CONTENTS 31

5.4.2 Generation of Service Views using Approximate Matching . . . 131
5.5 Experiments . 134

5.5.1 Performance Metrics . 134
5.5.2 Baseline Results & Discussion 136

5.6 Concluding Remarks . 139

6 A Model-Driven Framework for the Modeling and the Description of
Data-as-a-Service to Assist Service Selection and Composition 141
6.1 Model Driven Engineering for the Cloud 142

6.1.1 MDE, Model Driven Engineering 143
6.1.2 MDA, Model Driven Architecture 143
6.1.3 MDA for the Modeling of DaaS 144

6.2 MoDaaS for the Modeling and the Description of DaaS 145
6.2.1 Overall Architecture . 146
6.2.2 DaaSMetaModel: a Meta-model for the Modeling of DaaS Con-

cerns . 147
6.2.3 MoDaaS Editor & Semantic Annotation of DaaS 149
6.2.4 Automatic Generation of RDF Views 151
6.2.5 Assistance to DaaS Selection & Composition 152

6.3 Validation . 152
6.3.1 Implementation . 153
6.3.2 Case Studies . 153

6.4 Concluding Remarks . 157

7 Conclusion & Perspectives 159
7.1 Context & Contributions . 159
7.2 Open Issues & Future Directions . 161

7.2.1 Specification of Data Services’ Views 161
7.2.2 Selection and Composition of Relevant Data Services for Answer-

ing User Queries . 162
7.2.3 Modeling and Description of Data Services 162

Bibliography 170

32 CONTENTS

List of Figures

1 Le Lac de Service . 10

2 Architecture Globale d’EuDaSL . 11

3 Processus d’Enrichissement . 12

4 Un Exemple d’un Graphe de Schéma 13

5 Un Fragment du Graphe de Données 14

6 Un Exemple d’Enrichissement du Schema Graph 16

7 Un Exemple de Plan d’Exécution P1 18

8 Overall Architecture of the MoDaaS Framework 23

9 DaaSMetaModel . 24

10 MoDaaSEditor . 24

11 Modélisation du service getGenomeInfo et Annotation sémantique selon
l’ontologie EDAM . 26

12 Modèle de description du service getGenomeInfo (*.daas) au format XMI 27

2.1 Possible Semantic Conflicts . 53

2.2 Materialized Integration Architecture 54

2.3 Virtual Integration Architecture . 55

2.4 High-Level Overview of the Overall TSIMMIS Architecture 58

34 LIST OF FIGURES

2.5 MOMIS Data Integration Process . 59

2.6 KARMA Architecture . 60

2.7 Data Model Adopted in ANGIE . 63

2.8 Data Service Architecture . 67

3.1 An Example of a Schema Graph . 81

3.2 A Fragment of the Data Graph Associated to the Schema Graph Intro-
duced in Fig.3.1 . 82

3.3 Service Lake . 83

3.4 EuDaSL Architecture . 84

3.5 An Overview of the Integration Process 86

3.6 An Enrichment Example of the Schema Graph Introduced in Fig.3.1 . . 92

4.1 An Excerpt of a Library Database Schema & Its Corresponding Schema
Graph . 98

4.2 Executable Query Plan . 104

5.1 Overview of the Automatic Services’ Views Definition Process 115

5.2 Schema Matching . 116

5.3 An Example of a Steiner Tree Problem 118

5.4 A Group Steiner Tree Connecting at Least One Vertex from Each Group
Q1 ,Q2 and Q3 . 119

5.5 Overview of the Local Database Schema: Nodes and Edges 121

5.6 Basic Operations used for the Construction of Steiner Trees 124

5.7 Construction of Rooted Trees . 128

5.8 Tree Grow . 129

LIST OF FIGURES 35

5.9 Tree Merge . 130

5.10 Generated Steiner Trees . 131

5.11 Generated Steiner Trees . 133

5.12 Comparison between Requested and Retrieved Data Using the Auto-
matically Generated Services’ Views . 135

5.13 Matching Results versus Views Definition Results 138

6.1 Process of the Model-Driven Architecture 144

6.2 Overall Architecture of the MoDaaS Framework 146

6.3 DaaSMetaModel . 147

6.4 MoDaaS Editor . 150

6.5 MoDaaS Implementation Process . 153

6.6 EDAM Ontology . 154

6.7 DaaS Modeling and Annotation according to the EDAM Ontology . . . 155

6.8 EMF Tree View and Property Sheet for the Created DaaS Model (*.daas)155

36 LIST OF FIGURES

List of Tables

2.1 Comparison of Most Known Data Integration Approaches 65

2.2 Comparative View of Service Composition Approaches 77

3.1 Correlation to Human Perception [63] 90

4.1 Average Response Time and Results Number of s1, s2, s3, s4 and s5 . . 104

4.2 Query Planning . 110

4.3 Results of the Evaluation . 111

5.1 Schema Matching Defined Manually by an Expert 127

5.2 NodesNamesW Matching Results . 132

5.3 Average Precision, Recall and F-measure for Top-1 Services’ Views Gen-
erated Based on Different Matching Results 137

38 LIST OF TABLES

Liste des symboles

DaaS . Data as a Service

DP service .Data Providing service

ETL . Extract, Transform and Load

iPaaS . integration Platform as a Service

JSON .JavaScript Object Notation

ODL .Object Definition Language

OWL-S .OWL for Services

OWL .Web Ontology Language

PRV .Parametrized RDF View

QoD .Quality of Data

QoS . Quality of Service

RDF . Resource Description Framework

REST .REpresentational State Transfer

SAWSDL . Semantic Annotations for WSDL

SLA . Service Level Agreement

SOA . Service Oriented Architecture

SOAP . Simple Object Access Protocol

SOC .Service Oriented computing

SQL . Structured Query Language

40 LIST OF TABLES

SWS . Semantic Web Services

UDDI . Universal Description Discovery and Integration

UML .Unified Modelling Language

URL . Uniform Resource Locator

WSDL .Web Services Description Language

WWW . World Wide Web

XML . Extensible Markup Language

XSLT . Extensible Stylesheet Language Transformations

Chapter 1

Introduction

Contents
1.1 Research Context & Motivation 41

1.2 Research Questions . 46

1.3 Contributions . 46

1.4 Outline of the Thesis . 48

This chapter introduces the scope of the work achieved throughout this PhD the-
sis. This thesis is accomplished at the LAMSADE Laboratory of the university of
Paris Dauphine in France and the RIADI laboratory of the university of Manouba in
Tunisia. It is part of the PHC-Utique research project no15G1413, entitled "Data In-
tegration in Cloud Environments". This collaboration through the PHC-Utique
project guided the objectives of the thesis, its orientations and its products. In partic-
ular, our task consisted in proposing a new approach for the on-the-fly enrichment of
local data sources with new information coming from external data sources. As such,
we present in this chapter the context of our work, its underlying challenges and our
main contributions.

1.1 Research Context & Motivation

With the increasing and continuous production of large amounts of data coming from
a variety of sources, existing data processing technologies are no more suitable to cope
with it. Doing so, we observe a shift in the way companies are managing their data.

42 Introduction

Big data platforms and analytic architectures have recently witnessed a wide adoption
by companies and businesses world-wide to transform their increasingly growing data
into actionable knowledge. Indeed, big data frameworks help in storing, analyzing
and processing such massive amounts of data, and thus identifying new opportunities
through enabling faster and better decision making, more efficient operators and higher
profits, and also lead to more satisfied customers by gauging their needs. In particular,
managing "integrated" data assures more confidence in decision-making and provides
superior insights, and thus the need for faster and smarter data integration capabilities
is growing.

Generally speaking, data integration combines data originating from a variety of differ-
ent and disparate sources and software formats, and then provides users with a unified
view of the accumulated data. The main aim is to make data more comprehensively
available, and to increase the value of existing data by allowing previously complex
data queries to be posed upon it. The proliferation of disparate data sources, het-
erogeneous types, and web stores is increasing the challenge of combining data into
meaningful and valuable information. Thereafter, the process of integrating huge and
heterogeneous data sets is becoming increasingly complex and challenging considering
the current "data explosion". The complexity emphasizes on the levels of data inter-
operability, data storage, structure and the levels at which the data can be integrated
and operated as a single entity. Furthermore, collecting and maintaining large data
sets is costly. Therefore, organizations tend to use the cloud for storing their data.
Consequently, the biggest challenge is incorporating all relevant data across an ever-
increasing number of databases on the web and possibly on the cloud with on-premises
databases that were designed and created independently the one from one another.
Thus, bringing data together is not a trivial exercise.

Specifically, we consider the scenario in which a user (e.g., a company employee) wants
to query a local dataset while this dataset may not be sufficient by itself to provide
answers for all the user’ queries. This dataset can be in any format, (e.g., a CSV file,
an XML document, a relational database or an RDF graph) and may contain for ex-
ample information about prospective clients of companies. Often, local datasets need
to be augmented and enriched with information coming from external data sources.
Our focus in this thesis is to fill the informational gaps in the local databases with in-
formation coming from external data sources whenever the stored data is not sufficient
for answering a data query.

Let consider a dataset containing the following relational tables, where underlined
attributes represent primary keys. We assume that persons, authors and books are

1.1 Research Context & Motivation 43

uniquely identified by their id. The foreign key authorID references a person and
author references authorID of the table Author.

Relation schema
Person(personID, first name, last name, date of birth, country)
Author(authorID, name, university, email, domain)
Book(iD,title, author,topic)
Foreign Keys
Table Author: authorID references personID of Person
Table Book: author references authorID of Author

Consider now a user, who is familiar with the dataset introduced above, and is inter-
ested in issuing a set of queries, introduced below. The user poses his data queries
using an SQL-like query language syntax in which the elements that are required by
the queries but missing in the underlying dataset schema are prefixed with a question
mark ′?′.

Q1 : SELECT title, topic FROM Book.

Q2 : SELECT ?iSBN, title FROM Book WHERE topic = ′Webservices′.

Q3 : SELECT title, author, ?publisher FROM ?Publisher, Book WHERE ?Publisher
.?name = Book.?publisher.

While the execution of Q1 does not pose any problem, queries Q2 and Q3 cannot be
entirely evaluated using the introduced database. The reason being that this dataset
does not provide all the necessary elements (i.e.,iSBN and publisher do not exist in any
of the user tables. Also, the table Publisher is not represented in the schema) for the
evaluation of these queries, the missing information can be retrieved from external data
sources. With the proliferation of knowledge-sharing communities and the advances in
information extraction in turn the construction of databases on the web, we propose
in this work to leverage the missing information that could be dynamically obtained
from web sources in order to enrich local databases on the fly.

Nowadays, an increasing number of companies and businesses of all sizes are stor-
ing some or all of their data on the web, in turn leading to the construction of large
data marketplaces on the web as in cloud computing environments, such as Microsoft
Azure Data Marketplace [3], Amazon Data sets [1], Oracle Data Cloud [4] and Enigma

44 Introduction

[2], as well as in Open Data Initiative. The data stored in these marketplaces is made
available and accessible within web services, the so-called data providing (DP) web
services or the data services for short. The abundance of available data services has
led companies and businesses world-wide to leverage their potential in a number of
ways: either implementing their own services to access distant databases possibly lo-
cated and maintained in different locations or accessing other companies’ databases
against some fees within the Data as a Service(DaaS) model. In this sense, we explore
the possibility of acquiring the missing data from companies’ databases through the
implemented data services or using DaaS services. Like all the ’as a Service’ family,
DaaS is built on the concept that the service, the data in this case, is provided on
demand to cloud users regardless of their geographic location. This data can benefit a
wide spectrum of business models related to biology, chemistry, economics, e-science,
etc.

While there exists a large number of data service providers in the market, each one has
a different way to describe the services it provides as well as the datasets it supplies
regardless of the context in which they will be used. Particularly, data services may
define different data structures and semantics for their manipulated data entities than
the user/company data structures and semantics. Thus, given a data request, the se-
lection of reliable data services requires a preliminary step of matching the user data
request and the service structure. Thereafter, Data queries have to follow the binding
patterns of service operations, by providing values for the required input parameters
before the service operation can be called. This may be challenging in the context of
a service composition.

Actually, individual services may provide only some data and not all the missing in-
formation, therefore answering a data query may require investigating different com-
binations of different data services, which we also call service compositions. Several
approaches have been proposed for composing data services [39][72][17][12][66]. The
common issue faced while executing the resulting compositions concerns the possible
heterogeneity (syntactic, structural or semantic) in the exchanged data between the
services involved in a composition. This is not the only issue to be dealt with. As a
matter of fact, some service compositions cannot be executed because of the restriction
of service patterns. But as some service operations in a service composition may out-
put the mandatory inputs for the execution of other services in the composition, this
raises the question as to how to find an executable orchestration between the different
component services.

Moreover, the use of a data service is bound to various concerns. Some of them

1.1 Research Context & Motivation 45

are technical, specific to the data while others concern the service properties such as
the quality of service (QoS) and the cost. The data quality also influences decision
making. All these concerns are critical for data service selection. QoS criteria have
been extensively studied in favor of data quality. We further argue that the quality of
data should be valued as much as QoS to improve the selection decisions. Over the
years, the number of data services providing access to similar datasets with varying
QoS has significantly increased. As such, most existing works assume that the data
provided by different services is the same and complete, thus, the problem becomes
how to select appropriate data services so that the quality of the resulting composite
service is maximized. Nonetheless, this assumption is unrealistic as long as web services
provide access to incomplete data sources. Consequently, the selection of the optimal
composition may not completely satisfy the user data queries.

Nowadays, companies are moving away from traditional data-warehouse solutions [11]
whereby expensive and time-consuming ETL (Extract, Transform, Load) processes are
used, towards data lakes [68]. A data lake is a storage repository that holds a vast
amount of raw data in its native format instead of forcing data into a static schema
and running an ETL process to fit it into a structured database. As a result, the
data is available at a more granular level without losing its details, and schemas are
created at a later point when needed. Such data is usually accessed directly through
the API of big data platforms such as Hadoop and Spark, or through wrappers. In
our PhD dissertation, we go further in this direction and show how data lakes, or more
specifically the service lakes, since we are focusing on data services, can be leveraged to
answer data queries, taking into account the quality of the services and respecting the
budget set by the user. In particular, we focus on the selection and the composition of
the relevant data services to fill the possible gaps of information found in companies’
data sources and answer user data queries. Moreover, we make sure that we satisfy
user requirements in terms of execution cost and service quality. This involves in a
first step determining the missing information that is of interest to the user given a
data query, then identifying the relevant data services that can be used to populate
the missing data, and finally the generation and the execution of the pertinent query
plans that produce the best-quality data in response to user queries. In doing so, we
automatically model data services as views over the local database schema to lay down
the basic foundations for their semantic description, selection and composition and deal
with their possible heterogeneity. To the best of our knowledge, our thesis is among the
first works to address the automatic specification of service views in the Web services
research community.

46 Introduction

1.2 Research Questions

The aforementioned issues raise the need for a complete solution to leverage the missing
information in user datasets in order to be able to answer the queries he is interested in.
This dissertation is guided by the three following main research questions/challenges
that need to be addressed in our work:

1) How can we enrich the local data source schema with new concepts that are
required to issue user’s data queries?

2) A critical step necessary for identifying the authoritative data services that can
provide the reliable information, is to understand the capabilities of each available
service. Usually, data consumers need to read HTML documentation to collect
more information about the service they will choose. This is a time-consuming
and tedious task.

3) The new concepts that are used to enrich the local schema which we term ’missing
concepts’ need to be populated with data instances. These data instances are
retrieved by invoking data services. However, it raises the question as to how
the schema mappings specifying the correspondences between the new concepts
in the local schema and the data services can be defined.

4) The last challenge tackles the problem of processing user queries. Indeed, users
may have different needs as to the quality and the cost (both financial and in
terms of time) that they are willing to pay for their queries. Here we recall that
some of the data services that are provided by the service lake are hosted by
cloud providers. Such providers do not supply their services for free, and provide
data services with varying data qualities. This raises the question of how user
queries can be processed taking into account his requirements in terms of quality
and cost.

1.3 Contributions

This thesis provides a novel approach to leveraging the missing information that could
be dynamically obtained from data services in order to enrich user data sources on the
fly whenever the stored knowledge does not suffice to answer the user queries.

The key contribution of this thesis is a User-centric Data Integration System, that
we call EuDaSL (Enriching U ser Data sources in Service Lakes), to automatically

1.3 Contributions 47

enrich local data sources. We mention in what follows the three main contributions of
this thesis:

• An approach to automatically generate views for the data services
available in the Service Lake: The determinative factor in selecting and
composing data services, particularly DaaSs, is the semantic relationship between
their sets of input and output parameters. Thus, the automation of the service
selection and composition processes requires the specification of the semantic
relationships of data services in a declarative way. This requirement can be
achieved through reformulating data services descriptions as views over a global
schema, the schema of the company database in our case, following the mediator-
based approach. Service views are expressed as conjunctive queries over the
relations in the user data source.

• Algorithms to automatically and dynamically enrich the schema of
local databases: As mentioned above, companies’ databases may not represent
all the information that cater for the processing of user queries. Thus, missing
concepts need to be defined in the schema before proceeding to the extraction
of the missing data from external data sources. In this part, we show how the
schema of a local dataset can be enriched with new concepts given a workload
specifying the user queries. Two algorithms have been developed for this purpose:
the first to determine the missing information that is required for the processing
of user data queries but not existing in his local data source, the second to enrich
the corresponding schema with the missing concepts and relations.

• A quality-driven service selection and composition approach: to identify
and compose the relevant data services that can be used to leverage the missing
information, and to select the best-quality query plans for the enrichment of users
data sources. Specifically, we made the following contributions:

– An algorithm for reformulating queries expressed over the schema of the user
data source by replacing the missing concepts in the user data source with
invocations to data services. This algorithm adapts existing Local-As-View
query reformulation algorithms [50, 49].

– A knapsack-based algorithm for the selection of the query plans (and there-
fore the pertinent data services), taking into account the quality of the
services, the time and monetary cost limits set by the user.

The main objective of this thesis project being the automatic enrichment of local data
sources with information extracted from web sources using data services, the definition

48 Introduction

of these services’ views over the data source elements remains a crucial step to homog-
enize the services descriptions, in order to deal with their possible heterogeneity. In a
first try, we manually defined views of all the data services in the Service Lake. This
manual way is time-consuming and error-prone given the big number of data services
that we considered. In a second try, we proposed an approach to automatically gen-
erate service views expressed as conjunctive queries over the relations in the user data
source. Service views can also be reformulated over a domain ontology introduced as
the mediated schema. All these efforts are needed to deal with the semantic and the
structural heterogeneities between data services. But what if service providers were
willing to make the effort to propose a common ontology for service seekers?

Under this assumption, we present our last contribution MoDaaS, a model-driven
framework for the modeling and the description of DaaS services. This framework
may encourage providers to adopt a standard model for the description of their data
services capabilities and concerns according to a shared ontology, thus enabling them
to automatically generate service views in order to assist the integration and data ex-
change between heterogeneous services. Moreover, the same service description can
be reformulated in different formats; RDF descriptions, conjunctive queries, OWL-S
descriptions, etc.

1.4 Outline of the Thesis

The remainder of this thesis is structured as follows:

• Chapter 2 introduces the basic notions and the different concepts needed for the
understanding of our work. We also present a state-of-the-art on data integration
and service composition approaches existing in the litterature. These approaches
are discussed and details of some example works are explained to address where
our work stands in the literature.

• In Chapter 3, we first provide an overview of the different contributions in this
dissertation and the overall architecture of our user-centric data integration ap-
proach. Then, we describe the enrichment of the schema of user data sources.
Two algorithms have been proposed to determine the missing data, given a set
of data queries, and to enrich the schema of the user data source. We demon-
strate the proposed algorithms with one scenario from the motivating examples
in Section 1.1.

1.4 Outline of the Thesis 49

• In Chapter 4, we investigate the Service Lake and identify the relevant data
services that can be used to leverage the missing data. Afterwards, we present
the different aspects of evaluation of our proposal; providing information about
the prototype implementation, then an evaluation of the proposed composition
solution is presented by comparing it with existing composition frameworks.

• Chapter 5 addresses the specification of service views over the relations of the
local data source in the Service Lake. To the best of our knowledge, this is the
first work to deal with the automation of service views definition.

• Last but not least, Chapter 6 describes our model-driven framework for the
modeling and the description of Data-as-a-Service to assist service selection and
composition.

• Finally, we sum up our contributions in Chapter 7. We conclude this last
chapter with our ongoing works and some perspectives that we aim to achieve in
short, medium and long terms.

Chapter 2

Background & State of the Art

Contents
2.1 Data Integration . 52

2.1.1 Materialized Integration . 53

2.1.2 Virtual Integration . 54

2.1.3 Related Work . 57

2.1.4 Discussion . 64

2.2 Service Composition . 66

2.2.1 Service Oriented Computing 66

2.2.2 Web Services Standards . 66

2.2.3 Data Providing Web Service 67

2.2.4 DaaS, the Data as a Service model 68

2.2.5 Web Service Architectures . 69

2.2.6 Service Composition . 70

2.2.7 Challenges and Issues of Data Service Composition 71

2.2.8 Related Work . 72

2.2.9 Discussion . 76

2.3 Concluding Remarks . 77

Our work has taken shape in the context of a rich and interesting literature focused
on data integration and service composition. This chapter is devoted to give some
preliminary notions about these two research areas. In particular, we first explain the

52 Background & State of the Art

principles of data integration and we introduce the existing integration approaches.
We then give some basic definitions and notions related to data services and service
composition, that will be used throughout the manuscript. In a second part of each
section, we analyze and discuss the main related works.

2.1 Data Integration

Data integration is the process of combining data residing at different, autonomous
and possibly heterogeneous data sources and providing the user with a unified view of
these data [47]. The main aim behind is to allow users coming with a single data query
to find relevant data no matter which database provides it.

A first issue, from a technical viewpoint, the difficulty comes from the lack of inter-
operability between the data sources, that may use a variety of formats, specific query
processing capabilities or different protocols. However, the real bottleneck for data
integration comes from the semantic heterogeneity between the data sources, such as
companies organize their data using different schemas.

Definition 1 Semantic Heterogeneity refers to the differences or similarities in mean-
ing and interpretation of data values, when the schema of different databases for the
same domain are developed by independent parties [41]. In other words, semantic con-
flicts among information systems occur whenever information systems do not use the
same interpretation of the information.

Accordingly, two schema elements in two local data sources can have the same in-
tended meaning, but different names. For instance, in example 1 in Figure 2.1 , different
names were attached to the same concept (SSN versus ID) in the two schemas of Stu-
dent and Grad-Student, respectively. Thus, during integration, it should be realized
that these two elements actually refer to the same concept. Alternatively, two schema
elements in two data sources might be named identically, while their intended mean-
ings are incompatible. This is the case in example 2 (cf. Figure 2.1); title in the table
Book refers to a title of a book, whereas the attribute title in table Album refers to
the title of an album. Hence, these elements should be treated as different during the
integration.

Different integration approaches have been proposed in the litterature, some are
widely used and some are less so, having failed to achieve the basic requirements of

2.1 Data Integration 53

Figure 2.1 – Possible Semantic Conflicts

data integration. The two most important architectures for building a data integration
system are: (1) The Materialized integration, where data is physically copied (with or
without transformation) to a dedicated storage, e.g., Data Warehousing, Data Lakes.
and (2) The Virtual integration, in which data remains in its original sources and is ac-
cessed during the query execution. In the following sections, we discuss the integration
architectures, its strengths and weaknesses. We also discuss in the section thereafter
some integration systems proposed in the literature.

2.1.1 Materialized Integration

The Materialized Approach derives its basis from traditional data warehousing tech-
niques. Data from heterogeneous distributed information sources is gathered, mapped
to a common structure and stored in a centralized location. Warehousing emphasizes
data translation, as opposed to query translation in mediator-based systems. Figure
2.2 shows an overview of the materialized architecture. In fact, warehousing requires
that all the data loaded from the sources be converted through data mapping to a stan-
dard unique format before it is stored locally. In order to ensure that the information
in the warehouse reflects the current contents of the individual sources, it is necessary
to periodically update the warehouse. In general, the execution of data queries posed
to a data warehouse is not expensive and takes very little time to resolve. That is
because the data warehouse has already done the major work of extracting, converting
and combining data and Database managers put a lot of thought to make it effective
and efficient.

54 Background & State of the Art

Figure 2.2 – Materialized Integration Architecture

The problem being with this architecture is that the information stored in data
warehouses need always to be updated. That is because of the way data warehouses
work such as they pull information from other databases periodically. If the data in
those databases changes between extractions, queries to the data warehouse will not
result in the most current and accurate views. Consequently, If the data in a system
rarely changes, this architecture is not the most appropriate for this sort of applications.

2.1.2 Virtual Integration

In the virtual model, the integrated database consists purely of the virtual view defini-
tions, as querying interface and a querying engine. No data is stored in the integrated
database. Users ask queries over the virtual views, and a query engine translates these
into queries over the remote data sources. Each data source, possibly through its wrap-
per, answers the query, and sends results back to the integrated database. The query
engine is responsible for combining these results into an answer to the original query.

To allow the mediator to decide which data to retrieve from each source and how to
combine them into the unified view, the administrator of the integration system has
to specify the correspondence between the local schema of each source and the global
schema through mappings.

Definition 2 Global Schema, also called mediated schema, serves as a unique entry

2.1 Data Integration 55

Figure 2.3 – Virtual Integration Architecture

point on which global queries are posed by users, providing a reconciled, integrated, and
virtual view of the underlying sources.

A main issue is then to specify the relationships, namely semantic mappings, between
the schemas of the data sources and the global schema. Based on these mappings,
one can answer queries over the global schema using queries over the data sources.
Typically, query answering in the mediator approach is performed as follows. First,
independently of the data in the sources, the user query posed over the global schema
is transformed into local queries that refer to the schemas of the data sources. A global
query combines the data provided by sources. Queries are optimized and transformed
into query plans. The local query plans are executed and their results combined by
the global query plan.

Relationship between the global schema and the local data sources (and their local
schemas) is specified at the mediator level.

Two basic approaches for specifying the mappings in a data integration system have
been proposed in the literature, called local-as-view (LAV), and global-as-view (GAV),

56 Background & State of the Art

respectively [42]. Each approach focuses on a particular part of the overall system and
has its advantages and disadvantages.

GAV, Global as View Approach In a global-as-view approach, the focus is on
the global schema. The global schema is described in terms of the local schemas, such
as the content of each element of the global schema should be characterized in terms
of a view over the data sources, and specifies how to obtain tuples 1 of the global
relation from tuples in the local sources. The main advantage of GAV is its conceptual
and algorithmic simplicity. Also, as long as the data sources remain consistent, the
global-as-view approach works well. However, adding or removing data sources to the
system is problematic, because it affects data across the system as a whole.

LAV, Local as View Approach The local-as-view technique takes the opposite
approach, focusing on the data sources. The content of each source s should be char-
acterized in terms of a view over the global schema. The goal is to define the global
schema in such a way that individual definitions do not change when data sources
join or leave the integration system except for the definitions of the sources that are
involved in the change. LAV mappings enable quite fine-grained descriptions of the
contents of data sources. As long as the global schema remains constant, it is easy to
add or remove data sources to the system. Nevertheless, changing the parameters of
the global schema is difficult. If we want to analyze the data sources in a new way, we
have to redefine the entire system.

To conclude, in the GAV approach, every entity in the global schema is associated
with a view over the source local schema. Therefore querying strategies are simple, but
the evolution of the local source schemas is not easily supported. On the contrary, the
LAV approach permits changes to source schemas without affecting the global schema,
since the local schemas are defined as views over the global schema, but query process-
ing can be complex. To overcome the limitations of both integration strategies, [38]
proposed the Global and Local As View (GLAV) approach, which combines the ex-
pressive powers of both GAV and LAV approaches, allowing flexible schema definitions
independent of the particular details of the sources.

For designing the mappings, the distinction made in the mediator model between
local and global relations does not always make sense, such each peer relation may
play the role of both a local relation and a global relation at different times. Therefore,
1In computer science, a tuple (also called
record) is one of the simplest data structures,

consisting of two or more values or variables
stored in consecutive memory positions.

2.1 Data Integration 57

the notions of GAV and LAV mappings are relaxed to the more appropriate symmetric
notion of GLAV mappings.

GLAV, Global and Local as View Appoach GLAV languages can trivially ex-
press both GAV mappings and LAV mappings by assigning to a query expressed over
the global schema a query returning a single global relation or to a query posed over
the local schema a query asking for a single local relation, respectively. In other terms,
GLAV uses flexible first-order sentences such that it allows a view over source relations
to be a view over global relations in source descriptions. Thus, GLAV can derive data
using views over source relations, which is beyond the expressive ability of LAV, and it
allows conjunctions of global relations, which is beyond the expressive ability of GAV.

2.1.3 Related Work

Over the past decades, considerable academic and commercial efforts have been made
to deal with data integration, most of which are being surveyed in [43], [15] and [84] such
as KARMA [79], TSIMMIS [27], MOMIS [19], SIMS [13], the Information Manifold
[48], HERMES [6] and ANGIE [65], etc. In this thesis, we restrict our attention to
describe view-based data integration systems.

1) TSIMMIS [27]

TSIMMIS, The Stanford-IBM Manager of Multiple Information Sources, is a
project whose main goal is to develop tools that facilitate the rapid integration
of heterogeneous information sources including both structured and unstructured
data. Figure 2.4 presents a high-level overview of the overall TSIMMIS architec-
ture with all its components. TSIMMIS is a typical example of the mediation
approach in which wrappers stand above each data source converting application
queries into source specific queries and translating obtained data into a common
data model. Mediators are used for the integration part refining in some way
information from one or more sources.
To properly describe the common data model, TSIMMIS introduced its own
simple and self-describing object model called OEM (Object Exchange Model)
and an SQL-like query language for requesting OEM objects named Lorel Query
Language. Both mediators and wrappers export the same interface taking a
query as an input and returning OEM objects. Such a unified approach allows
to access the data sources transparently either directly from the wrappers or the

58 Background & State of the Art

Figure 2.4 – High-Level Overview of the Overall TSIMMIS Architecture

mediators. Hence, a new data source becomes useful as soon as a wrapper is
supplied. TSIMMIS concentrates especially on flexibility, so it is well prepared
for unexpected occurrences of heterogeneity. Accessing very diverse and different
information which may frequently change its content or meaning is the basis
of this system. The downside of such an approach is that in some cases, the
integration must be performed manually by the end user. So, as the authors
of this project say, TSIMMIS does not perform fully automated integration but
rather provides a framework and tools to assist the users in information processing
and integration efforts.

2) MOMIS [19]

MOMIS (Mediator EnvirOnment for Multiple Information Sources) is an Open
Source Data Integration system able to aggregate data coming from heteroge-
neous data sources (structured and semi-structured) in a semi-automatic way.
MOMIS builds a Global Schema, of several (heterogeneous) data sources, and
allows users to formulate queries on it. It follows a Global-As-View (GAV) ap-
proach for the definition of mappings between the GS and local schemas: the
GS is expressed in terms of the local schemas. MOMIS performs data integra-
tion following a virtual approach that preserves the autonomy and security of
the original data sources. This gives rise to a Global Virtual View (GVV), in
the form of global classes and global attributes, which represents a unified and

2.1 Data Integration 59

integrated view of data residing in the different local data sources. Figure 2.5
illustrates the generation process of the global schema:

Figure 2.5 – MOMIS Data Integration Process

• Local Source Upload: the integrator designer exploits the wrapper tool
to logically extract the schema of each local source and convert it into the
common language ODL.
• Local Source Annotation: the designer is asked to annotate the local

sources, i.e. to associate to each class and attribute names one or more
meanings w.r.t. the lexical database WordNet.
• Semantic Relationships Extraction: starting from the annotated local

schemas, MOMIS derives a set of intra and inter-schema semantic rela-
tionships in the form of: synonyms (SYN), broader terms/narrower terms
(BT/NT) and related terms (RT) relationships. The set of semantic re-
lationships is incrementally built by adding: structural relationships (de-
riving from the structure of each schema), lexical relationships (deriving
from the element annotations, by exploiting the WordNet semantic net-
work), designer-supplied relationships (representing specific domain knowl-
edge) and inferred relationships (deriving from Description Logics equiv-
alence and subsumption computation). This is performed by the Global
Schema Designer tool.
• Global Schema generation: starting from the discovered semantic rela-

tionships and the local sources schemas, MOMIS generates a GS consisting
of a set of global classes, plus Mapping Tables which contain the mappings
to connect the global attributes of each global class with the local sources
attributes . The GS generation is a process where classes describing the

60 Background & State of the Art

same or semantically related concepts in different sources are identified and
clusterized into the same global class.

The designer may interactively refine and complete the proposed integration re-
sult through the GUI provided by the Global Schema Designer tool.

3) KARMA [79]

KARMA is a data integration system that enables users to quickly and easily
integrate data from a variety of data sources including databases, spreadsheets,
delimited text files, XML, JSON, KML and Web APIs. Users integrate informa-
tion by modeling it according to an ontology of their choice using a graphical user
interface. Karma learns to recognize the mapping of data to ontology classes and
then uses the ontology to propose a model that ties together these classes [80].
The generated model can then be adjusted by the users, who can also transform
the data in different formats as needed in order to normalize data expressed in
different formats and to restructure it during the integration process. Once the
model is complete, users can publish the integrated data as RDF or store it in a
database. The overall architecture of KARMA is shown in Figure 2.6.

Figure 2.6 – KARMA Architecture

4) IM, Information Manifold [48]

Information Manifold is a system for browsing and querying of multiple net-
work information sources. The system demonstrates the viability of knowledge
representation technology for retrieval and organization of information from dis-
parate information sources. The language for representing contents of information
sources is a combination of Horn rules and concepts from the CLASSIC descrip-
tion logic. The descriptive terminology in CLASSIC contains unary relations

2.1 Data Integration 61

called concepts, which represent classes of objects in the domain, and binary re-
lations called roles that describe relationships between objects concepts. These
roles can be either primitive or complex. Integrity constraints are used to specify
types of the attributes of the domain relations. The knowledge base contains
ontologies for representing various aspects of the domain. In particular, it rep-
resents physical properties of information sources such as the URL addresses,
the protocols used to access them and their internal structure. The knowledge
base also consists of a rich topic hierarchy, ontologies for representing properties
of people, organization, geographic locations and time. The queries answering
process proceeds as defined by the LA V approach. The expressive power of
horn rules is necessary in order to model information sources that are relational
databases (Negation and statements describing relationships between the infor-
mation sources). It is a rules-based system. It verifies data consistency but
remains unable to infer and analyse new facts. In addition, it can use constraints
by manipulating relational data sources only.

5) SIMS [13]

SIMS (Services and Information Management for decision Systems) is a data
integration system of information from various information sources. The infor-
mation sources handled include both databases and knowledge bases, and other
information sources (e.g., programs) could potentially be incorporated into the
system. SIMS accepts queries in the form of a description of a class of objects
about which information is desired. This description is composed of statements
in the LOOM knowledge representation language [40], [54]. The system requires
a model of the application domain and a model of the contents of each of the
information sources. Then, given a query, the system generates and executes
a plan for accessing the appropriate information sources. Before executing a
query, the system first reformulates the individual subqueries to minimize the
cost and the amount of intermediate data that is processed. Then the subqueries
are executed, exploiting any parallelism in the plan. SIMS currently integrates
information from data stored in nine Oracle databases and information stored in
a LOOM knowledge base. The system uses the LOOM Interface Manager (LIM)
[62] to retrieve data from the Oracle databases and then processes all the data in
LOOM. The plan for selecting and accessing the various information sources is
generated using the Prodigy planning system [57]. The resulting plan is reformu-
lated using a set of special purpose algorithms for semantic query optimization
over multiple database queries. The completeness and complexity of rewriting
algorithms were not approached.

62 Background & State of the Art

6) HERMES [6]

HERMES (A heterogeneous reasoning and mediator system) is a system for se-
mantically integrating different and possibly heterogeneous information sources
and reasoning systems. based on two main aspects in creating the mediation
system. The first, the Integration domain: it consists to manage the addition of
new data source or a reasoning system to an existing mediation system so that
the new data, data representation or the corpus of new reasoning algorithms are
accessible by various mediators. The second, the Semantic Integration. It is the
process of determining methods to resolve conflicts and retrieve data and thus
compose the result information from the individual data sources. HERMES is a
federated database system. It is not based on the semantic description of a scope
or content of different databases. Its goal is simply to combine queries posed
to various database management systems. It integrates the domain of relational
databases, the domain of spatial databases, the domain of text databases and
the domain of pictorial databases. Each domain is considered as database ab-
straction and contains software packages. It consists of three sets: the values,
functions on values and relationships on the values of data objects. The media-
tor language is based on rules. Its syntax is similar to Prolog. The access to a
domain incorporated by HERMES is done via a special set of predicates.

7) IBIS [25]

IBIS (Internet-Based Information System), semantic data integration approach
that fully exploits all available information, including integrity constraints for
query answering. It uses a relational global schema to query the data at the
sources following the GAV approach. IBIS is able to cope with a variety of hetero-
geneous data sources, including data sources on the Web, relational databases,and
legacy sources. Each non-relational source is wrapped to provide a relational view
on it. Also, each source is considered incomplete, in the sense that its data con-
tribute to the data integration system. The key issue of IBIS is that it allows the
specification of integrity constraints in the global schema ans since data sources
are autonomous and incomplete, the extracted data in general do not satisfy
the constraints. Therefore, IBIS adapts and integrates the data extracted from
the sources making use of the constraints in the global schema, so as to answer
queries at best with the information available. In this way, the constraints over
the global schema allows to obtain additional answers that would not be pro-
vided by the standard unfolding strategy associated with GAV data integration
systems. Furthermore, IBIS exploits and implements techniques developed for

2.1 Data Integration 63

querying sources with binding patterns in order to retrieve the maximum set of
answers, taking into account intentional knowledge holding on the sources (in
particular, integrity constraints) to limit the number of source access.

8) ANGIE [66]

ANGIE is a data integration tool that allows users to automatically enrich local
RDF knowledge bases with data provided by SOAP or RESTful services. When
a user poses a query, if this latter can not be answered by the local database
alone, ANGIE identifies and calls the appropriate data services to retrieve the
missing information and integrate it into the local database.
The authors in [65] assume that service definitions are given and are incorporated
in the knowledge base as function definitions. These latter are modeled as RDF
graphs, as well as data queries, where edges are partitioned into input and output
edges. Figure 2.7 shows an example of a function definition ,on the right side,
which given a writer name, it returns its books. The input edges have to be

Figure 2.7 – Data Model Adopted in ANGIE

fulfilled before the function definition can be called (i.e., input parameters) while
the output edges present the function call results (i.e., output parameters). This
way, the function definitions are integrated completely into the knowledge base
and become first class citizens of the knowledge base. A function call is then
a partial instantiation of the function definition that binds all input parameters
(i.e., instantiate some variables of the function with entity or relation names.
Other variables of the function definition are simply given new variables names).
N. Preda et al. proposed an algorithm to automatically generate appropriate
service calls. Given a SPARQL query, the algorithm translates the query into a
sequence of function compositions, including artificial functions extracting data
from the knowledge base. This enables the system to always make use of the

64 Background & State of the Art

local knowledge first. The algorithm relies on a depth-first-search strategy to
expand the query cover and computes and outputs the rewritings for a query in
the spirit of the chronological backtracking strategy used in Prolog. Note that
a data query can be answered by several function compositions, the proposed
algorithm explores all of the possible rewritings in order to retrieve a larger set
of results, as some results are returned only by particular function compositions.
Then, it orders the service calls according to a principled cost model (i.e., the
cost of functions instantiation) and prioritize those functions that are expected to
yield results faster or with lower execution costs. Once the web calls are executed,
their results are transformed into RDF and are dynamically added to the local
knowledge base.

2.1.4 Discussion

In a nutshell, several integration systems are built on the notion of mediators, instruct-
ing the system exactly how to retrieve elements from the source data sources. This
requires constructing a global schema on which global queries are posed by users, how-
ever, if any new sources join the system, considerable effort may be necessary to update
the mediator. Other efforts as [13] and [50] construct a general domain model (under an
information manifold) that encompasses the relevant parts of the data sources scheme
where the description of different data sources is done independently from the queries
that are subsequently asked on them. Then, the integration problem is shifted from
how to build a single integrated schema to map between the domain and the data
source descriptions.

While these approaches reduce the user’s effort to perform data integration tasks,
users queries must be formulated over the mediated schema (either the integrated
schema or the domain model), therefore, users are required to pick up complementary
data sources to interrogate in order to get sufficient answers to their queries. However,
the interaction is not guaranteed to yield a non-empty result set.

Our work differs from past integration systems in that we propose an active data
integration approach where queries are posed over the user data source schema s/he
is interested in. Furthermore, users can query information that does not exist in their
datasets and it is up to our system to enrich the initial schema and leverage the missing
information from External data sources.

ANGIE is perhaps the closest work to ours in that it attempts to enrich knowledge
databases by leveraging the missing information from web sources. However, this work

2.1 Data Integration 65

assumes the existence of a global schema for both data and services. This assumption
makes ANGIE domain specific and not suitable for general purpose queries. In ANGIE,
the enrichment of the knowledge base is done only at data instance level, whereas, in
our approach, it is also possible to enrich the schema of the data source by defining new
concepts and relations additionally to data instances. The enrichment of the schema
is applied automatically by the system without user demand or human intervention.

In the following, we draw a comparative table of the data integration approaches
described above and highlight the positioning of our work on data integration among
them. Table 2.1 provides a global overview of the data model, the methods used and
the functionalities provided by each data integration system.

System Integration Data Model Views Definition Schema Data
Approach Methods Enrichment Enrichment

SIMS [13] LAV Rules-based manually manually manually
global schema

TSIMMIS [27] GAV Rules-based manually manually manually
global schema

IBIS [25] GAV Classes-based manually manually manually
global schema

MOMIS [19] GAV Rules-based manually manually manually
global schema

HERMES [6] GAV Classes-based manually manually manually
global schema

IM [48] LAV Classes-based manually manually manually
global schema

KARMA [79] GAV Classes-based manually manually manually
global schema

ANGIE [66] GAV Graph-based manually manually automatic
global schema

EuDaSL LAV Graph-based semi-automatic automatic automatic
global schema

Table 2.1 – Comparison of Most Known Data Integration Approaches

66 Background & State of the Art

2.2 Service Composition

In this section, we first introduce the Service-Oriented Architecture (SOA) which is the
grounded in the idea of service composition, the data providing web services and the
main types and architectures of web services. Then, we describe the service composition
process, giving the main steps . Next, a discussion between different automatic service
composition approaches is raised.

2.2.1 Service Oriented Computing

Service Oriented Computing (SOC) has emerged and been widely accepted as a dis-
tributed computing paradigm over the Internet. SOC provides mechanisms for publi-
cation, discovery, selection, and composition of Web services, and thus facilitates the
integration of complex and heterogeneous software components. In particular, it en-
ables applications written in different languages and running on different platforms, to
communicate among them and be accessed by the same users. In other words, Service
Oriented Architecture (SOA) principles enable services to be used by other services or
programs.

Modern enterprises are increasingly embracing the service-oriented paradigm to pro-
vide interoperable and programmatic interactions with their internal systems. As dis-
cussed in [16], Web services can generally be categorized into two types: (i) effect-
providing (EP) services, which implement organizations functionalities and (ii) data-
providing (DP) services, which allow accessing the data sources of organizations.

2.2.2 Web Services Standards

Generally speaking, a web service is a software artifact, delivered over the Internet, that
interacts with its clients in order to perform a specified task. A client can be either a
human user, or another service. When executed, a service performs its tasks by directly
executing certain actions, possibly interacting with other services to delegate to them
the execution of other actions. In order to address the Service Oriented Computing
paradigm from an abstract and conceptual point of view, we start by identifying several
facets, each one reflecting a particular aspect of a service during its life time.

• The service schema specifies the features of a service, in terms of functional
and non-functional requirements. Functional requirements represent what a ser-

2.2 Service Composition 67

vice does. All other characteristics of services, such as those related to quality
aspects, privacy and security, performance, transactions, etc. constitute the non-
functional requirements.

• A service instance is an occurrence of a service effectively running and interacting
with a client. In general, several running instances corresponding to the same
service schema may co-exist, each one executing independently from the others.

2.2.3 Data Providing Web Service

Besides using Web services to provide access to corporate applications and software
assets over the Web, a recent trend has been to use Web services as a reliable means
for data publishing among organizations [26]. Such services are known as Data Pro-
viding(DP) Web Services or the Data services for short.

Figure 2.8 – Data Service Architecture

Data services differ from traditional Web services in that they serve as “fronts” for
data and are based on a richer model of that data. Nowadays, companies and world-
wide enterprises are saving their data on the web, thereafter providing services-based
access to their data through data services. The introduction of data services has allowed
to shield users from having to directly interact with the various data sources that give

68 Background & State of the Art

access to business objects (i.e., customers, orders, invoices, etc.) and enabled them to
focus on the business logic only. In fact, the invocation of a data service results the
execution of a query on the schema of the data source behind, but users cannot directly
access the data and observe the data source schema that the service may use internally.
These services can be accessed only through an encapsulated API (i.e., when such a
service is invoked, he accepts a request as an input with a specified format and returns
requested data as output); answers to queries are returned in a semi-structured format
(XML or Json).

Data providers expose certain data resources accessible via service operations (e.g.,
based on WSDL or REST APIs). Using these operations, the data consumer can select
certain data resources via service interfaces. In the following, we describe the main web
service architectures.

2.2.4 DaaS, the Data as a Service model

While data services were initially conceived to solve problems in the enterprise world,
the cloud is now making this type of services accessible to a much broader range of
consumers through the Data as a Service model (DaaS).

Data as a Service (DaaS) is an emerging cloud computing service that provides data
on demand to consumers across various cloud platforms via different protocols over the
Internet. The same benefits that come with any major Cloud-computing platform also
apply to the Data-as-a-Service space such as the avoidance of "vendor lock-in", ease of
administration and collaboration, global accessibility, automatic updates and the cost
effectiveness.

The main exception for DaaS providers is that their benefits reach for and are deep
into the world of Data Management. In fact, utilizing DaaS does not only support
data access from anywhere at anytime but also reduces the cost of data management.
Traditionally, companies housed and managed their own data within a self-contained
storage system. With the increasingly large amount of data, data processing and anal-
ysis in a large dataset becomes too complex to be effectively processed by traditional
approaches and needs high computing capacities. Also, moving the data being stored
in local companies data sources is a serious difficulty due to time transfers and network
link limitations.

Besides limitations for the data sharing, traditional approaches also do not achieve

2.2 Service Composition 69

to fully separate/decouple software services from data and thus impose limitations in
interoperability. The introduction of DaaS has allowed to shield users from having
to directly interact with the various data sources that give access to business objects
(i.e., customers, orders, invoices, etc.) and enabled them to focus on the business logic
only. The main idea is about offloading the risks and burdens of Data Management
to a third-party Cloud-based provider, such as the bulk of data access is primarily
controlled through the data service itself. This adds a robust layer of security and
improves data quality.

2.2.5 Web Service Architectures

Web services are of two kinds: Simple Object Access Protocol (SOAP) and Represen-
tational State Transfer (REST).

SOAP is used to wrap XML messages exchanged between service consumer and
provider. It is based on sending an XML message to a service, in a specific format, and
receiving an XML response in another specific format. The message can be sent across
different transports, including HTTP, FTP, SMTP, etc. The specification does not
dictate the transport over which the message should be sent, but most implementations
send the XML message over HTTP. Because of how extensible it is, the SOAP message
is rather large: it wraps its message in what is called the SOAP Envelope and the
Envelope has a SOAP Header and a SOAP Body.

REST , on the other hand defines resources and then provides access to those re-
sources through the HTTP verbs (GET, POST, PUT, DELETE, HEAD, and so forth.).
In RESTful APIs, resources are identified by URIs.

WSDL is an XML-based language used to provide structured descriptions for ser-
vices, operations and endpoints. It mainly provides a machine-readable description of
how the service can be called, which parameters it expects, and which data structures
it returns.

70 Background & State of the Art

2.2.6 Service Composition

In general, service composition is the method to create new services or applications by
composing existing services. The output of service composition process is a composite
service which delivers desired functions. Since users requirements are complex, an exe-
cution of only one service is unlikely to fulfill the users needs. Thus service composition
plays a part in the procedure of assembling the existing services if relevant to the users
needs.

2.2.6.1 Web Service Composition Life Cycle

In this section, we discuss how a composite service can be built. Generally, service
composition process occurs in three subsequent phases, described in the following:

• Composition: This phase deals with synthesizing the composition schema.
Given a complex requirement, the composition schema designer decomposes the
requirement to build up the composition schema or workflow schema. The schema
consists of component services and control and data flow specification. The con-
trol flow specification sets up the order in which the component services should
be invoked.

• Selection: This step finds and matches the advertised service specifications and
the component service functions. Relevant services can be discovered from a
service registry after the composite schema is formed.

• Orchestration & Execution: service execution governs the order in which
services are invoked, and the conditions under which a certain service may or may
not be invoked. In this phase, the executable composite service is deployed to
create its instance. Next, the composite service instance then allows an invocation
by end user then is executed by process execution engine.

Manual discovery and composition of relevant data services is time-consuming such
as data consumers has to visit DaaS providers one by one to look for the services
they provide and their datasets’ descriptions. Furthermore, given that the number of
DaaS providers as well as the data services could be very large, this way of selection is
tedious. Different challenges exist and several approaches have been proposed for the
composition of data services. The section that follows examines the main challenges
that can appear when selecting, creating and executing a data service composition

2.2 Service Composition 71

answering the user query. Then, we review some of the most important proposed
composition approaches.

2.2.7 Challenges and Issues of Data Service Composition

Automatic data service composition is one of the critical research challenges of service-
oriented computing. Still the research is going on finding the appropriate services
answering users’ queries from a set of candidate services, building of composite services
when no individual service satisfies the users’ requirements, and the execution of service
compositions. However, no approach so far has focused on all the potential challenges
that need to be addressed beforehand. The most important issues will be discussed in
the following paragraphs.

• Dealing with heterogeneous data formats, description and interaction
models: Data services and DaaS in particular have become a standard way for
data publishing and sharing on the web. Nevertheless, there exist no well-defined
ways to describe their properties (functional and non-functional properties) and
their associated data assets. Indeed, data services are typically published in the
most convenient way for the publisher; each data provider has his own way to
describe the services and the data he provides, mostly using HTML documenta-
tion. Often, users have to go manually through an overwhelming number of data
services to read their documentations and reformulate their descriptions accord-
ing to a chosen data model with the aim to make service descriptions machine
readable and thus enable the automatic selection and composition. Therefore,
enormous number of service description languages such as WSDL, OWL-S and
SAWSDL have been proposed for the (semantic) description of services’ capabili-
ties to describe the functional and non-functional properties of data services with
a machine-readable way in order to enable the automatic discovery and thereafter
to provide better results compared to the traditional discovery method. However,
this large variety of languages has resulted an overlap and differences in their ca-
pabilities at conceptual and structural levels. Such differences affect discovery,
selection and composition techniques. Thereafter, the lack of well-defined and
standard machine-readable model hinders the automatic discovery and composi-
tion of data services. Thus, mechanisms to facilitate data processing and giving
data an homogeneous structure are needed for data consumers to make the most
of data services. This also raises a number of issues during the selection and the
composition of the relevant services answering users’ data queries. In a nutshell,

72 Background & State of the Art

the automatic composition of data services implies to deal with heterogeneous
terminologies, data formats, and interaction models.

• Modeling data concerns: More and more web services with similar function
attributes but different QoS are available. Thus, service composition requires
a high degree of interoperability among the component data services such as it
should consider the functionality of the participating services (I/O parameters),
the data that is passed between these services (data flows), the quality of the data
it provide, the quality of the composite service as a whole (QoS) and the execu-
tion pattern of these services (API templates). Current (semantic) Web service
languages describe the syntactical aspects of a Web service, and therefore, the
result is rigid services that cannot respond to unexpected user requirements and
changes automatically, as it requires human intervention. The approach must
be able to choose the best available service that fulfills the composition require-
ments. Some of the proposed approaches proposed an automatic selection based
on QoS, rating, and user feedback. However, QoS and rating do not ensure that
the best services will be selected. There is a need for richer description handling
also the description of the data quality additionally to the service properties.
To conclude, even semantic languages initiatives do not enable automatic ser-
vice composition techniques and none of them achieve fully automated service
discovery, selection, or composition.

All the aforementioned challenges contribute to the same high-level goal to (a) pro-
vide rich and flexible model for the description of all service properties (functional
and non-functional properties) and (b) automate the discovery, the selection, and the
composition processes of data services, those that fulfill the user’s requirements (ser-
vice and data qualities). We devote the following section to review the related works
achieved in the literature.

2.2.8 Related Work

As mentioned above,publishing, discovery, and selection mechanisms as well as hetero-
geneity and limitations of semantic languages have a major impact on the effectiveness
of service composition approaches. In the following, we start by describing the efforts
made to deal with the first of these challenges; the publishing and the description of
data services.

2.2 Service Composition 73

2.2.8.1 Modeling and Description of Data Services

Describing data services is still a challenging issue, since service description languages
such as WSDL, OWL-S and SAWSDL are not rich enough to describe the underlying
data model of a service. In the literature, little effort have been spent on supporting
the description and the modeling of data services.

In [82] a proposal, called DEMODS, to describe a general model to cover all basic
information of DaaSs is presented. In DEMODS, the data service API is decoupled
from the data asset description. It maily relies on external information models to de-
scribe the data assets, but it does not provide any special support for them, beyond
links to the description documents.

Mashroom [44] uses nested tables to model data services and provides a family of
tools to transform HTML, XML, and JSON to the data model. In fact, various data
sources are encapsulated as data services with nested tables as their unified data model
both for internal processing and for external uses. Users can operate on the nested ta-
bles interactively, however it is not the case for data applications.

Other frameworks have been developed for publishing information about Web services’
capabilities but they neglect the publishing of data concerns. A generic framework for
the evaluation and publishing of data concerns, associated with data exposed through
DaaS, was proposed in [78]. The authors have analyzed most of DaaS concerns in [77]
in details. We go further in this direction and we extend their model and implement it
using the MDE capabilities. Furthermore, we implement a generative tool to generate
the corresponding service views over a domain ontology.

Many works have proposed solution for automatic web service composition approaches
such they regard DaaS as RDF views. Our work complements these efforts by provid-
ing an integrated framework to automatically define services’ views given their descrip-
tions. The Open Data as a Service (ODaaS)[74] approach uses multi-level modeling
to construct open data applications . It consists of a set of domain models and meta-
models and a library of ’injectors’ to import data from heterogeneous source. The
domain descriptions are the classification of concepts and their successive refinements
by means of the multi-level modeling, that allows mapping data in some format into
a semantically rich model. The data modeling is organized based on generic domain
meta-models, making the system use domain-restrictive. In our case, DaaS providers
can introduce new ontologies in the framework, thereafter new domain concepts are
dynamically defined in the meta-model and can be used for the services annotation.

74 Background & State of the Art

2.2.8.2 Service Composition

We recall that given a set of available data services and a user data query, the problem
of service composition is concerned with synthesizing a new composite service that
satisfies the data request, by suitably coordinating the available services. Our work is
related to service composition in that we need to identify and compose the relevant
data services available in the Service lake that can be used to populate the missing data
and to fill the informational gaps in local data sources. Several approaches have been
proposed for composing data services, which carry out complex interactions between
the different services [73]. For each of the works, we discuss how they tackle such
problem by focusing in particular on (1) how data queries of users are modeled, (2)
the kind of composition, (3) the referred architecture for orchestration, and (4) based
on which criteria, the pertinent data services are selected.

1) S.A. Ghafour et al. [39]

In [39], S.A. Ghafour et al. presented an approach that caters for on-demand
data integration for cloud business data needs. they presented an ontology-based
semantic modeling for cloud DaaS services. DaaS Web services are modeled as
RDF views over domain ontologies where primary key constraints are defined ex-
plicitly by the concepts skolem functions, thus the discussed Primary key based
optimizations are included by default in their query processing model. An RDF
view describes the semantics of a DaaS service in a declarative way using concepts
and relations whose meanings are formally defined in domain ontologies. The pro-
posed modeling makes it possible to automatically combine heterogeneous DaaS
services and resolve the different types of data heterogeneity that would arise
when data needs to be exchanged between composed services. Consequently,
users need only to focus on the needed data by formulating their composition
queries over domain ontologies. They are not required to manually select services
and build the composition plan by mapping the inputs and outputs of component
services to each other and drop code to resolve data incompatibilities.

2) WSMED[72]

The Web Service Mediator System WSMED [72] allows users to mashup data
services by defining relational views on top of them. It provides primitives for
defining relational views of web service data and supports SQL queries over the
views. Users can then query data by formulating their mashup queries over de-
fined views. Users can also enhance defined views with primary-key constraints

2.2 Service Composition 75

to optimize the mashups. The main drawback of the WSMED system is its high
reliance on users who are supposed to import services, define views and enhance
the views with primary key constraints, thus requiring a good understanding of
the services semantics.

3) M. Barhamgi et al. [17]

In [17], authors propose a new approach to automatically compose primitive data
providing Web services for the purpose of creating data integration applications.
Data providing services are modeled as RDF Parameterized Views over mediated
ontologies. Then, an RDF oriented query rewriting algorithm is used to compose
services for answering received queries. The composition is then optimized and
deployed as a new Web service accessible on top of the Web.

4) M. Arafati et al. [12]

The paper [12] proposes a cloud-based DaaS framework to integrate private data
from multiple DaaS providers with the goal of preserving both data privacy and
the data mining quality of the underlying data. Authors assume that the data
is shared in the form of a relational table, vertically partitioned into sub-tables,
each of which is hosted by one DaaS provider. The data consumer submits a se-
quence of data queries to a mashup coordinator in the platform, where each query
consists of the requested attributes, the required data quality (classification ac-
curacy), and the maximum bid price. Since a single DaaS provider might not be
able to provide all requested attributes, the mashup coordinator is responsible for
determining the group of DaaS providers that can cover all the attributes while
meeting the requested data quality and price. Finally, the mashup coordinator
has to return an anonymized data table that satisfies a given privacy requirement
that is agreed on by all the contributing DaaS providers.

5) ANGIE [66]

As we described earlier, ANGIE consists of enriching local knowledge bases from
RESTful APIs and SOAP services by discovering, composing and invoking ser-
vices to answer a user query. The authors assumes the existence of a global
schema incorporating both data entities and definitions of data services. This
assumption makes ANGIE domain specific and not suitable for general purpose
queries. Furthermore, the focus being to compute the maximal number of an-
swers, the proposed algorithm for the selection and the composition of relevant
data services relies excessively on a depthfirst search strategy. This may involve

76 Background & State of the Art

an infinite rewriting of the input query, and thus the algorithm will descend into
a non-terminating recursion. As a primitive solution, the authors proposed to
bound the depth of the derivation by MAX in order to prevent infinite loops.

6) HYPATIA [29, 28]

HYPATIA is a system for answering hybrid queries through accessing and pro-
cessing data by coordinating both data services and computation services in dy-
namic environments. The notion of hybrid queries has been introduced in [29]
to involve mobile and continuous queries and to be evaluated on the top of on
demand or streaming static or nomad data services. Queries in HYPATIA are
entered via a GUI and specified in a query language similar to CQL. Thereafter,
evaluating an hybrid query consists of converting it into an executable form as a
workflow, finding the relevant (data and computation) services, mapping each of
the workflow activities to its corresponding service and finally ensuring the com-
munication and inter-operation between the different activities. The workflow is
represented as a directed graph whose vertices and edges denote the parallel and
sequential composition of activities. Each activity in turn corresponds to a service
call either for retrieving or processing data using data services or computation
services, respectively.

7) Academic Mashup Systems

In other academic mashup systems [34][59][75][76], users are required to select
the data services manually, figure out the execution plan of selected services and
connect them to each other and drop JavaScript code to mediate between incom-
patible inputs/outputs of involved services.
Table 2.2 summarizes the different data service composition approaches described
above and highlight the positioning of our composition approach among them.

2.2.9 Discussion

Most existing composition approaches [83, 17, 12, 39, 35, 75] assume that the data
provided by different data services is complete, and thus, the answering query
problem is essentially to identify all possible service compositions. Once the latter
is solved, the optimal service composition is then selected to answer the data
query. Nonetheless, this assumption is unrealistic as long as web services provide
access to incomplete web sources. In fact, the data stored in these sources may
overlap or complement each other, yet it is usually incomplete. Consequently,
the selection of the optimal service composition, based on QoS values, may not
completely satisfy the user data queries.

2.3 Concluding Remarks 77

Composition Views QoS Factors Answers Execution
Approach Definition Considered Cost
H. Elmeleegy et al. [35] N/A none only a part optimal
S.A. Ghafour et al. [39] manually none only a part optimal
J. Tatemura et al. [75] N/A none only a part optimal
L. Zeng [83] N/A response time, reliability, only a part optimal

availability, reputation, price
WSMED[72] semi-automatic none only a part optimal
M. Barhamgi et al. [17] manually none only a part optimal
M. Arafati et al. [12] N/A price only a part optimal
ANGIE[66] manually response time all answers very high
HYPATIA[29, 28] N/A none only a part N/A
EuDaSL automatic response time, reliability, almost all high

availability, reputation, price answers

N/A (Not Applicable): service views are not used in the underlying approach

Table 2.2 – Comparative View of Service Composition Approaches

Other recent efforts [66] aim to find the maximal number of answers to user
queries by executing all candidate service compositions. This requires the exe-
cution of a huge number of web calls which, in turn, leads to a high execution
cost (i.e., financial and computational costs). In spite of this, multiple service
compositions with incomplete yet complementary results can eventually yield
results that maximize user satisfaction. However, executing all possible compo-
sitions may not be necessary to get the requested data whenever executing some
of them is sufficient to satisfy the need of the users.
Since we focus on computing the maximal number of answers without executing
too many web calls, our mission is to find a compromise between the approaches
described above and take the best from both of them. In such a context, we
propose a new selection approach in which only a set of service compositions is
selected based on a generic QoS model. Our goal is to compute the maximal
results for user queries and to fill the eventual gaps of information found in their
local data sources. Moreover, we make sure that we satisfy user requirements in
terms of execution cost and service quality.

2.3 Concluding Remarks

We introduced in this chapter the background material and the state of the art
focusing on the two major fields related to our work: data integration and service

78 Background & State of the Art

composition. On the one hand, the proposed data integration approaches han-
dle combining data from different and heterogeneous data sources so that they
form a unified new whole and provide users the illusion of interacting with one
single information system. Thereafter, users are provided with a homogeneous
logical view of data that is physically distributed over heterogeneous data sources
but not those data sources encapsulated by the service interface. On the other
hand, a rapidly increasing suite of data services provide access to timely and
high-quality information on the web. This makes Web services an interesting
device for answering user data queries. However, neither data integration sys-
tems or service composition tools properly address the challenges raised by the
continuous production of data and thereafter the lack of timely and up-to-date
information in local data sources. With the EuDaSL system, we have shown that
data services can step in to fill the informational gaps in companies’ data sources.
Given a user data query, EuDaSL enriches companies’ datasets with the data it
extracts on the fly using data services in order to provide complete answers to
user queries. Service selection and composition are done in the background and
data is seamlessly and transparently integrated in the local data source. More-
over, we propose MoDaaS, our model-driven framework for the modeling and the
description of data services to cope with the heterogeneity regarding data services
and the associated data assets. Our proposal to tackle this problem is based on
Model Driven Engineering (MDE), a development paradigm exploiting the use
of domain models to raise the level of abstraction and automation at which data
services are developed. The next chapter will be devoted to introduce EuDaSL,
our user-centric data integration approach. .

Chapter 3

User-Centric Data Integration in
Service Lakes

Contents
3.1 Data Model . 80

3.1.1 Schema Graph . 80
3.1.2 Data Graph . 81
3.1.3 Data Queries . 82

3.2 Data Provisioning Service Lakes 83
3.3 Overall Architecture . 83
3.4 Query-Answering Process 85
3.5 On Enriching Local Data Sources’ Schemas in Ser-

vice Lakes . 87
3.5.1 Identifying Missing Information 87
3.5.2 Enriching Local Data Sources 91
3.5.3 Case Study . 92

3.6 Concluding Remarks 93

In the light of the motivations expressed in the introduction chapter, we propose
a complete solution to leverage the missing information in user datasets in order
to be able to answer the queries he is interested in. To do so, we explore the
possibility of acquiring the missing information by invoking DP web services on
the fly. In this chapter, we present more details about our data integration ap-
proach and the overall architecture, giving the main steps required for answering
a user data query. Then, we describe in a second part the two first steps of our
integration process.

80 User-Centric Data Integration in Service Lakes

3.1 Data Model

Companies’ data sources often employ heterogeneous data formats (e.g., text files,
CSV files, XML documents, relational databases). Handling data and schemas
from different models requires a common framework in which all the different
data models can be presented. For this purpose, we uniformly represent the
schemas and the data instances of such sources using graphs. Before proceeding
to show how we do so, we start by introducing the data model we adopt in this
work. More specifically, we distinguish between the schema level and the data
level.
In the following, we consider the example dataset introduced above in Section
1.1 to illustrate the differences between the data graph and the schema graph.

Relation schema
Person(personID, first name, last name, date of birth, country)
Author(authorID, name, university, email, domain)
Book(iD,title, author,topic)
Foreign Keys
Table Author: authorID references personID of Person
Table Book: author references authorID of Author

3.1.1 Schema Graph

The schema graph is a labeled directed graph GS= (V, E), depicting the schema
of the dataset, where V represents the different concepts, each one is characterized
by a name and a set of attributes, and E is a set of labeled edges representing
relationships between the nodes in V. We use v.name and v.attributes to denote
the name and the attributes characterizing a node v ∈ V, respectively. Similarly,
we use e.label to denote the label of an edge e ∈ E. If we consider a relational
database, a node v ∈ V would represent a relational table and v.attributes refers
to the attributes of the relational table, while E represent referential integrity
constraints between different tables in the database.
Once enriched, some of the nodes in the schema would refer to missing concepts
that are populated using data services. Similarly, attributes in v.attributes
represent the attributes that are associated with the concept.
Figure 3.1 illustrates how the relational schema presented above can be repre-
sented using our data model.

3.1 Data Model 81

Figure 3.1 – An Example of a Schema Graph

3.1.2 Data Graph

The data graph is a directed graph GD= (V’, E’, fins) where V ′ is a set of
vertices representing the content (e.g., tuples in local data sources or the records
retrieved by data services) of the dataset having the schema described in GS and
E ′ represents the relationships between the vertices in V ′.

• Each node v′ ∈ V′ represents an instance of a node v ∈ V from GS. v′ is
characterized by a set of attribute-value pairs of the form <name, value>.
The names that appear in those attribute-value pairs refers to v.attributes.
• The edges E′ in the data graph GD are used to enforce the constraints defined

within the schema graph GS.
• fins(v′) is a function that given a node v′ from the data graph, returns the

node in the schema graph that represents the type of v′.

Figure 3.2 depicts a fragment of the data graph obtained by instantiating the
schema graph in Figure 3.1. Nodes B1 and B2 represent two different books: the
first written by both authors A1 and A2, and the second is written only by A3.
To be able to seamlessly treat concepts and attributes in the user data source,
we use certain object oriented features such as we associate with each concept,
considered as a class, an unary relation C(o) where o represents an instance of
the concept C and a binary relation with each attribute Att(o, att) whenever att
is the value of the attribute Att of the concept instance o. We use the convention
that the relation associated with a concept has the same name as the concept,
and similarly for attributes.

82 User-Centric Data Integration in Service Lakes

Figure 3.2 – A Fragment of the Data Graph Associated to the Schema Graph Intro-
duced in Fig.3.1

Example 3.1.1 Let consider the schema graph depicted in Figure 3.1, the con-
cept Book is represented by the relation Book(o) such as o represents a specific
book recorded in the database, let be the book ’principles of data integration’, while
the attributes id, title, isbn, etc., are represented by the binary relations id(o,i),
title(o,t) and isbn(o,s), respectively.

3.1.3 Data Queries

Users pose their data queries using an SQL-like query language syntax where the
elements that are required by the queries but missing in the underlying dataset
schema are prefixed with a question mark ′?′. We consider the following data
queries throughout this thesis:

Q1 : SELECT title, topic FROM Book.
Q2 : SELECT ?iSBN, title FROM Book WHERE topic = ′Webservices′.

3.2 Data Provisioning Service Lakes 83

Q3 : SELECT title, author, ?publisher FROM ?Publisher, Book WHERE ?Publisher
.?name = Book.?publisher.

Q4 : SELECT ?director, ?writers, ?stars FROM ?Movies.

3.2 Data Provisioning Service Lakes

We introduce in this thesis a new paradigm that we call data provisioning ser-
vice lake coined by analogy to data lake. A data provisioning service lake or the
service lake for short is a storage repository of heterogeneous DP web services
providing access to timely and high-quality information. The data returned by
such services is retrieved from disparate web sources in its native format and
stored in the raw data, as-is. The main idea behind service lakes is to take ad-
vantage of DP service capabilities in the lake while these services make data from
web sources available through encapsulated APIs and to give minimal attention
to creating schemas that define integration points between disparate provided
datasets. Accordingly, instead of placing the retrieved data from different and

Figure 3.3 – Service Lake

heterogeneous web sources in a purpose-built data store, we move it into the lake,
so that it may be later analyzed and mapped to the user data source schema.
This facilitates and makes it possible to dynamically enrich user data sources
for full query-answering purposes while eliminating the upfront costs and data
ingestion.

3.3 Overall Architecture

Figure 3.4 presents the overall architecture of our data integration system which
we call EuDaSL (Enriching U ser DAta sources in Service Lakes), briefly

84 User-Centric Data Integration in Service Lakes

sketches the purpose and responsibilities of each component, and highlights their
interactions.

Figure 3.4 – EuDaSL Architecture

• The Local Query Processing Engine takes as input a user query, processes
the schema graph of the local data source and determines the missing infor-
mation that is required for the processing of the user queries. Thereafter,
the determined missing concepts are defined in the schema graph as new
nodes and missing relations are represented by edges, while the missing at-
tributes have to be defined within the set of attributes of the corresponding
concept.
• TheData Service Composition Engine translates the query into a sequence of

service views compositions. These service views can be (semi-)automatically
generated either by the Service Views Generator or within the MoDaaS
framework. This is an important preliminary step to deal with the possible
data heterogeneities that can exist between the user data query and the
different data services in the Service Lake.
• The Service Views Generator automatically defines the top-k best views that

map the capabilities description of data services into the schema elements
of the user data source. The generated views are subject to user feedback
for confirmation or correction.
• The MoDaaS framework, a Model-Driven framework for the modeling and

the description of data services and DaaS services in particular. It assists

3.4 Query-Answering Process 85

data experts and data providers to define and describe their services’ capa-
bilities according to a domain ontology and to automatically generate the
corresponding views.

Thereafter, the generated views can be easily and automatically used by the
Service Composition Engine for the selection and the composition of the relevant
services that can be used to fill the informational gaps in the user data source.
Furthermore, we implemented other components/tools that we did not present
in the figure for the clarity sake:

• A Graph Generator to convert the user data source into a common graph-
based model. More specifically, it extracts the schema graph and the data
graph of the user data source.
• A Query Rewriting Module to reformulate the user data query as a conjunc-

tive query over the relations in the schema graph. Once reformulated, some
of the requested data in the initial query are represented by unary relations
bound to constant values. These values are extracted from the local data
source.
• A Mapping Tool to execute the Web service calls. It mediates between the

schema of the XML and the Json documents that the service call returns
and the relations in the schema graph. In particular, it defines how the
XML/JSON nodes in the answer are mapped to concepts in the local data
source. We use the XSLT standard [21] for the parsing of XML files and the
Python Json module to parse JSON files. The values can then be seamlessly
integrated in the local data source.

3.4 Query-Answering Process

Figure 3.5 illustrates the overall process of our data integration approach once
service views are defined either automatically using the proposed solutions as
shown in the previous section or manually by experts. Given a set of queries that
are of interest to the user, and given a local dataset that is provided by the user,
our solution proceeds as follows:

• Step1 determines the missing information that is required to process user
queries but is not provided by the local dataset. This consists mainly on
browsing the schema of the local dataset and deduce the missing concepts
and/or relations.

86 User-Centric Data Integration in Service Lakes

Figure 3.5 – An Overview of the Integration Process

• Step 2 enriches the schema of the local dataset by defining missing elements
(concepts and/or attributes) determined in the previous step.
• Step 3 identifies the set of candidate data services in the lake that can be

used to populate the missing information.
• Step 4 reformulates the user query over the relevant services views and

selects the executable query plans satisfying user requirements in terms of
data quality and cost.
• Step 5 evaluates executable query plans, which involves the call of DP ser-

vices in the lake.
• Step 6 integrates the data obtained from web services into the local data

source.

During the integration process, the data developer is expected to interact only to
confirm or modify the system proposition for the enrichment of the schema of the
local data source. In the following section, we focus on the first of the challenges
mentioned above. Specifically, we show how the schema of a local dataset can be
enriched with new concepts given a workload specifying the user queries.

3.5 On Enriching Local Data Sources’ Schemas in Service Lakes 87

3.5 On Enriching Local Data Sources’ Schemas
in Service Lakes

This section is structured as follows: in a first section, we present our algorithm
for the determination of the missing information: the missing concepts, attributes
and relationships. In the section thereafter, we describe our algorithm for the
enrichment of the schema of user data source. In Section 3.5.3, we showcase the
working of our solution using a study case.

3.5.1 Identifying Missing Information

In our model, the user can query for data that is not yet in his local data source
and that will be later leveraged from web sources on the fly. The aim of this
step is to identify the missing data, more specifically the missing concepts and
associated attributes that are required by the user’s queries but that are not
provided by his data source.
Given a set of user queries QD = {Q1 , . . . , Qn} and the graph GS representing
the schema of the user data source, the algorithm 1 processes queries one by one
with respect to the order specified in the workload. We consider in this work
SPJ (select-project-join) queries , which we represent using the triple (attributes,
concepts, conditions) in order to improve readability. Such triples specify respec-
tively the set of attributes in the select clause of the query, the set of concepts
involved, and the set of conditions that appear in the where clause of the query.
The algorithm parses the queries and outputs the missing concepts, MissCon-
cepts, as well as the missing attributes, MissAttributes, characterizing existing
or new concepts. A missing concept is identified with a name: MissConcepts
= {c1 , c2 , ..., cn }. As we will discuss later on, it is not always possible to
identify with certainty which concept(s) a given attribute characterize. Because
of this, we define a missing attribute by the triple (name, concepts, certitude),
where name is the name of the attribute, concepts represents the set of concepts
to which the attribute belongs, and certitude is a variable that takes the value
’Certain’ or ’Uncertain’. If a concept in the query is not represented by a node
in the schema graph, the algorithm checks if this latter was already defined as a
missing concept previously (line 7, Algorithm 1). If not, it defines it as a missing
concept. If the concept is represented in the schema graph, the algorithm pro-
ceeds by verifying the existence of attributes related to it (lines 4-6, Algorithm
1). A missing attribute is an attribute that does not figure in the list of attributes
defined within that concept in the schema graph GS . As mentioned earlier, it is

88 User-Centric Data Integration in Service Lakes

not always possible to identify which concepts a given attribute belongs to. This
is particularly the case for join queries. For this kind of queries, an attribute
may characterize a subset of concepts that are involved in the query. In order
to determine the appropriate subset, we evaluate the semantic relatedness score
between a given attribute and each concept from the entire set of concepts stated
in the query, based on information retrieved from external sources of knowledge.
In our case, we make use of the lexical database WordNet [24].

Algorithme 6 : Searching for missing information
Require : QD= Q1, Q2, ..., Qn is a data request, GS= (V,E) is a schema graph
Ensure : MissElts= MissConcepts, MissAttributes, MissRelations

1 MissConcepts← ∅, MissAttributes← ∅, MissRelations← ∅
2 ForEach Qi in QD do
3 if Qi.concepts involves only one concept c then
4 if there is a node v ∈ V that corresponds to c then
5 ForEach Qi in QD do
6 attribute att ∈ Qi.attributes that does not belong to v.attributes
7 add (att, c, ’certain’) to MissAttributes
8 end

Definition 3 The relatedness score estimates the degree by which two words are
semantically related, which is a number between 0 and 1 [64].

In the literature, several measure methods have been proposed to compute the
semantic relatedness between two different words. In [63], the authors used the
relatedness scores from the human studies; the Miller and Charles(M&C) study
as well as the Rubenstein and Goodenough(R&G) research to evaluate six differ-
ent relatedness measures. In this studies, human subjects assigned relatedness
scores to different sets of word pairs ranged from highly related pairs to unrelated
pairs. The derived scores have been used in [63] to evaluate and compare the se-
lected measures, more specifically its correspondence with the human perception
of relatedness. Table 3.1 summarizes the correlation coefficient of the ranking of
each measure with that of the human relatedness. Notice that the Gloss Vector
has always the highest correlation with human judgments according to the per-
formed experiments (0.91 on M&C and 0.90 on R&G), we rely in our work on
the Gloss Vector measure method for the computation of the relatedness score.

Miller and Charles: represents a dataset of 30 word-pairs rated by a group
of 38 human subjects. The word pairs are rated on a scale from 0 to 4 such as
the higher the number is, the higher the similarity is [56].

3.5 On Enriching Local Data Sources’ Schemas in Service Lakes 89

7
8
9 else if c was already defined in MissConcepts then

10 foreach attribute att ∈ Qi.attributes do
11 if (att, concepts, certitude) was defined in MissAttributes such as

c ∈ concepts and certitude=’uncertain’ then
12 replace (att, concepts, uncertain) by (att, c, ’certain’)
13 else if att was not defined in MissAttributes then
14 add (att, c, ’certain’) to MissAttributes

15 else add c to MissConcepts and all attributes in Qi.attributes to
MissAttributes;

16 else foreach concept c ∈ Qi.concepts that does not have any representative
node v ∈ V do

17 add c to MissConcepts
18 foreach condition cond ∈ Qi.conditions do
19 get related attribute-concept pairs < att, c > in cond
20 foreach < att, c > such as (c is not missing from GS and att is missing)

or (c was defined as a missing concept however att was not defined as a
missing attribute related to c) do

21 add (att,c,’certain’) to MissAttributes
22 foreach linked concepts c1 and c2 in cond that are not related in GS by

an edge e ∈ E do
23 define a new edge e= (c1, c2, att1) in MissRelations where c1

represents the outgoing node, c2 is the incoming node and att1 is
the label of this edge

24 foreach a in Qi.attributes that does not belong to any c. attributes and was
not defined as a missing attribute related to c such as c ∈ Qi.concepts do

25 concepts ← ∅
26 foreach c in Qi.concepts do
27 compute the relatedness score("a", "c")
28 if c has a relatedness score higher than 0.5 then
29 add c to concepts

30 add(a, concepts, ’uncertain’) to MissAttributes
31 ;

Rubenstein and Goodenough(R&G): is a dataset of 65 word-pairs rated
by 51 subjects according to a scale from 0 (zero similarity) to 4 (total/perfect
similarity)[71].

The Gloss Vector Measure: is a second order context vector formed by
treating the dictionary definition of a concept as a context, and finding the re-
sultant of the first order context vectors of the words in the definition [63]. This

90 User-Centric Data Integration in Service Lakes

Relatedness Measure M & C R & G
Gloss Vector 0.91 0.90

Extended Gloss Overlaps 0.81 0.83
Jiang & Conrath 0.73 0.75

Resnik 0.72 0.72
Lin 0.70 0.72

Leacock & Chodorow 0.74 0.77

Table 3.1 – Correlation to Human Perception [63]

measure joins together both ideas of concepts definitions from a thesaurus and
co-occurrence data from a corpus. Every word in the definition of the concept
from the dictionary (e.g., WordNet) is replaced by its context vector from the
co-occurrence data from a corpus and then, relatedness is calculated as the co-
sine of the angle between the two input concepts associated vectors. This Gloss
Vector measure is highly valuable as it: 1) employs empirical knowledge implicit
in a corpus of data, 2) avoids the direct matching problem, and 3) has no need
for an underlying structure

Given an attribute ai and k concepts c1, . . . , ck, we select the concepts having a
relatedness score with the attribute in question ai higher than 0.5. Otherwise, if
any of the resulting relatedness score is higher than 0.5, we associate the attribute
with the concepts having the highest score. As an example, we compute the
relatedness score of ’book’ and ’actor’ versus ’actor’ and ’movie’, which yield
to 0.29 and 0.41, respectively. In this case, our algorithm adds the attribute
’actor’ to the concept ’movie’. Note that this reduces but does not eliminate the
uncertainty about the selected concepts, since only humans are able to quickly
judge the relative semantic relatedness of pairs of concepts. Because of this, our
algorithm tags the missing attribute with an ’uncertain’ certitude label. Thus,
our method has the merit of reducing the number of concepts that needs to be
examined by the user.
Furthermore, the fact that we process a workload of queries may help reduce
the uncertainty. Though after a given query there may be uncertainty about the
membership of a given attribute to a given concept, another query may confirm
it. In such a case, we update the certainty tag of the attribute in question from
’uncertain’ to ’certain’ (lines 8-9, Algorithm 1).
Note that even with the knowledge base WordNet, attributes to be integrated
could not be determined exactly due to the complexity in semantics. We thus
allow an interactive and iterative enrichment process during which the user can

3.5 On Enriching Local Data Sources’ Schemas in Service Lakes 91

provide his feedback, e.g. to manually define new attributes or concepts to the
data source schema, or to confirm or reject the proposed modifications if he is
not entirely satisfied by the system proposition.

3.5.2 Enriching Local Data Sources

If the execution of algorithm 1 leads to a non-empty set of missing elements, the
system must update the user data source at the schema level as well as at the
data instances level, as described in the following paragraphs.
Schema Level: Enriching the schema graph consists in adding new concepts and
attributes to those already defined in the source schema. Algorithm 2 creates
for each missing concept in MissConcepts a new node in G S and adds missing
attributes to the corresponding concepts listed in attribute.concepts (lines 1-5,
Algorithm 2). In the following, we differentiate missing elements in the graph by
the label ’Missing’. The algorithm also defines new integrity constraints/semantic
relations between different nodes of the graph (lines 6-7, Algorithm 2).
Data Instances Level: Unlike schema enrichment which comes immediately after
the identification of missing concepts and attributes, data graph enrichment can
only be performed once data services are invoked and the missing data is retrieved
by them. That is why mapping generation between web service call results and
the concepts in the schema graph is addressed later in this thesis. In fact, the
results returned by a data service call are used to populate the concepts and
associated attributes in the data graph of the local data source. Once the system

Algorithme 7 : Enriching Schema Graph
Require : GS = (V, E), MissElts= MissConcepts, MissAttributes,

MissRelations
Ensure : GS (the enriched Schema Graph)

1 foreach c ∈ MissConcepts do
2 add a new node named c with the label ’M’ to V
3 foreach att ∈ MissAttributes do
4 foreach c ∈ attribute.concepts do
5 define a new attribute att additionally to initial attributes defined within

the concept c, having ’String’ as a type and ’Missing’ as a state

6 foreach rel ∈ MissRelations do
7 add a new edge e to E outgoing from rel.OutNode, incoming to rel.InNode

and labeled with rel.label

has finished the evaluation of all the queries in the workload and enriched the

92 User-Centric Data Integration in Service Lakes

local data source, it removes all ’missing’ tags from the schema graph, thereby
preparing the environment for future user interrogations.

3.5.3 Case Study

Continuing with the relational database introduced in the motivating scenario
(cf. Figure 3.1), we illustrate in this section how algorithms 1 and 2 respectively
operate on a sequence of three queries: Q2, then Q3, and finally Q4. Q2 and Q3

are defined above in Section 3 of Chapter 3 and we will define Q4 below.
Q2 involves only the relational table ’Book’, that we consider as a concept in our
model, in order to get titles and iSBNs of all books stored in the table. Algorithm
6 first searches for iSBN in the list of attributes of ’Book’. It does not find it,
therefore it defines it as a missing attribute (iSBN, Book, certain) in MissAt-
tributes. Then, it proceeds by processing the next query in the workload, Q3.
Algorithm 6 first verifies the existence of all the concepts involved in Q3 in the
schema graph GS, concluding that Publisher is not represented in GS . It also
examines Q3.conditions to identify that an integrity constraint between the rela-
tional tables ’Book’ and ’Publisher’ was not be represented in the initial schema,
and that the missing attribute ’name’ must be added within the concept ’Pub-
lisher’, whereas ’publisher’ should be defined additionally to Book.attributes.
Now we apply algorithm 6 to Q4: All requested information in Q4 is not repre-
sented in the database, be they relational tables (’Movies’) or attributes. As a
consequence, algorithm 6 defines Movies as a missing concept, director, writers
and stars as missing attributes.

Figure 3.6 – An Enrichment Example of the Schema Graph Introduced in Fig.3.1

3.6 Concluding Remarks 93

In the second step, algorithm 7 updates the schema graph by representing missing
elements defined earlier by algorithm 6 in MissElts. As explained in Section 3.5.2,
the representation of missing concepts is done before the definition of missing
attributes. Therefore, two new nodes representing respectively the relational
tables ’Movies’ and ’Publisher’ are added to the schema graph, labeled with the
character ’M’ to denote that they basically represent missing concepts. Then,
iSBN and publisher are added to the set of attributes Table.attributes and finally
all of the attributes director, writers and stars are defined as missing attributes
characterizing the concept ’Movies’. Furthermore, the algorithm creates a new
integrity constraint ’publisher’ between the relations ’Book’ and ’Publisher’.
All of these modifications are depicted in Figure 3.6: nodes and relations in gray
represent respectively missing concepts and missing relations, and the attributes
with a gray background represent the missing attributes.
Consider a schema graph of n nodes, and a data query requesting m attributes re-
lated to at most l concepts and under q conditions. Algorithm 6 runs in O(m.l.n)
time, while Algorithm 7 clearly runs in O(m.l) time.

3.6 Concluding Remarks

We introduced in this chapter the overall architecture of EuDaSL. Then, we pro-
vided a step-by-step explanation of the process of our data integration approach.
EuDaSL aims to enrich the user data source with information extracted from web
sources whenever the local dataset does not suffice to answer the user queries,
w.r.t user requirements. This process is not entirely automatic such it relies on a
database designer/developer decisions for the final choice of service views. Then,
the work presented in the second part of the chapter tackles the determination of
missing information in local data sources and the enrichment of the schema with
the ability to define new concepts to the user data source schema. The missing
concepts are deduced from the user data queries but are not defined in the initial
schema of the user datasets. In the following chapter, we present our approach
for the leveraging of the missing data using data services in the service lake.

Chapter 4

Quality-based Data Service
Composition for Enriching User
Data Sources

Contents
4.1 Preliminary Steps . 96

4.1.1 Data queries . 96
4.1.2 Service Lake . 97
4.1.3 Data Service Views . 97

4.2 Selection and Composition of Data Services 99
4.2.1 Composition of Pertinent Data Services 100
4.2.2 Creation of Executable Query Plans 100

4.3 Quality based Selection of Query Plans 102
4.3.1 Measuring QoS values of a Service Composition 103
4.3.2 Selection of Query Plans 106

4.4 Experimentation . 108
4.4.1 Testbed and Methodology 108
4.4.2 Results and Discussion 109

4.5 Concluding Remarks 112

In the previous chapter, We have shown how local data source schemas can
be enriched with new concepts that are required for the processing of a given
collection of data queries. In this chapter, we go further in this direction and
show how such queries can be evaluated through combining data coming from
local datasets and data provided by data services. More specifically, our aim

96 Quality-based Data Service Composition for Enriching User Data Sources

is to select the relevant data services that yield good quality answers without
exceeding a given budget set by the user (time and monetary cost) and seamlessly
enrich the local data source with the obtained answers. Thereafter, the local data
source may be leveraged to obtain complete answers satisfying user queries. This
is performed through the steps 3, 4, 5 and 6 of our data integration process,
presented in Section 3.4 of Chapter 3.
This chapter is organized as follows: In Section 4.1 , we first introduce the nota-
tions that we adopt for the composition of data services. Next, in Section 4.2, we
present the algorithms that we developed for the identification and the composi-
tion of relevant data services. In Section 4.3, we describe our algorithm for the
selection and the execution of the best quality query plans while satisfying the
user constraints. Then we evaluate the Composition framework from different
aspects as a whole and on the elementary levels separately. Some of the results
presented in Section 4.4 of this chapter were published in the conference IEEE
International Conference on Web Services (IEEE ICWS 2018) [7]. Finally, we
conclude in Section 4.5.

4.1 Preliminary Steps

In this section, we first present the pre-processing steps to perform by the designer
or simply the data developer before starting the use of our system. This consists
of defining the data service views over the relations in the schema of the user
data source. Then, we describe the query language that we use for the rewriting
of the user data query and for the composition of relevant service views.

4.1.1 Data queries

User queries (or data queries) are issued against the schema graph of the local
data source. Specifically, a data query is reformulated as a conjunction of unary
and binary relationships on the concepts and attributes in the schema graph,
respectively.

Q(X)→ q1(X1), . . . , qm(Xm), CI (4.1)

where q1, ..., qn are the relations representing concepts and attributes in the
schema graph and CI represents integrity constraints between these different
concepts. Integrity constraints provide a way of ensuring that changes made to
the database do not result in a loss of data consistency. For example, the follow-
ing query asks for titles, authors’ names and publication date of all the books

4.1 Preliminary Steps 97

recorded in the library’s database:

Q(t, p, a, p)← PDF_Books(ob), Book_Title(ob, t), Author_Names(ob, a),
Date_of_Publication(ob, p)

Not all the concepts used in the user query will have instances associated with
them in the user data source (missing concepts). In the subsequent section, we
show how we use service views to reformulate users’ queries in a way to replace
the missing concepts with sub-queries that retrieve data from the services.

4.1.2 Service Lake

Queries are posed to the system in terms of the concepts in the data source of
interest. However, some of the requested data in the data query can be missing
in the local data source. In this work, we investigate the Service Lake to obtain
the missing data from external web data sources, using the data services.
A service S is described by S = (InS , OutS) where InS is the set of input pa-
rameters needed for the execution of the service s and OutS is the set of output
parameters provided by the service. A service description can be in any known
Semantic Web Services formalism (often abbreviated with SWS) that is RD-
F/OWL based and that describes the functional and the non-functional features
of a service.
To be able to answer a query posed over the user data source, we need to describe
the capabilities of the data services in the Service Lake in terms of the concepts
and relations in the local data source. We first define schema mappings, that
we termed service views, between the schema graph of the data source and the
services in the lake.

4.1.3 Data Service Views

In this work, a data service view captures in a declarative way the relationships
between input and output parameters of the data service in question and the
concepts and the relationships in the schema graph of the local data source.
Service views are modeled as conjunctive queries over the relations in the schema
graph. Let consider the schema graph depicted in Figure 4.1 which corresponds
to a library database.
For sake of simplicity, we represent only the table of interest from the database.
Following our model, the concept PDF_Books is represented by the relation

98 Quality-based Data Service Composition for Enriching User Data Sources

Figure 4.1 – An Excerpt of a Library Database Schema & Its Corresponding Schema
Graph

PDF_Books(o) and the attributes book_id, category, isbn, etc., are represented
by the binary relations book_id(o,i), category(o,c) and isbn(o,s), respectively.

Definition 4 Conjunctive Queries: A conjunctive query is a restricted form of
first-order queries using the logical conjunction operator. It is simply the fragment
of (domain independent) first-order logic given by the set of formulae that can be
constructed from atomic formulae using conjunction ∧ and existential quantifi-
cation ∃, but not using disjunction ∨, negation ¬, or universal quantification ∀.
Syntactically, a conjunctive query q is an expression of the form:

q(x1, . . . , xn) : ¬R1(y1), . . . , Rn(yn) (4.2)

The expression q(x1, . . . , xn) is called the head of the query, and R1(y1), . . . ,
Rn(yn) is called the body of the query, where n ≥ 0, Ri is called an atom and q
is a fresh relation name. The expressions x1, . . . , xn, y1, . . . , yn are called free
tuples, and contain either variables or constants [36].

Let us consider the data service getAuthor which given a book title and its
isbn returns the name of the book author:

{getAuthor, {title, isbn}, {author}}

The corresponding view among the library database is defined as conjunctive
query over the relations in the database schema as follows:

vgetAuthor(t, isbn, a) ⊆ PDF_Book(o1), book_title(o1, t), isbn(o1, isbn),
author_name(o1, a)

It involves the attributes book_title, isbn and author_name of the concept
PDF_Book. o_1 is the identifier of the object/tuple in the library database

4.2 Selection and Composition of Data Services 99

while t and isbn represent variables that should be bound to values either pro-
vided by the user in the query, obtained from the library database, or by the
output of other data services in the context of a service composition before the
query is executed. Thereafter, the answer of the query associates binding values
for the variable a. Note that at this level, we do not distinguish between input
and output parameters within the service view.
Actually, we adopt the Local as View (LAV) integration approach by describing
which concepts of the user’s data source can be leveraged by data services.
Continuing with the service view VgetAuthor, the corresponding operation can be
used to populate the attribute author_name of books PDF_Books recorded in
the library database (cf. Figure4.1).

4.2 Selection and Composition of Data Services

Given a user query, the problem is to evaluate it using the local data source and
the set of data services in the data provisioning service lake.
Individual services may provide only some data and not all the missing informa-
tion, therefore answering a data query may require investigating different combi-
nations of different data services, which we also call service compositions.
However, data queries have to follow the binding patterns of service operations,
by providing values for required input parameters before the operation can be
called. For example, the service operation getAuthor can be executed only if
a book title and its ISBN are provided, however, if the query requests for the
titles of books written by a given author, the operation cannot be executed to
answer this question, even though the database contains the desired information.
Because of this restriction, we can find non-executable compositions, then an ad-
equate orchestration between different component services is necessary to look for
an executable ordering, if it is possible. The ordering set making a composition
executable is called a query plan.
The construction of executable compositions comprises two phases. In the first,
we create all the possible service compositions that can be used to leverage the
missing information and fully satisfy the user queries. In the second, we try
to order the conjuncts of the compositions in order to ensure that they can be
executed and we prune away non executable plans. We provide more details in
the two next subsections.

100 Quality-based Data Service Composition for Enriching User Data Sources

4.2.1 Composition of Pertinent Data Services

Given a query Q and a set of data services represented by their corresponding
views V = v1, v2, ..., vi, the first step consists of identifying all service views con-
taining all or a part from the conjuncts constituting the data query.

First of all, Algorithm 8 makes sure that the information present in the local
database is used first to obtain the available information. To do so, the algo-
rithm checks for every conjunct qi(Xi) if it represents a missing concept or not.
If it does not represent a missing concept, the algorithm determines all possible
mappings between the variables stated in conjuncts and those ones stated in re-
lations. However, if the concept is denoted as missing, the algorithm proceeds by
checking the set of DP web services views, SV, to get it in order to fill the gap
on the fly. Relevant services must provide the missing attribute, otherwise, it is
useless to call them. For each relevant service view sv, the algorithm determines
all the mappings and add M(sv) to RelevantViewsi.
If the conjunct qi(Xi) is denoted as a missing concept, there is no need to check
local views (views provided by local databases), the algorithm starts directly by
determining the relevant service views to answer the data query.

In the second step, the algorithm checks the cartesian product of the buckets.
We consider conjunctive plans that are obtained by selecting one relevant service
views for every conjunct in the query Q. The generated plans are guaranteed to
be sounds and relevant. Indeed, unlike the work proposed by Levy et al. [49],
which considers order relations {≤,≤, =, 6=}, we do not consider these relations
since they are generally not used to describe service operations. As a such, the
plans generated using our algorithm are guaranteed to be answers to the user
query, and thus we have soundness. Moreover, we do not consider disjointed-
ness2 relationships between the concepts in our schema graph. Therefore, the
query plans generated may always produce answers, hence relevance.

4.2.2 Creation of Executable Query Plans

Data services allow querying remote databases. However, the data request has to
follow the binding patterns of the Web service operations, by providing values for
mandatory input parameters before the operation can be called. Given the spec-
ification of the composite service synthesized in the previous phase, we need to

2A constraint about generalization hierarchies
that addresses the question whether an in-

stance of a supertype may simultaneously be
a member of two (or more subtypes)

4.2 Selection and Composition of Data Services 101

Algorithme 8 : Identify Relevant Service Views
Require : Q(X)→ q1(X1), . . . , qm(Xm), CI is a conjunctive query

SV a set of service views
Ensure : {RelevantViews1, . . . , RelevantViewsm}

1 for every conjunct qi in Q do
2 RelevantViewsi ← ∅
3 if qi(Xi) is not missing then
4 there exists a relation R(Y) that corresponds to qi(Xi)
5 let M be the mapping defined on the variables of R(Y) as follows: if Y is

the j’th variable of R then
6 M(Y)← Xj where Xj is the j’th variable in Xi

7 add M(R) to RelevantViewsi

8 else
9 for every conjunct u(Y) in a body of a service view sv in SV do

10 if qi = u then
11 let M be the mapping defined on the variables of sv as follows: if

Y is the j’th variable of u and Y is not existential then
12 M(Y)← Xj where Xj is the j’th variable in Xi

13 else
14 M(Y) is a new variable that does not appear in Q or sv

15 add M(sv) to RelevantViewsi

coordinate the various component services, and monitoring control and data flow
among them, in order to guarantee the correct execution of the composite service.
The resulting ordering is called "Query Plan". In this section, we show how we
create executable query plans from a service composition (i.e., plans whose all
composing services can be executed while its required inputs are available, some
of the inputs can be obtained on-the-fly after the execution of previous services
in the composition).
Algorithm 9 inspired from [50] tries to find an executable ordering on the com-
ponent services of a composition so that the plan becomes executable, if such
ordering exists. In [50], the authors proposed an algorithm for computing an
executable ordering of a set of services each one performing a specific task. The
algorithm proceeds by maintaining a list of available parameters, and at every
point adds to the ordering any sub-goal whose input requirements are satisfied.
In our work, we make sure that each service operation involved in the query plan
has its input parameters satisfied. Those are bound to values that are provided

102 Quality-based Data Service Composition for Enriching User Data Sources

by the user in the query, by the concepts that are not missing in the generated
plan, or by the output of service operations that are previously called within
the query plan. We notice that a plan may not have an executable ordering on
the service operations it involves. In such a case, the plan in question is not
considered for answering the user query.

4.3 Quality based Selection of Query Plans

Filling the gaps in the user’s data source involves some challenges such as identi-
fying relevant data providers meeting the consumer’s data request requirement,
the data quality requirement, the bid price as well as getting as many results as
possible. Certainly, some data concerns can be assessed before the data is exposed
through data services operations. Such information known as QoS (Quality of
Service) associated with data services can help deciding whether a data resource
should be used and under which conditions. In this step, we aim to ensure the
selection and the execution of query plans that not only satisfies the data query
but which also have together the best quality.

Algorithme 9 : Create Executable Query Plans
Require : a conjunctive plan Q‘ corresponding to a possible combination of

relevant views (R1, ..., Rl, V1, ..., Vm)
I/O parameters of a data service Vi is (ini, outi)

Ensure : a query plan P
1 BindAvail0 = The set of variables in Q‘ bound by values in the query and those

returned by local relations Ri, i ∈ [1..l]
2 Qout = The head variables of Q‘ (the same head variables of Q).
3 j = 2
4 while there exists also service views that were not chosen earlier do
5 foreach Vi in Q do
6 if Vi was not chosen earlier and the parameters in ini are in

BindAvaili_1 then
7 Vi is the j‘th service in the ordering
8 BindAvaili = BindAvaili_1 ∪ outi

9 j ← j + 1
10 if Qout 6⊆ BindAvailm then
11 plan is not executable

4.3 Quality based Selection of Query Plans 103

4.3.1 Measuring QoS values of a Service Composition

This step consists of evaluating the QoS values of composite service executions
such as the execution cost, the service reputation, its availability, its reliability
and the estimated response time. The QoS of a resulting query plan is a determi-
nant factor to ensure the quality of returned answers and the user’s satisfaction.
The operation that has the largest impact on the total execution time and the
execution cost is the execution of web calls. So our algorithm should prioritize
the execution of the calls in web call composition that lead to a solution with a
smaller cost (i.e., minimize the response time and the financial cost) while max-
imizing the services reputation and availability, etc.
Estimating the quality of a service composition is not straightforward because
of different and often varying number of dimensions. First, we define quality
dimensions for a primitive (i.e., not a composite) data web service:

• Response time: is the expected delay in seconds between the moment
when the request is sent and the moment when results are received.
• Availability: is the percentage of time that a service is operating.
• Reliability: is the probability that a request is correctly responded within

the maximum expected time frame indicated in the web service description.
• Reputation: is a measure of its trustworthiness. It mainly depends on end

user experiences of using a service s.
• Cost execution: is the sum of the fee that a service requester has to pay

for invoking the service and the fee associated with the usage of the data.

We use the quality criteria defined above to compute the QoS of query plans.
Related work has been conducted in [83], where only web services executing
specific tasks are considered, so that each component service is executed exactly
one time. However, in our context, as we explained earlier, each individual service
can be executed as many times as the number of answers resulting from the
previous service invocation. To do so, we need to estimate the number of calls to
execute for each primitive service in the composition. The number of web calls
of a data service si in a Plan Pi is the cardinality of the cartesian product of
the results returned by different previous services in the plan. We compute it as
follows:

calls_number(si) = |
∏
j

R(sj)|, sj ≺ si

|R(sj)| = calls_number(s1) ∗ avg(s1)
(4.3)

where s1, s2..., sj is the set of services providing required inputs for the execu-

104 Quality-based Data Service Composition for Enriching User Data Sources

Service Response Time(sec) avg
s1 20 4
s2 25 5
s3 20 1
s4 2 10
s5 20 4

Table 4.1 – Average Response Time and Results Number of s1, s2, s3, s4 and s5

tion of the service si, R(s1), R(s2)..., R(sj) represent the corresponding sets of
returned results and avg is the average number of results(tuples) returned by
each data service skj.

Consider the following query plan depicted in Figure 4.2 and the correspond-
ing table (Table 4.1) representing the response time and the average number of
results that could be returned by each service si in a Plan P:

Figure 4.2 – Executable Query Plan

Services s1 and s2 must be executed exactly one time, however the service s3

depends on the results of s2. By computing the number of calls estimated for s3

using the formula 5.1, we find that s2 may output 5 different answers, then s3

may be invoked 5 times, each time using different input data. s4 depends on the
outputs of both s1 ans s3. In such case, we construct all possible combinations
between the results of s1 and s3, that is a set containing 4 answers returned by s1

and a set containing 5 tuples returned by s3, then calls_number(s4) = 20. The
aggregation functions to compute the QoS of a Query Plan in [83] are redefined
to include the number of calls (nc) of services in the composition, that is:

• Response Time: is computed using the Critical Path Algorithm [53]

Time(P) = CPA(Time(si, op), . . . , T ime(sn, op)) (4.4)

• Cost execution: is the sum of the total cost execution of each invoked
operation over the services that participate in P.

4.3 Quality based Selection of Query Plans 105

Cost(P) =
n∑

i=1
(calls_number(si, op).Cost(si, op)) (4.5)

• Reputation: is the average of all services’ reputation in the query plan.

reputation(P) = 1
n

n∑
i=1

(reputation(si)) (4.6)

• Reliability: is computed using the following formulas:

reliability(P) =
n∏

i=1
(

nc∏
k=1

expreliability(si)∗zi) (4.7)

• Availability: is computed as follows:

availability(P) =
n∏

i=1
(

nc∏
k=1

expavailability(si)∗zi) (4.8)

The selection of plans involves multiple criteria (i.e., different QoS criteria). The
idea is to associate an aggregated quality score to each executable query plan in
order to be able to compare and rank different plans. This problem, from the
multi-criteria perspective, can be solved using the Simple Additive Weighting
(SAW) [37] method.
SAW technique: is a multi attribute decision technique. The basic logic of
the SAW method is to obtain a weighted sum of performance ratings of each
alternative over all attributes. The first step consists in computing an evaluation
score for each QoS criteria by multiplying the scaled value.
Given a set of executable query plans determined by the Algorithm 9 P =
{P1, P2, . . . , Pn} and let C = {response_time, reliability, reputation, availability}
be the set of QoS criteria; whereas the response time is a negative criterion (i.e.,
the higher the value is, the lower the quality is), all other criteria are positive
(i.e., the higher the value is, the higher the quality is). We decided to not include
the execution cost (the financial cost) in the evaluation of the quality of query
plans, while it will be later considered in the selection of final plans to execute.
First of all, we associate for each query plan a quality vector representing different
criteria values < duration(Pi), reliability(Pi), reputation(Pi), availability(Pi) >

Then, we accumulate all quality vectors in a quality matrix Q where each row
represents a plan Pi and each column represents a specific QoS criteria.

106 Quality-based Data Service Composition for Enriching User Data Sources

Q =


duration(P1) rep(P1) rel(P1) avail(P1)
duration(P2) rep(P2) rel(P2) avail(P2)

...

duration(Pn) rep(Pn) rel(Pn) avail(Pn)


Once the quality matrix is constructed, we proceed to scale criteria values. The
value for the response time is computed using the Equation 4.9. For positive
criteria, values are scaled according to Equation 4.10.

Vi,j =


Qmax

j −Qi,j

Qmax
j −Qmin

j
ifQmax

j −Qmin
j 6= 0

1 ifQmax
j −Qmin

j = 0
(4.9)

Vi,j =


Qi,j−Qmin

j

Qmax
j −Qmin

j
ifQmax

j −Qmin
j 6= 0

1 ifQmax
j −Qmin

j = 0
(4.10)

where Qmax and Qmin represent respectively the maximal and the minimal values
of a specific quality criterion in Q.
In the second step, we compute the overall quality score for each query plan using
the following formula 5.2:

Quality(Pi) =
k∑

j=1
(Vi,j ∗Wj) (4.11)

Wj ∈ [0, 1] is the weight of each criterion, such as ∑4
j=1 Wj = 1. In our work, we

assume that all criteria have the same impact, so we associated the same weight
for all criteria (equals to 0.25).

4.3.2 Selection of Query Plans

Our problem can be formulated as follows: Given a set of executable plans, P,
each of which is characterized by a quality score and an execution cost (qi, ci),
we would like to select a subset S of P such that the sum of the qualities of the
constituent plans is a maximized subject to a given cost threshold, specified by
the user. That is:

Max
∑
i∈S

qi such that
∑
i∈S

ci ≤ C

Notice that the above problem is a 0-1 knapsack problem, which can be effi-
ciently solved in pseudo-polynomial time O(nW) using dynamic programming
(Algorithm 10). Specifically, let Q[i, w] be an array that stores the maximum
combined quality of any subset of plans {1, 2, ..., i} of a combined cost of at most

4.3 Quality based Selection of Query Plans 107

c. Our problem can be defined recursively as follows:

• Initial solution
Q[0, c] = 0 for 0 ≤ c ≤ C, i.e., the quality is 0 when no plan is se-
lected,
Q[i, c] = −∞ for c < 0, i.e., a negative cost is illegal

• Recursion step
Q[i, c] = max(Q[i− 1, c], qi + Q[c− ci]) for 0 ≤ i ≤ n, 0 ≤ c ≤ C

This is the best quality obtained when considering the ith plan that can be
obtained by not taking this plan, or selecting this plan together with the best
solution whose cost is lower than c− ci.

Algorithme 10 : Select Plans
Require : n: the number of plans, which are labeled 1 to n

qa: an array containing the values of the qualities of the plans
ca: an array containing the costs of the plans
C : the maximum cost allowed

Ensure : Q, an array of the best qualities obtained considering a given plan
under a cost constraint

1 for (c = 0 to C) do
2 Q[0,c] = 0
3 for (i = 1 to n) do
4 for (c = 0 to C) do
5 if ((ca[i] ≤ c) and (qa[i] + Q[i-1,c - ca[i]] > Q[i-1,c])) then
6 Q[i,c] = qa[i] + Q[i-1,c - ca[i]]
7 keep[i,c] = 1
8 else
9 Q[i,c] = Q[i-1, c]

10 keep = [i,c] = 0

11 T = C for (i = n downto 1) do
12 if (keep[i,T] = 1) then
13 Print i
14 T = T - ca[i]

15 Return Q[n,C]

Algorithm 10 proceeds as follows. It first initializes to 0 the quality when no
plans are selected (line 0). It then iteratively computes the quality under different
constraints (from 0 to C) considering different plans (i from 0 to n), see Lines 2

108 Quality-based Data Service Composition for Enriching User Data Sources

to 13 of the algorithm. Notice that the algorithm also uses a local array named
keep to identify those plans that were picked up for a given cost c. This is crucial
as it allows us later on to identify the plans that were selected and output them
(lines 14 to 20). The set of plans finally selected must have together a maximal
aggregated quality score w.r.t the maximal cost specified by the user. Thus,
the invocation of a larger number of data services may increase the number of
answers. However, if the execution of different service compositions may not
satisfy the user’s requirements, the Algorithm 10 would select only the optimal
plan from P.

4.4 Experimentation

We have implemented all the algorithms described in this chapter in Python. In
this section, we report on the results of the empirical evaluation that we conducted
to assess the effectiveness of our service selection and composition approach.

4.4.1 Testbed and Methodology

The performance of our system is evaluated using publicly available DP services,
that export rich information about different domains (e.g., information about
books, authors, music, albums, movies and videos, etc.). In particular, we re-
fer to DP services provided by the following websites: LibraryThing3, ISBNdb4,
AdeBooks5, IVA6, LastFM7, MusicBrainz8, Discogs9, MusixMatch10, Spotify11,
IMDb12 and Amazon13,etc. All these websites allow users to query their under-
lying data based on various criteria such as the QoS, supported by their cor-
responding service calls. For this, a built-in collection of data service views is
defined in the service lake.

4.4.1.1 Profiling Data Services

In order to calibrate the response time of the different data services, we ran a
series of service calls. We invoked each service a hundred times using entries
selected from the local data source, and then we computed the average response

3https://www.librarything.com/
4https://isbndb.com/
5https://www.abebooks.com/
6https://www.internetvideoarchive.com/
7https://www.last.fm/api/
8https://musicbrainz.org/

9https://www.discogs.com/
10https://www.musixmatch.com/fr/
11https://www.spotify.com/fr/
12https://www.imdb.com/
13http://aws.amazon.com/publicdatasets/

4.4 Experimentation 109

time for each of them.
In terms of execution cost, since we are using public and free data services, we
do not have to pay for invoking the different data services. However, to show
how our system selects only query plans not exceeding the user specified cost
threshold and maintaining good service quality, we gave different call prices to
each service provider. Finally, we used user reviews to compute the reputation
of the services and we obtained the reliability and the availability values from
either the SLA [67] agreement of data services or their HTML pages.

4.4.1.2 Data Queries

For our experiment, we considered two distinct set of queries: the first contains
queries for which none of the requested data nor their answers could be found in
the local data source; the second consisted of queries that had a partial answer
in the local data source and where the missing data was shuffled. We tested our
system using queries on a sundry of topics as input.

Q1. Find mbid, duration of all the recordings named ’Sorry’.

Q2. Find mbid, artist name, url, and ratings of all the albums of name ’Believe’.

Q3. Find mbid, artist name, url, streamable, listeners and ratings of all the albums of name
’Believe’.

Q4. Find mbid, birth date , nationality, rating of the singer ’Cher’.

Q5. Find mbid, birthdate, nationality, address, genres, listeners, tags of rating of the singer
’Cher’.

Q6. Find artist mbid and artist url of the album ’Believe’ of the singer ’Cher’.

Q7. Find titles and years of movies featuring ’Queen Latifah’.

Q8. Find isbn, authors, publisher, editors and topics of all the books entitled ’Principles of
data integration’.

Q9. Find titles, year of publication, authors and publisher names of all the books dealing with
’data integration’.

4.4.2 Results and Discussion

To demonstrate the effectiveness and the efficiency of our service selection and
composition model, we ran a series of experiments.

4.4.2.1 Enumerated Service Compositions and Query Plans

The first series of experiments aimed at evaluating the two first algorithms, Al-
gorithm 8 and Algorithm 9, for the composition of relevant data services.

110 Quality-based Data Service Composition for Enriching User Data Sources

Number of Compositions Executable Computation
Services Plans Time (sec)

Q2

20 10 5 0.06
40 22 8 0.08
60 82 36 0.31
80 293 62 0.57
100 1209 178 1.73
200 2293 334 3.25

Q3

20 43 28 0.38
40 92 76 0.76
60 114 114 0.92
80 372 305 2.56
100 1216 1070 9.51
200 2401 1070 9.51

Table 4.2 – Query Planning

For each query, we varied the number of data services from 20 to 100 and mea-
sured the number of compositions enumerated in the first stage by Algorithm 8,
and the number of final candidate plans created using the Algorithm 9.
Table 4.2 shows the query planning statistics for queries Q2 and Q3, as the number
of available data services varies. We note that the number of service composi-
tions generally increases with the total number of data services in the service lake.
Indeed, this results from an increasing number of data services relevant to the
query. However, the number of executable plans does not always increase with
the number of data services available (e.g., considering the query Q2, the number
of executable query plans is the same when there is 100 or 200 data services).
This is due to the fact that Algorithm 9 is effective in pruning away non exe-
cutable compositions. The total time to generate all possible compositions and
create query plans is indicated in Table 4.2. Note that the overall time increases
with the number of relevant data services, in other words, with the size of the
service lake.

4.4.2.2 Answers & Web calls

The second series of experiments aimed to measure the number of answers, the
number of web calls, the time in seconds required to compute the desired answers,
and the quality of the selected query plan. We used these criteria as evaluation
metrics to validate our results. Furthermore, we compare the results of our
knapsack-based selection method (II) to those obtained based on the two classical
service selection methods used to answer data queries in the literature: (I) one

4.4 Experimentation 111

executes all possible query plans [66], the other (III) executes only the optimal
one [83, 17, 12, 39, 35, 75] (see Chapter 2 for more details). In table 4.3, we
show the values obtained for the first four data queries Q1, Q2, Q3 and Q4, when
the cost threshold is fixed to 3$ and 30$ for Q1 and the rest of the queries,
respectively.

Cost Time Quality Web Answers
($) (sec) calls

Q1

Optimal Plan(1) 0.30 0.015 0.68 1 25
Knapsack M.(4) 2.8 0.108 0.503 9 39
All Plans(108) 141.7 3.214 0.607 506 43

Q2

Optimal Plan(1) 0.30 0.015 0.59 1 9
Knapsack M.(2) 20.4 0.06 0.54 102 15
All Plans(334) 3268.2 12.198 0.641 13572 19

Q3

Optimal Plan(1) 10.2 0.032 0.79 51 9
Knapsack M.(3) 22.8 0.051 0.642 48 19
All Plans(1070) 9463.1 36 0.487 34729 19

Q4

Optimal Plan(1) 0.50 0.028 0.586 2 1
Knapsack M.(8) 2.99 1.207 0.543 21 1
All Plans(124) 557.5 3.53 0.487 2308 1

Table 4.3 – Results of the Evaluation

The execution of all candidate plans (I) always yields the most answers for all
the queries. Unfortunately, the number of web calls, and thus the financial cost,
increase considerably, especially for queries in which the composition of different
DP services is necessary. The difference is obvious when comparing to the two
other methods. For instance, all methods return one answer for Q4, even though
the cost of (I) is much higher than the optimal cost required to compute the
desired answers. For Q3 and Q4, our service selection method (II) returns the
same answers as (I), while for Q1 and Q2, it returns less answers. Indeed, for
the latter queries, we obtain less information but the computational cost of the
additional answers is strictly higher than the execution cost of the other methods
(i.e., if we consider Q3, we need to execute 13470 more web calls to get four more
answers). This is because different compositions of service calls retrieve the same
data. The number of plans selected by each method are displayed in parenthesis
in Table4.3. Using our approach, we try to avoid unnecessary web calls that
produce redundant answers.
The execution of the optimal plan (III) often return incomplete answers (e.g., the
cases of Q1, Q2 and Q3). Moreover, the different service calls within the optimal

112 Quality-based Data Service Composition for Enriching User Data Sources

plan may return redundant data for a higher cost. For example, the optimal plan
for Q2 includes two data services of the same provider LastFm: getAlbumInfo
and getAlbumBysearch, these two services provide access to the same database,
they extract the same triples.
In a nutshell, our approach (II) provides a compromise between (I) and (III). In
most cases, it returns more answers than (III), and almost as many answers as
(I) for a lower cost.

4.5 Concluding Remarks

In this chapter, we presented a solution to enrich local datasets using data ser-
vices. In doing so, we used and adapted local-as-view data integration techniques
[50, 49]. Moreover, we elaborated a knapsack-based algorithm to select services
that yield good quality results without exceeding a given budget (time and mon-
etary cost). The evaluation exercises that we conducted showed the effectiveness
of our solution.

Chapter 5

Automatic Specification of Data
Services’ Views

Contents
5.1 Approach Overview . 114
5.2 Schema Matching . 115
5.3 Automatic Specification of Services’ Views 117

5.3.1 Steiner Trees Problem in Graphs 117
5.3.2 Automatic Definition of Services’ Views 119

5.4 Case Study . 126
5.4.1 Generation of Service Views using Ground Truth Match-

ing . 126
5.4.2 Generation of Service Views using Approximate Match-

ing . 131
5.5 Experiments . 134

5.5.1 Performance Metrics 134
5.5.2 Baseline Results & Discussion 136

5.6 Concluding Remarks 139

User data queries are posed against the local data source that the user is interested
in, thereby freeing users from having to interact with the local data source and the
data services, each one individually. Nonetheless, the local data source schema
and the data services may use different vocabularies to refer the same entity.
Therefore, we needed views that relate the capabilities of each data service (I/O
parameters) to the concepts, attributes and relations in the local data source. In
the previous chapter, we assume that services’ views are manually pre-defined in

114 Automatic Specification of Data Services’ Views

the Service Lake. This is a time-consuming and tedious task. To address this
problem, we propose, in this chapter, a solution to automatically generate views
that map the capabilities description of data services into the schema elements
of the user data source. In doing so, we only consider the inputs and outputs
of data services which are parts of the functional features. To the best of our
knowledge, this work is the first to deal with the automation of the definition of
service views.
In this chapter, we first give a brief overview of our proposal for the automatic
specification of service views in Section 5.1, describing the main components
(Section 5.2) , to the developed algorithms (Section 5.3). We then present in
Section 5.4 a case study to showcase the working of the proposed algorithm.
Finally, we present the experimental evaluation results in Section 5.5.

5.1 Approach Overview

The definition of service views over the user data source is performed in two steps
as illustrated in Figure 5.1.
Given a data service description (I/O parameters) and the schema graph corre-
sponding to the user data source, the first step consists of identifying the pos-
sible correspondences between the service parameters and the concepts in the
schema graph which are semantically related. Such matchings are used as in-
gredients to simplify the intricate task of views definition. To date, a number
of algorithms have been devised and implemented for finding correspondences14

between schemas. Thus, we rely on automatic matching tools to automatically
determine the semantic correspondences between the user data source and the
data services. Formally, the match operation determines a mapping indicating
which elements of the input schemas logically correspond to each other with a
similarity score indicating the plausibility of their correspondence.

Then, based on the matchings obtained, our problem becomes that of finding
a tree that covers the service parameters, or more specifically the nodes that
match them in the schema graph. Several trees can fulfill such a criterion. Our
problem can be, therefore, stated as that of finding the best tree. For our purpose,
we formulate the search of the best tree as that of finding the minimum Steiner
tree problem, which we will present later on. To do so, the second step auto-
matically creates a node/edge-weighted graph, depicting the schema of the local

14All of the terms correspondences, match candidates and matches refer to matchings.

5.2 Schema Matching 115

Figure 5.1 – Overview of the Automatic Services’ Views Definition Process

data source such as the weights of the nodes represent an aggregated matching
score on the node attributes. Then, we study finding the top-k minimum Steiner
trees. We provide in the following sections a step-by-step explanation.

5.2 Schema Matching

In the first step, the service schema is compared against the schema of the user
data source to identify the semantic correspondences between the underlying
database elements and the service parameters. In doing so, we rely on an auto-
matic schema matching tool such as COMA++ [14]. Tools for schema matching
take as input the service schema and the schema of the user database and outputs
a set of correspondences between their attributes, each of which captures a single
pair of matching elements and a similarity value between 0 (strong dissimilarity)
and 1 (strong similarity) indicating the plausibility of the match relationship.
Within an individual correspondence, one or more service parameters can match
one or more concepts from the user database. Thus, we can have multiple match

116 Automatic Specification of Data Services’ Views

candidates with different similarities for the same service parameter as shown in
Figure 5.2.

Figure 5.2 – Schema Matching

Example 5.2.1 if we consider a data service s1 which given a student Social
Security Number (SSN), returns the student name (Name), his level (Level)
and his marks (Marks) and a university database DBu that contains a table
Grad-Student(Name, ID, Major, Grades), possible matching would be: s1.SSN
= DBu.ID, since SSN and ID refer semantically to the same real-world entity
(the Social Security number of the student). Similarly, s1.Name = DBu.Name,
s1.Major = DBu.Major and s1.Marks = DBu.Grades, all of them represent pos-
sible matchings between the schemas of s1 and DBu.

Getting certain semantic mappings between the service parameters and the user
data source schema is essential to produce more accurate service views. Unfortu-
nately, automatic schema matching is inherently uncertain because the semantic
of schema objects cannot be fully derived from data and meta-data information.
Indeed, the correspondences created by automatic schema matching tools are of-
ten incomplete and sometimes erroneous. In general it is impossible to identify
fully automatically correct mappings and hence post-matching human efforts are
always needed to obtain a correct set of correspondences. However, our objective
is to automate the whole views definition process. Automatic schema matching
tools assign matching scores to candidate correspondences. A matching score
may be interpreted as a probability for the correctness of a correspondence. Yet,

5.3 Automatic Specification of Services’ Views 117

matching scores are not normalized, often unreliable and unrelated to the service
context. Thus, in this work we use schema matching results as-is such we inves-
tigate all the possible candidate matches of service parameters with the aim to
explore all the reformulation possibilities.
Formally, a service operation (op, Lin, Lout) is characterized by a name, op, and
a set of input and output parameters, Lin and Lout. In what follows we use l
to denote the magnitude of the union of Lin and Lout. Note that a node in the
schema graph is a tuple with several attributes, a node contains a service pa-
rameter if one of its candidate matchings appears in any of the attributes of the
corresponding tuple, and a node may contain several service parameters. There-
after, matching a service operation (op, Lin, Lout) with a schema graph yields the
following weighted sets:

• V1, . . . , Vl represent the sets of vertices in Vs that match the parameters in
Lin and Lout. More specifically, Vi ⊆ V is a set of vertices containing the
attributes matching a given parameter pi, for i = 1, . . . , l
Note that a vertex represents a concept with several attributes, it may con-
tain multiple attributes that correspond to different service parameters.
• Vop represents the sets of vertices in Vs that match the operation op

The elements of the sets V1, . . . , Vl and Vop are labeled with a matching score.
Given these matching scores, the edges in the graph Gs, Es, are also labeled with
a score.

5.3 Automatic Specification of Services’ Views

The objective of this step is to determine the most accurate reformulation of
services’ descriptions on top of the user data source schema by means of Steiner
trees. In the following, we start by giving some brief background on the Steiner
Tree Problem.

5.3.1 Steiner Trees Problem in Graphs

The Steiner Tree Problem (STP) is an important problem in combinatorial opti-
mization which has numerous applications, ranging from the design of integrated
circuits, evolution theory to the computer networking, etc. A Steiner tree is an
acyclic connected subgraph that spans a given subset of vertices. This problem
can be formulated in terms of an undirected graph G=(V,E) where V is the set of

118 Automatic Specification of Data Services’ Views

vertices, E is the set of edges, and S ⊆ V is a subset of vertices called terminals.
Given a cost function c: E 7→ R, the minimal Steiner tree problem asks for a
tree, T=(V’, E’), with V’ ⊆ V and E’ ⊆ E, spanning all the vertices of S such
that ∑

e∈E
c(e) is minimum. Note that a Steiner tree may include some vertices of

V\S. These are known as Steiner vertices.

Figure 5.3 – An Example of a Steiner Tree Problem

An example of a Steiner tree problem is shown in Figure 5.3, where the terminal
vertices are denoted by rectangles. The highlighted vertices and edges repre-
sent a Steiner tree for the given problem instance, covering all the terminals and
including three Steiner nodes.
Many different variants and generalizations of the Steiner tree problem have
been investigated in the literature. In this work, we are particularly interested
in the generalized version of STP in graphs, the so-called the Group Steiner Tree
Problem (GSTP).

5.3.1.1 Group Steiner Problem in Graphs

Motivated by the wire routing phase in physical VLSI design, the GSTP was
introduced by Reich and Widmayer [70] as a generalization of the STP, such
given an undirected graph and several subsets of required vertices called groups,
the goal is to find a shorted connected subgraph connecting at least one required
vertex from each group. The groups need not to be mutually disjoint vertex sets.
An example is shown in Figure 5.4.
The example includes a graph with three groups Q = {Q1, Q2, Q3}; the vertices
within each dotted region represents a group. The highlighted tree represents a
group Steiner tree connecting at least one vertex from each group, which is the

5.3 Automatic Specification of Services’ Views 119

Figure 5.4 – A Group Steiner Tree Connecting at Least One Vertex from Each Group
Q1 ,Q2 and Q3

only possible solution for this problem instance. Note that it is possible to have
more than one group Steiner tree for a different problem instance.
The GSTP can be stated formally as follows: given a graph G = (V, E) with the
cost function c: E 7→ R and groups of vertices g = {g1, g2, . . . , gk}, the objective
is to find the tree T of G with the minimum cost that contains at least one vertex
from each of the sets gi ∈ g. Formally, find T = (V’,E’) that minimizes ∑

e∈E′
c(e)

such that for all i ∈ {1,. . . ,k}.

5.3.2 Automatic Definition of Services’ Views

Given a schema graph Gs = (Vs, Es) and the matching results computed using a
matching tool, we define a weighted graph G(V,E), where V and E are the set of
vertices and edges in GS, respectively. In doing so, we weight nodes and edges
as follows (Eq.(5.1), respectively Eq.(5.2)):

wv(v) = 1−
∑

pi∈v match(pi)∑(pi ∈ v) (5.1)

Where
∑

pi∈v
match(pi)∑
(pi∈v) is the average matching score of all attributes ∈ v matching

different service parameters. Then wv(v) represents the non matching score and
therefore our aim is to find trees with nodes having the minimal weight as possible.

we(u, v) = 1−
∑

p∈p2−p1 match(p)
Card(p2 − p1)

(5.2)

120 Automatic Specification of Data Services’ Views

where p1 and p2 are respectively the set of parameters having matching attributes
in u and v. p2 − p1 is the difference between p1 and p2, in other terms, the set of
parameters matching provided by the node v but that do not have any possible
matching in u.
Thereafter, generating services’ views given the matchings obtained amount mainly
to identifying the Steiner trees entailed by such matchings in the graph Gs. A
Steiner tree can be viewed as the smallest tree connecting a given vertices in a
graph. The relevance of a solution tree T can be measured using the equation
Eq.5.3. Below, we use V(G) and E(G) to denote the set of nodes and the set
edges of the graph G, respectively.

Rel(T) =
∑

v∈V(T)
score(v) (5.3)

Enumerating all entailed Steiner trees as well as finding the best Steiner tree are
NP-Complete problems, i.e., there is no efficient way to identify them. This has
been proven by reducing the problem to a minimum set cover problem [69]. There
is therefore a need for a heuristic or approximation algorithm. In particular,
in our case we will be interested in using a method that allows us to identify
the top-k Steiner trees, given that enumerating all of them is not possible, and
more importantly, not useful in our case. We formally state our problem in the
following.

Problem Reformulation: Given l service parameters, find the top-k minimum
cost connected Steiner trees T1, . . . , Tk ranked with their relevance Rel(Tk) ≤
Rel(Tk−1) ≤ . . . ≤ Rel(T1). Such that:

7.1) Vi ∩ V(Tj) 6= ∅, for i = 1, . . . , l and j = 1, . . . , k, and
7.2) Vop ∩ V(Tj) 6= ∅ for j = 1, . . . , k

The first condition ensures that a solution tree cover concepts that represent all
the inputs and outputs of the service operation. Whereas the second condition
ensures that there is at least one node in the tree that has some correspondence
with the operation.

Consider the schema graph depicted in Figure 5.5 in which we represent only
concepts, each one is labeled with the set of possible parameters matchings. For
simplicity, we represent an attribute matching a parameter pi by the parameter
name pi, for i=1,. . . ,l. We denote match(pi) the matching score of a given at-
tribute att ∈ v.attributes with the parameter pi.

5.3 Automatic Specification of Services’ Views 121

Seller

(∅)

Book

(p1, 0.79)
(p2, 0.56)

Movie

(p1, 0.49)

Publisher

(∅)

Award

(p3, 0.52)

Author

(∅)

Conference

(p3, 0.52)

Researcher(p4, 0.6)
(p5, 0.61)

Actor

(∅)

Scenarist

(∅)

Person

(p3, 0.7)
(p4, 0.6)
(p5, 0.65)

Figure 5.5 – Overview of the Local Database Schema: Nodes and Edges

Our main aim is to find the top-k Steiner trees interconnecting different vi and
vop. In fact, the weight associated to each node reflects the score by which a node
is too far to match the data service parameters: the smaller the score, the higher
the probability that the corresponding node Vi is relevant for the service view
description.

We implement a dynamic programming solution by taking the heights, h, of
trees as stages, and find the top-k Steiner trees by expanding the trees with
height h=0,1,2, . . . ,H until k optimal trees are found. H is the largest number
of nodes which can be traversed to go from a given Vop to any node Vi such as
H = maxVop,Vi

d(Vop, Vi), where d(Vop, Vi) is the distance/ shortest path between
Vop and Vi.
Given a schema graph GS, a set of service parameters’ matchings Vi and a set of
service operation matchings Vop, Algorithm 11 outputs the top-k minimum cost
connected trees that contain all the nodes in Vop and at least one node in every
subset Vi. The optimal Steiner tree for mapping the data service description to
the user data source schema is found from the top-k Steiner trees computed by
the algorithm, for subsets of service parameters pi ⊆ p, with heights ≤ H.
Let T(v,p,h) be a tree rooted at node v with height h, containing a non-empty
set of parameters p. Every single node v in G containing a nonempty set of
parameters, p (⊆ P), is considered as a rooted tree with zero height, h = 0.
Such a tree does not have any edges, and therefore the cost of the tree is the

122 Automatic Specification of Data Services’ Views

Algorithme 11 : Top-k Service Views
Require : Schema graph GS = (V, E), the set of service operation matching

Vop, the set of service parameters matching V1, . . . , Vl

Ensure : Qk : a priority queue containing the Top-K Steiner trees sorted in the
decreasing order of matching scores

1 Let QT be a priority queue sorted in the increasing order of costs
2 QT , Qk ← ∅
3 h= 0
4 H = maxVi,Vop(d(Vi, Vop))
5 for each v ∈ (V ∩ Vi) do
6 enqueue T(v,p,0) into QT

7 while (QT 6= ∅) and (h < H) do
8 dequeue QT to T(v,p,h)
9 if (Card(p) = l) and (Vop ⊆ V (T)) then

10 enqueue T(v,p,h) into Qk

11 h ← h+1
12 if Vop 6⊆ V (T) then
13 compute Tg(v, p, h) from its neighbors (Eq.(5.6))
14 update QT with the new Tg(v, p, h)
15 compute Tm(vop, p ∪ p′, h) (Eq.(5.7))
16 update QT with the new Tm(v, p ∪ p′, h)

corresponding weight of the node v, as given below Eq.(5.4).

T (v, p, 0) = wv(v) (5.4)

Here, the left side is the tree, and the right side is its cost. Otherwise, if the
node does not contain any parameter p, its cost is T(v, ∅) = 1. In general, the
(minimum) cost of a tree T(v, p,h) is given below in Eq 5.5,

s(T) = 1−
(1− T (v0, p0, 0)) ∗ Card(p0) + ∑

ei∈E(T)(1− we(ei)) ∗ Card(pi)
Card(p) (5.5)

Where pi is the set of additional parameters matchings to be brought while con-
sidering the (relations/) edge ei.

Remark: s(T) is a number between 0 and 1 and 1-s(T) represent the matching
score of T to the data service.
Algorithm 11 maintains trees in a priority queue QT , by the increasing order

5.3 Automatic Specification of Services’ Views 123

of costs. The smallest cost tree is maintained at the top of the queue QT . We
manipulate the queue using three operators: Enqueue, Dequeue, and Update.

• Enqueue inserts a tree T(v, p,h) into the queue QT and QT is updated to
maintain the increasing order of costs of trees.
• Dequeue removes the top tree T(v, p,h) in QT .
• and finally Update first enqueues T(v, p,h) if it does not exist in QT and

updates QT to maintain the increasing order of costs.

Initially QT is empty, Algorithm 11 first enqueues all rooted trees T(v, p,h) into
QT such as v contains a subset of parameters p (⊆ P) (Algorithm 2, lines 5-
6). While the queue QT is non-empty and the trees height does not reach H,
the algorithm repeats to dequeue/enqueue trees in the attempt to make all trees
grow/merge individually to reach a tree containing all the service parameters
(their matchings). It iteratively dequeues the top tree T(v, p) from QT , which
has always the smallest cost among all trees rooted at v and containing the same
set of parameters p in QT .

Tree Grow: considering all the neighbors v ∈ N(u) of a node u, a neighbor
may or may not contain some additional parameters matchings p’. If yes, then
the left side of the equation 5.6 should be Tg(v, p ∪ p′, h). Note that T(v, p)
may or may not exist in QT . If not, T(v, p) = T(u, p)⊕ (u, v) is enqueued into
QT . Then QT will be updated. In both cases, QT ensures the increasing order of
costs. The case when u does contain some parameters p0 is similar. The line 14
handles the case of tree grow (Eq. 5.6).

Tg(v, p, h) = min{(v, u)⊕ T (u, p, h− 1)|u ∈ N(v)} (5.6)

Tree Merge: The case of tree merge (Eq. 5.7) is handled in line 17. As we are
interested to find Steiner trees having Vi as leaf nodes, our manner to do, is to
search for trees rooted at a given Vop. There are trees rooted at the same node
vop, each one containing different subsets of parameters: p1, p2, the algorithm
considers every possible disjoint pair of p1 and p2, T(v, p1 ∪ p2). We use ⊕ to
denote the operation to merge two trees into a new tree, and N(v) is the set of
neighbors of v in the schema graph GS such as N(v)={u|(v, u) ∈ E(GS)}.

Tm(v, p1 ∪ p2, h) = min{T (v, p1, h)⊕ T (v, p2, h)|p1 ∩ p2 = ∅} (5.7)

Then QT will be updated. In both cases, QT ensures the increasing order of

124 Automatic Specification of Data Services’ Views

(a) Tree Grow (Tg) (b) Tree Merge (Tm)

Figure 5.6 – Basic Operations used for the Construction of Steiner Trees

costs. If a given T(v,p) contains all Vi and Vop, the algorithm enqueues it in the
queue Qk containing top k optimal Steiner trees such it keeps always the Steiner
tree with the higher matching score in the top of the queue. It is important to
mention that if the number of found Steiner trees exceeds the size of Qk, trees
with the lower matching score are removed from Qk and new trees with higher
score are added to Qk.
In fact, the matching score of a tree T(v,p,h) is simply deduced from its score as
follows (Eq.(5.8)):

match(T) = 1− s(T) (5.8)

We analyze the time and space complexities of ’Top-Service Views’ Algorithm in
the following paragraphs.

Time Complexity Let T(v,p) be the minimum cost for a tree rooted at every
v ∈ V(G) containing a subset of service parameters, p⊆P where l = |P|. There are
totally n nodes, m edges and 2l∗R subsets of P where R = maxpi∈P(|matchs(pi)|).
The length of QT will be at most 2l∗R. Note that all trees can be enqueued/de-
queued into/from QT at most once. Eq.(5.6) is computed in lines 12-14 to grow
T(v,p). The total number of possible neighbors to be considered is bounded by
O(|N(v)|) such |N(v)| is the number of neighbors of v (line 13). QT need to be
updated in O(1) time and therefore the total time needed for tree_grow is O(m).
Eq.(5.7) is computed in lines 15-16 to merge two trees T(v,p1) and T(v,p2). For
every pair of non-empty disjoint set p1 and p2. Let consider T(v,p1), the total
number of possible trees T(v,p2) to merge is bounded by O(l-|p1|). Thus, the
total time needed for tree_merge is O(2l-(l+1)) = O(2l). So the worst-case com-
plexity is of O(2l∗R ∗ (2l + m)) = O(2l2∗R); under the assumption that deleting,
inserting and updating a Steiner tree in QT can be realized in O(1).

5.3 Automatic Specification of Services’ Views 125

Space Complexity T(v,p) represents a subtree in GS. Thus, we do not need
to store the whole tree in memory. We only record the edges from which T
is constructed and the set of parameters’ matchings it covers. Therefore, the
space needed for storing T(v,p) is bounded by O(1) and hence the maximum
size of QT is bounded by O(2l∗R), resulting in a space complexity of O(2l∗R) in
the worst case. Consider a data service with four I/O parameters (l=4) and
given ground truth matchings, we have exactly one matching per each parameter
in the local database (R=1). The top-k Steiner trees are obtained from the 8
constructed trees in QT .Now, suppose that each parameter has at max three
candidate correspondences (R=3). In the worst case, 2(3∗4) trees are constructed
and enqueued in QT , and from which the best trees are selected.
Given a large number of matching candidates, our algorithm consumes much
more memory and time, as it constructs all possible Steiner trees covering service
parameters. Therefore, the less matching candidates we have as input, the better
our algorithm performs. Nonetheless, time and space complexities do not reflect
the quality of the algorithm outputs (top constructed Steiner trees and hence the
quality of corresponding reformulations). Our aim is to output the best Service
reformulations (top Steiner trees) in priority and not optimizing the algorithm
performance.
Top-k Steiner tree computation has been previously studied in the context of
keyword search on relational databases [22, 46, 51, 30]. Given an l keyword
query, p1, p2, . . . , pl against a relational database modeled as a weighted graph,
the proposed algorithms study finding top-k minimum cost connected trees that
contains all keywords. For our purpose, we adopted the same strategy as given in
[30]. The proposed algorithm DPH-1 explores all Steiner trees with heights h ≤
H = diameter(G) = O(n), from which the optimal GST-1 (Group Steiner Tree)
is found. The main problem of DPH-1 is that it cannot determine whether the
current minimal cost Steiner tree spanning all the keywords is the optimal until
h reaches its maximal value, H. For this purpose, the authors proposed another
solution with a best first strategy (DPBF-1) to reduce the space complexity
required by the DPH-1 algorithm. With the best-first strategy, the DPBF-1
algorithm can terminate once it finds a connected tree containing all the searched
keywords such that the first tree found is the optimal Steiner tree. However,
this is not useful in our case such we can not terminate the algorithm once a
connected tree connecting all service parameters is found. Actually, the candidate
semantic correspondences for a service parameter pi can be scattered in different
nodes in the graph. Thereafter, the first tree found would be the minimal cost
tree spanning all service parameters through a little number of nodes (with a

126 Automatic Specification of Data Services’ Views

height h’), whereas there may exist another connected tree with a less cost but
including more nodes to get the appropriate matching from the graph (having
a height h ≤ h’). Moreover, we cannot ensure that the optimal Steiner tree
is always the tree with the minimal score (with the highest matching score)
given the uncertainty about the matching scores computed by matching tools.
Thus, we choose to select the top-k Steiner trees from the found ones, such k
= max(|matches(pi)|) taking into consideration the minimal number of different
reformulations, a service parameter can participate in. k can also be specified by
the user (the database expert).

5.4 Case Study

Continuing with the schema graph depicted in Figure 5.5, and consider the service
operation GetBook from AbeBooks.com15, which given a book title, returns its
isbn, the authors names, the publisher name, the publication date, the available
quantity, the seller name, its location and rating. We denote the set of input and
output parameters as follows: p = {p1(title), p2(isbn10), p3(isbn13), p4(authors),
p5(publisher), p6(date of publication), p7(quantity available), p8(seller), p9(seller

location), p10(seller rating), p11(price)}.
After analyzing the operation name and the corresponding textual description,
we determine the set of service matching, Vop = {Book}.
The following step is to identify semantic correspondences between the local
database schema and the service parameters. Schema matching can be done
manually by an expert or (semi-)automatically using a matching tool. To show
the effectiveness of our algorithm system, we show in a first series of experi-
ments the top service views generated based on a ground truth (GT) matches
we manually specified. In a second series of experiments, we rely on matching
results computed using COMA++ [14], one of the best schema matching tools
[31]. We demonstrate in the subsequent sections the working of Algorithm 11
using different matching results.

5.4.1 Generation of Service Views using Ground Truth
Matching

Despite the big number of research and commercial matching approaches au-
tomating most of the matching process, computed correspondences typically need
to be validated and corrected by users to achieve the correct match mappings.

15https://www.abebooks.com/

5.4 Case Study 127

Thus, we rely in a first try on a domain expert to match the services’ param-
eters to the target database schema, in order to provide a basis for evaluating
the quality and the effectiveness of our algorithm proposed for the generation
of services’ views. Table 5.1 shows the correspondences between the parameters
of the service getBook and the local database schema (see Figure 5.5), specified
manually by the expert. Each service parameter has exactly one correspondence
from the local database with a matching score equals to 1.

matching: service ←→ localdatabase score
getBook.title ←→ Book.title 1

getBook.isbn10 ←→ Book.isbn10 1
getBook.isbn13 ←→ Book.isbn13 1

getBook.date of publication ←→ Book.publication_date 1
getBook.price ←→ Book.price 1

getBook.quantity_available ←→ Book.available_quantity 1
getBook.authors ←→ Person.name 1

getBook.publisher ←→ Publisher.name 1
getBook.seller ←→ Seller.name 1

getBook.seller_location ←→ Seller.country 1
getBook.seller_rating ←→ Seller.rating 1

Table 5.1 – Schema Matching Defined Manually by an Expert

We first start by demonstrating the ’Top-k Service Views’ algorithm. The corre-
sponding groups Vi are the following:

• Vtitle = V1 = {Book}

• Visbn10 = V2 = {Book}

• Visbn13 = V3 = {Book}

• Vdateofpublication = V4 = {Book}

• Vquantityavailable = V5 = {Book}

• Vauthors = V6 = {Person}

• Vpublisher = V7 = {Publisher}

• Vseller = V8 = {Seller}

• Vsellerlocation = V9 = {Seller}

• Vsellerrating = V10 = {Seller}

• Vprice = V11 = {Book}

Algorithm 11 starts by computing H, the maximal number of nodes a Steiner tree
can contain. In the algorithm, H represents the maximal number of tree-grow
that can be applied on a given tree (a rooted tree). In this case, H=2, which

128 Automatic Specification of Data Services’ Views

means that the algorithm will stop processing once h becomes equal to 2. In
the following, we will illustrate how our algorithm works in three main iterations
(when h=0, h=1 and finally when h=2).

As shown in Figure 5.7, the algorithm 11 initially enqueues four rooted trees in QT

(lines 5-6); T(vBook, {p1, p2, p3, p6, p7, p11}, 0), T(vP erson, {p4}, 0), T(vP ublisher,
{p5}, 0), T(vSeller, {p8, p9, p10}, 0). We recall that the priority queue keeps always
the tree with the smallest cost S(T), in other words with the higher matching
score, in the top.
All these rooted trees are dequeued and new trees are constructed and enqueued

Figure 5.7 – Construction of Rooted Trees

into QT based on the case of tree-grow (see Figure 5.8). The algorithm keeps
expanding the trees with heights h=1,2. Thereafter, it proceeds to merge the
constructed trees with the aim of finding the top-k minimum cost Steiner trees
covering all the parameters of the service getBook. Figure 5.9 shows some of the
constructed trees after the merge operation.
Two Steiner trees were found with a matching score equals to 1. Note that the
first Steiner tree, depicted in Figure 5.11b, is the same as the view we manually
defined in Chapter 4. The second tree includes one more node ’Movie’, a Steiner
node used as a bridge to reach the node ’Seller’. Such node can be removed
without affecting the quality of the resulting reformulation, that is the Steiner
tree 1.
Finally, two service views were generated for the service getBook with a matching
score equals to 1 (see Listing 5.1 and Listing 5.2).

5.4 Case Study 129

Book Seller Person Publisher

(a) h = 0
Movie

Seller

Book

Seller

Publisher

Book

Author

Book

Movie

Book

Seller

Book

Award

Book

Book

Publisher

Author

Person

Researcher

Person

Actor

Person

(b) h = 1
Publisher

Book

Seller

Author

Book

Seller

Movie

Book

Seller

Award

Book

Seller

Author

Book

Publisher

Movie

Book

Publisher

Seller

Book

Publisher

Award

Book

Publisher

Researcher

Book

Author

Person

Book

Author

Actor

Movie

Book

Seller

Movie

Book

Award

Movie

Book

Conference

Award

Book

Movie

Award

Book

Actor

Movie

Seller

Book

Movie

Seller

Award

Movie

Seller

Researcher

Author

Person

Book

Author

Person

Author

Researcher

Person

Movie

Actor

Person

(c) h = 2

Figure 5.8 – Tree Grow

1 Vget Book : S e l l e r (o1) , r a t i n g (o1 , p1) ,name(o1 , p2) , l o c a t i o n (o1 , p3) , Pub l i she r (o2) ,name
(o2 , p4) , Book (o3) , i sbn10 (o3 , p5) , i sbn13 (o3 , p6) , t i t l e (o3 , p7) , p r i c e (o3 , p8) ,
pub l i cat ion_date (o3 , p9) , ava i l ab l e_quant i ty (o3 , p10) , Person (o4) ,name(o4 , p11) ,
Author (o5) , have (o1 , o3) , id (o1 , p12) , s e l l e r (o3 , p13) , pub l i shed (o2 , o3) , id (o2 , p14)
, p u b l i s h e r (o3 , p15) , works_as (o4 , o5) , id (o4 , p16) , id (o5 , p17) , wrote (o5 , o3) , author
(o3 , p18)

Listing 5.1 – User-centric View of the service getBook, representing the Steiner
tree 1

1 Vget Book : Pub l i she r (o1) ,name(o1 , p1) , Author (o2) , Movie (o3) , S e l l e r (o4) ,name(o4 , p2) ,
r a t i n g (o4 , p3) , l o c a t i o n (o4 , p4) , Person (o5) ,name(o5 , p5) , Book (o6) , i sbn10 (o6 , p6) ,
i sbn13 (o6 , p7) , t i t l e (o6 , p8) , p r i c e (o6 , p9) , pub l i cat ion_date (o6 , p10) ,
ava i l ab l e_quant i ty (o6 , p11) , pub l i shed (o1 , o6) , id (o1 , p12) , p u b l i s h e r (o6 , p13) ,
wrote (o2 , o6) , id (o2 , p14) , author (o6 , p15) , based_on (o3 , o6) , id (o3 , p16) , movie (o6 ,
p17) , have (o4 , o3) , movie (o4 , p18) , works_as (o5 , o2) , id (o5 , p18)

130 Automatic Specification of Data Services’ Views

Movie

Seller Book

Researcher

Author Book

Seller

Publisher Book

Author

Person Book

(a) h = 1
Award

Book

Publisher

Movie

Seller

Award

Book Movie

Seller

Actor

Person Movie

Book

Actor

Person Movie

Seller

Book

Publisher Movie

Seller

Book

Publisher Author

Person

Book

Publisher Seller Author

Person

Book

Publisher Movie

Seller

Author

Person

Author

Person Book

Seller

Author

Book Person

Researcher

Movie

Seller Book

Publisher

Actor

Person

Movie

Seller Award

Book

Actor

Person

Author

Person Book

Publisher

Author

Book

Seller

Person

Researcher

Author

Book

Publisher

Person

Researcher

Movie

Book

Seller

Actor

Person

Movie

Book

Publisher

Actor

Person

Movie

Award

Book

Actor

Person

Movie

Seller Actor

Person

Movie

Book Actor

Person

Movie

Seller Award

Book

Movie

Book Seller Actor

Person

(b) h = 2

Figure 5.9 – Tree Merge

Listing 5.2 – User-centric View of the service getBook, representing the Steiner
tree 2

We notice the existence of additional conjuncts such as works_as(o4,o5), id(o4,p14)
and wrote(o5,p16) in Listing 5.1. These conjuncts represent the relationships be-

5.4 Case Study 131

Book p1, p2, p3, p6, p7, p11

Author

Person p4

Seller

p8, p9, p10

Publisher

p5

(a) Top 1 with a matching score = 1.0

Book p1, p2, p3, p6, p7, p11

Author

Person p4

Movie

Seller p8, p9, p10

Publisher p5

(b) Top 2 with a matching score = 1.0

Figure 5.10 – Generated Steiner Trees

tween the different nodes (e.g., foreign keys in relational databases, edges in graph
databases, etc.).

5.4.2 Generation of Service Views using Approximate Match-
ing

In the past, schema matching is largely performed manually by domain experts,
and therefore a time-consuming and tedious process. To reduce the manual ef-
fort required, many techniques and prototypes have been developed to (semi-
)automatically solve the match problem. The proposed approaches typically
exploit metadata (e.g. schema characteristics such as element names, data types
and structural properties), characteristics of data instances, as well as background
knowledge from dictionaries and thesauri. In the following, we illustrate the views
generation step given the matching results of one selected COMA++ matcher.

5.4.2.1 Schema Matching using COMA++

COMA++ is a schema and ontology matching tool that supports different match
strategies. In the following, we apply the NodesNames matcher to compute and
identify the possible semantic correspondences of each service parameter in the
local database.

NodesNames Matcher: This matcher only considers the element names. It
first performs some pre-processing steps such as the tokenization to derive a set of
components (tokens) of a name and it expands abbreviations and acronyms. The
Name matcher then applies multiple simple matchers, such as Affix, Trigram, and

132 Automatic Specification of Data Services’ Views

Synonym, on the token sets of the names and combines the obtained similarity
values for tokens to derive similarity values between element names [32]. Table
5.2 summarizes the matching results computed using the NodesNames workflow
of Coma++.

matching: service ←→ local database score
getBook.title ←→ Book.title 1.0
getBook.title ←→ Movie.title 1.0

getBook.isbn10 ←→Book.isbn10 1.0
getBook.isbn13 ←→ Book.isbn13 1.0
getBook.authors ←→ Book.author 0.7
getBook.authors ←→ Author.id 0.7

getBook.publisher ←→ Book.publisher 1.0
getBook.publisher ←→ Publisher.id 1.0

getBook.date_of_publication ←→ Book.publication_date 0.56
getBook.quantity_available ←→ Book.available_quantity 0.65

getBook.price ←→ Book.price 1.0
getBook.seller ←→ Book.seller 1.0
getBook.seller ←→ Seller.id 1.0

getBook.seller_location ←→ Seller.location 1.0
getBook.seller_rating ←→ Seller.rating 0.52
getBook.seller_rating ←→Movie.rating 0.52

Table 5.2 – NodesNamesW Matching Results

The generated service views are depicted in the followings listings: Listing 5.3,
Listing 5.4 and Listing 5.5.

1 Vget Book : S e l l e r (o1) , r a t i n g (o1 , p1) , l o c a t i o n (o1 , p2) , id (o1 , p3) , Pub l i she r (o2) , Book (
o3) , i sbn10 (o3 , p4) , i sbn13 (o3 , p5) , t i t l e (o3 , p6) , p r i c e (o3 , p7) , author (o3 , p8) ,
s e l l e r (o3 , p9) , pub l i cat ion_date (o3 , p10) , ava i l ab l e_quant i ty (o3 , p11) , Author (o4)
, have (o1 , o3) , pub l i shed (o2 , o3) , id (o2 , p12) , p u b l i s h e r (o3 , p13) , wrote (o4 , o3) , id (
o4 , p14)

Listing 5.3 – User-centric View of the service getBook, representing the Steiner
tree 1

1 Vget Book : S e l l e r (o1) , r a t i n g (o1 , p1) , l o c a t i o n (o1 , p2) , id (o1 , p3) , Movie (o2) , t i t l e (o2 ,
p4) , Book (o3) , i sbn10 (o3 , p5) , i sbn13 (o3 , p6) , p r i c e (o3 , p7) , author (o3 , p8) , s e l l e r (
o3 , p9) , pub l i cat ion_date (o3 , p10) , ava i l ab l e_quant i ty (o3 , p11) , Author (o4) ,
Pub l i she r (o5) , have (o1 , o2) , movie (o1 , p12) , id (o2 , p13) , based_on (o2 , o3) , movie (o3 ,
p14) , wrote (o4 , o3) , id (o4 , p15) , pub l i shed (o5 , o3) , id (o5 , p16) , p u b l i s h e r (o3 , p17)

Listing 5.4 – User-centric View of the service getBook, representing the Steiner
tree 2

5.4 Case Study 133

Book p1, p2, p3, p4, p5, p6, p7, p8, p11

Seller

p8, p9, p10

Publisher p5 Author

p4

(a) Top 1 with a matching score = 0.857

Book p2, p3, p4, p5, p6, p7, p8, p11

Seller

p8, p9, p10

Movie

p1

Publisher

p5

Author

p4

(b) Top 2 with a matching score = 0.857

Book p2, p3, p4, p5, p6, p7, p8, p11

Seller

p8, p9

Award

Movie p1, p10

Publisher

p5

Author

p4

(c) Top 3 with a matching score = 0.857

Figure 5.11 – Generated Steiner Trees

1 Vget Book : Pub l i she r (o1) , id (o1 , p1) , Author (o2) , Movie (o3) , r a t i n g (o3 , p2) , t i t l e (o3 , p3
) ,Award(o4) , S e l l e r (o5) , l o c a t i o n (o5 , p4) , Book (o6) , i sbn10 (o6 , p5) , i sbn13 (o6 , p6) ,
p r i c e (o6 , p7) , author (o6 , p8) , s e l l e r (o6 , p9) , ava i l ab l e_quant i ty (o6 , p10) ,
pub l i cat ion_date (o6 , p11) , pub l i shed (o1 , o6) , p u b l i s h e r (o6 , p12) , wrote (o2 , o6) , id (
o2 , p13) , took (o3 , o4) , awards (o3 , p14) , id (o4 , p15) , g iven_for (o4 , o6) , award (o6 , p16)
, have (o5 , o6) , id (o5 , p17)

Listing 5.5 – User-centric View of the service getBook, representing the Steiner
tree 3

Remark 1: There are several ways to connect a set of nodes Vi ⊆ Vs, however
our algorithm ensures that all leaf nodes of the discovered tree represent different
Vi (and that Vop are Steiner nodes). To do so, Algorithm 11 finds different Steiner
trees connecting a given node Vi and at least a node Vop such that Vi remains
a leaf node and Vop represents either the root or a Steiner point. Then, at a
given height h=1, . . . , H , the algorithm can discover a possible merger that can
eventually represent the service view.

134 Automatic Specification of Data Services’ Views

5.5 Experiments

To provide a basis for evaluating the quality of automatic services’ views spec-
ification, we conducted a number of experiments using the results of different
matching tools. Next, we propose metrics for measuring the performance of the
views generator and justify the rationale behind our choice. Then, we will report
on some of the significant results.

5.5.1 Performance Metrics

Comparing the data instances retrieved using the automatically generated ser-
vices’ views with the real (relevant) answers satisfying the user data queries can
be used to evaluate the query reformulation quality16 as shown in Figure 5.12. In
particular, the set of automatically obtained answers is comprised of B, the data
of interest or the true positives, and C, the false positives. False negatives (A)
represent the requested data but not retrieved using the automatically generated
services’ views, while false positives (C) represent the set of irrelevant data which
has been retrieved. Finally, true negatives (D) represent the data the user is not
interested in and which has been correctly discarded by the query reformulations.
Intuitively, false negatives and false positives reduce the views quality.
To evaluate the performance of the views generator, two objective measures from
the information retrieval field, Precision and Recall, can be computed [20, 52]17

based on the cardinality of the sets described above. In a first set of experiments,
we only consider the top-1 views automatically generated by our algorithm for
the data services in the Service Lake, execute the corresponding web calls, and
we finally examine the obtained results as follows:

Precision: is defined as the percentage of relevant instances among the re-
trieved data. It depicts the probability that the services’ views automatically
defined by our views generator return the information of interest to the user (the
data requested in the data queries).

precision = |{retrieved data} ∩ {requested data}|
|{retrieved data}|

= |B|
|B|+ |C| (5.9)

16Query reformulation refers to the process of
rewriting the service description over the user
data source schema

17In [20], Precision and Recall are called
soundness and completeness, respectively

5.5 Experiments 135

Figure 5.12 – Comparison between Requested and Retrieved Data Using the Automat-
ically Generated Services’ Views

Recall: is defined as the fraction of relevant data that have been retrieved over
the requested data. In other terms, it depicts the probability that a requested
information can be properly obtained using the selected service view.

recall = |{requested data} ∩ {retrieved data}|
|{requested data}|

= |B|
|B|+ |A| (5.10)

In the ideal case, when all and only the data of interest is returned (no false
negatives and false positives are returned), we have Precision = Recall = 1.
However, neither Precision nor Recall alone can efficiently assess the views quality.
In particular, Recall can easily be maximized at the expense of a poor Precision
by returning as many information as possible independently of its relevance, e.g.
movies’ titles instead of books’ titles. On the other side, a high Precision can
be achieved at the expense of a poor Recall by returning only few but correct
answers. Hence it is necessary to consider both measures or a combined measure
such as:

F-measure: is the weighted average of Precision and Recall, defined as the
harmonic mean of both values and formulated as follows:

F −measure = 2 ∗ precision ∗ recall

precision + recall
(5.11)

Overall: represents a combined measure introduced in the context of schema
matching, specifically to quantify the post-match effort needed to improve the

136 Automatic Specification of Data Services’ Views

results of schema matching tools [55]18. For the same purpose, we use the overall
measure in our context to quantify the post-effort needed for improving the gen-
erated services’ views quality which depends in a large part on the post-match
effort needed to improve the matching results before proceeding to the views def-
inition. The greater the overall value is, the less post-match effort the user has
to provide.

Overall = recall ∗ (2− 1
precision

) = |A|+ |C|
|A|+ |B| = |B| − |C|

|A|+ |B| (5.12)

The notion of Overall only makes sense if precision is not less than 0.5 [31], i.e
at least half of the returned answers are correct. Otherwise, we get a negative
overall. Indeed, if more than a half of the obtained answers are not relevant,
it would take the user more effort to remove the irrelevant data that has been
integrated in the local database, look for the desired answers and integrate it in
the database of interest than manually enriching the local dataset from scratch.
The best overall 1.0 is achieved when both precision and recall are equal to 1.0.
In a second series of experiment, we go a step further to evaluate the impact of k,
the number of top considered service views, on the outcome in terms of precision,
recall, f-measure and overall values. We test our algorithm using the same data
services that we used in the previous experiments. We vary k from 1, 3,... to
15, and report our results in Figure 5.12. Our objective is to maximize recall,
f-measure and overall values without letting precision drop below 0.5.

5.5.2 Baseline Results & Discussion

The entire evaluation consisted of the generation of views over 100 data services
from different domains such we investigated different matching methods and dif-
ferent matchers for deriving semantic mappings between the user data source
schema and the services’ descriptions. The quality measures Precision, Recall,
F-measure and Overall were first determined for top-1 services’ views and the
results are summarized in Table 5.3.

The results show that the use of ground truth matching for the generation of
service views significantly outperforms the use of approximate matches computed
using different matching tools, with an averaged precision of 100%, a recall of
82%, an f-measure of 90% and an overall of 81%.

18Overall has been introduced in [55] under the name Accuracy

5.5 Experiments 137

Matching Method Precision Recall F-measure Overall
Manual 1 0.82 0.90 0.81

COMA++ (NodesPath matcher) 0.66 0.42 0.78 0.20
COMA++(AllContext matcher) 0.93 0.66 0.80 0.61
COMA++ (NodesName matcher) 0.70 0.46 0.80 0.26

Table 5.3 – Average Precision, Recall and F-measure for Top-1 Services’ Views Gener-
ated Based on Different Matching Results

Noteworthy is that it not always possible to find a matching partner for all
services’ parameters. The reason is that none of its correspondences exist in the
database against which users’ queries are posed, and thus obtaining a recall less
than 1.0 even when using ground truth matchings. Given a 100% of precision,
the overall is the same than recall. This confirms that overall is more pessimistic
than f-measure in this case (81% against 90%).
We also notice that the reformulations of services’ descriptions based on the
COMA++ AllContext matcher results achieves a high precision of 93%. The
reason is that the AllContext matcher identifies and matches all contexts by
considering for a shared element all paths (sequences of nodes) from the root to
the element, and it then identifies correct matchings [33]. On the other hand,
both the NodesName and the NodesPath matchers produce the worst results.
The results obtained based on the NodesName matcher results slightly achieves a
better precision and recall than those results derived using the NodesPath matcher
results (46% against 42% of recall and 70% against 66% of precision). We also
notice that the small difference between the AllContext matcher and the two
other COMA++ matchers (20% of recall and precision) involves a large gap with
the overall (almost 40%). On the contrary, we notice a close f-measure for all the
three different COMA++ matcher.
To conclude, the obtained results demonstrate the impact of the matching choices
on the quality of the automatic specification of services’ views. The more accurate
the matching results are, the higher precision, recall, f-measure and overall values
we get (see Figure 5.13).
The achieved results also vary when the number of nodes needed for the refor-
mulation of services’ descriptions varies. This number reflects the number of join
relations that must be involved in the service view. The more the matches of
services’ parameters are scattered in different nodes in the schema graph, the
worst(smaller) the precision is. The reason is that the number of nodes to be ex-
plored for the description of services’ views is greater, thus increasing the number

138 Automatic Specification of Data Services’ Views

(a) Precision (b) Recall

(c) F-measure

Figure 5.13 – Matching Results versus Views Definition Results

of possible Steiner trees connecting those nodes.
In our second series of experiments, we varied k from 1 to 15. Then, we study
its impact on all of the evaluation metrics described above in Figure 5.12. As
expected, the average precision is always equal to 1 when using ground truth
matchings, while the average recall, f-measure and overall decreases when k in-
creases from 1 to 15. However, we notice a different behavior when using au-
tomatic schema matching results. The average precision, recall, f-measure and
overall curves change once for the better and another for the worst when varying
k. In particular, the quality of the views generated based on the matching results
computed using the allContext matcher is much better than the other matchers’
results quality and achieves its maximum when k=1. This mainly reflects the
matching quality of the performed matcher such as the allContext matcher out-
performs the other matchers in providing correct matchings. We also notice that
the best quality results are not necessarily achieved at k=1 when the NodesName
or the NodesPath matcher are applied to derive the semantic correspondences
between the user schema and the services’ parameters. The reason is that these
matchers do not consider all the matching context and therefore they do not asso-
ciate different matching scores between candidate correspondences since they are
expressed similarly, which resulted in a large number of false positives. Hence, a

5.6 Concluding Remarks 139

poor overall is achieved (less than 0.5).
In conclusion, our results indicate that our approach can perform reasonably well
and output correct service views when ground truth matches are provided. Also,
the use of the matching results derived by the AllContext COMA++ matcher
achieves a good quality views (overall > 60 %). In a nutshell, our approach is
agnostic to how correspondences are created, but is cognizant that the matchings
automatically computed are often incomplete, and sometimes incorrect. Despite
many efforts in research and industry, even the best schema matching algorithms
do not output 100% correct matching results, especially those fully-automatic
algorithms where there is no human designer in the loop. Since the matching
results largely influence the accuracy of the generated views, all suggestions are
subject to user feedback for confirmation or correction.

5.6 Concluding Remarks

In this chapter, we have presented an automatic approach for defining data ser-
vice views over the concepts of a given data source. We therefore studied finding
top-k minimum cost group Steiner trees. The top-k found trees represent the
best-matching service views of a given data service. The final choice of the most
appropriate service view is done by a data expert. This approach is implemented
as a prototype and validated by experiments using different real data services.
The main motivation behind this work is the fact that despite many composition
approaches that have been developed so far, the definition of service views has
traditionally been carried out manually by experts when looking for services. To
the best of our knowledge, there is no previous work that has dealt with the
automation of the services’ views definition.

Chapter 6

A Model-Driven Framework for
the Modeling and the
Description of Data-as-a-Service
to Assist Service Selection and
Composition

Contents
6.1 Model Driven Engineering for the Cloud 142

6.1.1 MDE, Model Driven Engineering 143
6.1.2 MDA, Model Driven Architecture 143
6.1.3 MDA for the Modeling of DaaS 144

6.2 MoDaaS for the Modeling and the Description of
DaaS . 145

6.2.1 Overall Architecture 146
6.2.2 DaaSMetaModel: a Meta-model for the Modeling of

DaaS Concerns . 147
6.2.3 MoDaaS Editor & Semantic Annotation of DaaS . . . 149
6.2.4 Automatic Generation of RDF Views 151
6.2.5 Assistance to DaaS Selection & Composition 152

6.3 Validation . 152
6.3.1 Implementation . 153
6.3.2 Case Studies . 153

6.4 Concluding Remarks 157

142
A Model-Driven Framework for the Modeling and the Description of Data-as-a-Service

to Assist Service Selection and Composition

In the previous chapter, we have presented a new approach for automating the
definition of services’ views expressed in terms of vocabularies automatically de-
rived from the schema of the user database under the assumption that services’
descriptions are complete. The generated views would be significantly more useful
if it were expressed in terms of commonly used vocabularies, a domain ontology
for instance. Furthermore, most data providers in the cloud describe their ser-
vices’ capabilities in HTML pages of their websites. Thus, human efforts are
always needed to read and to convert the HTML descriptions into a standard
machine readable model. With no doubt, reading all the different DaaSs’ docu-
mentation each time we want to add new DaaS services to the Service Lake is
not the best alternative. In such context, our main aim of this work is to make
DaaS descriptions complete and machine readable in order to assist automatic
service selection and composition (see Chapter 4) .

We present in this chapter MoDaaS, a Model-Driven framework for the mod-
eling and the description of data services and DaaS services in particular. This
is an intuitive abstraction, based on MDE standards, enabling DaaS providers to
model the services they propose according to a domain ontology and to automati-
cally generate RDF views over the concepts of the underlying ontology. Our work
can be seen as a complementary approach to many existing approaches for the
discovery and the composition of data providing services. This chapter is orga-
nized as follows. In Section 6.1, we first describe briefly the background of Model
Driven Engineering (MDE). Then, we discuss how to apply MDE techniques to
assist service selection and composition. Section 6.2 presents MoDaaS, our DaaS
modeling framework, the whole modeling process giving a detailed description
of each step. After that, we describe the implementation and we showcase the
working of our solution using a case study in Section 6.3, and finally we conclude
the chapter in Section 6.4.

6.1 Model Driven Engineering for the Cloud

In this section, we first review some important MDE notions. Then, we discuss
how MDE techniques can be used to assist service selection and composition.

6.1 Model Driven Engineering for the Cloud 143

6.1.1 MDE, Model Driven Engineering

MDE is becoming an emergent software engineering paradigm to specify, develop
and maintain software systems where models are the primary artifact of the en-
gineering process and are used, for instance, to (semi)automatically generate the
implementation of the final software system [10].

According to the Object Management Group (OMG), MDE is a specific approach
to software engineering that defines a theoretical framework for generating a code
from models using successive model transformations. The main goal of this ap-
proach is to separate the business side of a system from its implementation. The
business model of a system can therefore drive its implementations on different
platforms. In this way, MDE aims to raise the level of abstraction in program
specification and increase automation in program development, and thus, we can
expect to obtain better coherence between implementation and interoperability.

In particular, MDE is based on two key elements: meta-modeling and model
transformations. Meta-modeling defines the structure and semantics of domain
models, while transformations ensures the automatic model manipulation for
different purposes, like refactoring, model querying, code generation, language
mappings and conversions between technological spaces. The best-known MDE
initiative is the MDA proposed by the OMG19.

6.1.2 MDA, Model Driven Architecture

Model Driven Architecture (MDA) is a model driven approach to software devel-
opment governed by the OMG, where models abstract the business functionality
of the software system from its implementation on specific platforms. More specif-
ically, it aims to separate the application structure (PIM, Platform Independent
Model) from its functionality (PSM, Platform Specific Model). The mapping
between these models is realized by model transformation, either the model-to-
model transformation or model-to-text transformation.

Definition 5 A transformation is defined as the process of the automatic gener-
ation of a target model from a source model, according to a set of defined rules.

All transformations are based on the abstract syntax, themeta-model. In a model-
to-model transformation, the source model is transformed to another model as

19http://www.omg.org/mda/

144
A Model-Driven Framework for the Modeling and the Description of Data-as-a-Service

to Assist Service Selection and Composition

illustrated in Figure 6.1. Whereas, in a model-to-text transformation, the model
is transformed to text (a source code or any other kind of text).

Figure 6.1 – Process of the Model-Driven Architecture

6.1.3 MDA for the Modeling of DaaS

As mentioned above, MDA techniques can facilitate and (semi-)automate the
modeling and the development of new services and applications. Several ap-
proaches have already explored this possibility for different purposes [23, 58, 63,
10, 60]. Yet, there is not a consensus on the right set of models, languages, model
transformations for the model-driven modeling and development of data services
despite the numerous advantages and benefits that MDA techniques can bring to
make the most of data services. Follows are the most important:

• Construction of a generic and complete model for the description of DaaS:
Service consumers need to distinguish services based on their functional and
non-functional criteria to make the most appropriate choice among a number
of DaaSs providing the same information. Therefore, we emphasize the
need for a modeling framework to semi-automatically create DaaS models
that define the capabilities of DaaS services, including functional and non
functional properties, and to make DaaS descriptions complete and machine
readable. MDA promotes the creation of machine-readable, highly abstract
DaaS models that are developed independently from its implementation
technology. Thereafter, the created DaaS models can be accessed repeatedly
and automatically processed by tools.
• Overcoming data heterogeneity: One of the major issues faced during the

selection and the composition of data services is the possible heterogeneities
that can occur between the user data query and the service description

6.2 MoDaaS for the Modeling and the Description of DaaS 145

or among different services’ descriptions in a composition. Considerable
attention has been focused recently on MDE as an alternative solution to
overcome heterogeneities’ concerns. In our context, enabling DaaS providers
to integrate semantic information about the services and the data they pro-
vide by modeling their functional capabilities according to a shared ontology
within a model-driven framework can help to bridge the different knowledge
representations. Thereby, DaaS capabilities and their associated data con-
cerns can be easily processed by service selection and composition tools.
• Reusability: Using model transformations, the same DaaS model can be

automatically transformed into different reformulations and thereafter it can
be reused to generate views over different ontologies, and uunder different
formats (RDF views, Conjunctive queries, etc.). This constitutes a strong
benefit since it avoids the time waste in manual implementing views.

As far as we know, only ODaaS, a model-driven initiative has already explored
this possibility [74] in the literature. Our work complements these efforts by
providing an integrated framework to automatically define services’ views over
a mediated ontology given their descriptions. The key idea is to define a higher
description level on top of the traditional service descriptions in WSDL, OWL-S,
etc, among which DaaS providers define their DaaS capabilities. More specifi-
cally, we are interested in creating and exploring well-established models to rep-
resent all the concerns of DaaSs, including data quality concerns; in particular,
(1) a meta-model that captures all the (main) concerns associated with DaaS
services and the provided data, (2) a modeling tool which provides an intuitive
user interface allowing DaaS providers to define and model their DaaS services
according to a shared ontology, and finally (3) a view generator which establish
mappings between the data provided by the DaaS and the domain ontology. In
the following, we will present MoDaaS, its building blocks and how they tackle
the problems identified above.

6.2 MoDaaS for the Modeling and the Descrip-
tion of DaaS

Our goal is to provide a complete solution that assists DaaS providers to describe
their services capabilities and properties. In this section, we present more details
about the MoDaaS architecture, giving the main components and the main steps
required for modeling and annotating DaaS services.

146
A Model-Driven Framework for the Modeling and the Description of Data-as-a-Service

to Assist Service Selection and Composition

6.2.1 Overall Architecture

Figure 6.2 shows MoDaaS architecture. It includes three main modeling tools:
DaaSMetaModel, MoDaaS Editor and the View Generator. We have used Eclipse
Modeling Framework to develop the meta-model and the generative capabilities
within our framework. Actually, both MoDaaSEditor and ViewGenerator use
DaaSMetaModel in order to guarantee the creation of only valid models and the
generation of relevant service views.

Figure 6.2 – Overall Architecture of the MoDaaS Framework

Following MDA practices, the modeling and the annotation of a DaaS service is
achieved in three-step process:
First, DaaS providers describe their service capabilities and properties through
the creation of a new DaaS model under MoDaaS Editor. The resulting DaaS
model is saved as an XMI description consisting of several nodes. Each node
may correspond to a DaaS provider, a DaaS operation, an I/O parameter or to
a service property. Moreover, providers can check for the validity of their models
during their creation.

Second, providers need to annotate their DaaS models through matching the
different input and output parameters with the shared ontology concepts. This
is an important step to deal with data heterogeneity. DaaS providers can also
introduce new ontologies of their choice to the system (i.e., by specifying the
ontology url/path). For this purpose, we implemented a RDF/OWL parser to
extract the concepts of the introduced ontology and to dynamically enrich the
MoDaaS Editor. Thereafter new concepts are introduced in the editor within
the I/O annotation property, enabling providers to define their services through
a conceptual representation of the domain of interest provided in terms of the

6.2 MoDaaS for the Modeling and the Description of DaaS 147

Figure 6.3 – DaaSMetaModel

introduced ontology, to which DaaSs are mapped.

Finally, the resulting XMI file can be leveraged to define service views over the
shared ontology. In doing so, the M2RDF transformation pattern is executed to
define the RDF view corresponding to the DaaS model.

6.2.2 DaaSMetaModel: a Meta-model for the Modeling
of DaaS Concerns

MoDaaS is built on top of the meta-model DaaSMetaModel. This latter provides
an extended DaaS description model for ensuring interoperability between dif-
ferent DaaS services. In particular, it captures all the main DaaS concerns and
aspects that need to be addressed in its description, and being represented as
extensible and customizable classes in the model. DaaSMetaModel is depicted in
Figure 6.3. In the following, we describe the different meta-model components
and their responsibilities:

• DaaS: is the main class of our model. It is a special type of cloud services
that provides data on demand. According to [78], DaaSs can be categorized
into:
– Read-only DaaS: is a data service which provides data based on

existing data sources in the cloud.
– CRUD DaaS: is a data service which allows the consumer to create,

148
A Model-Driven Framework for the Modeling and the Description of Data-as-a-Service

to Assist Service Selection and Composition

retrieve, update and delete data. They typically provide just a storage
capability and it is up to consumers to define their own data schema
and/or to publish their data.

– Provider: represents the cloud provider serving data through the cloud.
– Operation: is a function that processes a set of inputs and results in a

set of outputs, or associates arguments (inputs) with values (outputs).
– Input: input parameter can be of any data type, and can be set as a

required parameter on the service. If it is set as required, the service
can not be run if the parameter is not provided.

– Output: it represents the information returned by a DaaS service. It
can be of any data type.

– QoS criteria: is the description or measurement of the overall perfor-
mance of a service DaaS. To quantitatively measure quality of service,
several related aspects of the network service are often considered, such
as :
∗ Reputation: is a measure of the service trustworthiness. It mainly

depends on end user’s experiences of using a DaaS.
∗ Reliability: is the probability that a request is correctly responded

within the maximum expected time frame indicated in the DaaS
description.
∗ Availability: is the percentage of time that a DaaS service is op-

erating.
∗ Response time: is the expected delay in seconds between the

moment when the request is sent and the moment when results are
received.

– Pricing model: aims to represent the cost information when a DaaS
web call is executed. Different payment models, describing how to
charge consumers for using DaaS services, are proposed such as:
∗ Payment on access (per call): DaaS users are charged every

time they call a DaaS API to retrieve data. The API usage fee is
specified in the API description.
∗ Payment on data type and data size (per attribute): users

are charged according to the type and the size of the requested data,
such as only unit prices are described.
∗ Payment on plan (for volume): users subscribe for data usage

in a period (e.g., a week, a month, or a year) and only pay once in
this period with or without limitations for how frequent they access
data and how much data they retrieve from DaaSs.

6.2 MoDaaS for the Modeling and the Description of DaaS 149

– Data source: represents the data source a DaaS is accessing to, such
it is stored in the cloud.

– Data concerns: our data model characterizes also the datasets a DaaS
access to, with specific attributes including accuracy, completeness, up-
date periode, and timeliness, which constitute the focus of the majority
of data consumers:
∗ Completeness: is the degree to which a given data collection

includes data describing the corresponding set of real-world objects.
The completeness implicitly compares the information available in
the source with what holds in the world.
∗ Accuracy: is the extent to which data are correct, reliable and cer-

tified. In other terms, the data provided by a DaaS is said accurate
when the values returned by the service correspond to real-world
values.
∗ Update period: represents the delay between two major changes

in the data source, set to daily by default.
∗ Timeline: describes the lifetime of the data.

– API template: Data providers publish global APIs to make data avail-
able. A data request for a given DaaS service is expressed in the same
format; given a set of values for the input parameters, the service exe-
cution generates values for the output parameters of the service.

– Domain: incorporating semantic information about DaaS services, be-
sides the typical information on service inputs and outputs can help
selecting the relevant DaaSs (that provides the data a user is request-
ing, without human assistance), given a data query.

This is the core model which was extended incrementally by adding new
and derived classes to manage all the DaaS and providers concerns. An
important extension is the introduction of the "Domain" class, enabling the
selection of a domain ontology. Each input and output parameter must
be then matched to its correspondence from the chosen ontology. Such
information is stored in the attribute ’annotation’ . The re-use factor can
be further increased through the introduction of semantic information to
DaaS models.

6.2.3 MoDaaS Editor & Semantic Annotation of DaaS

The model developed above provides the necessary theoretical background
to represent DaaS capabilities and properties. In the following, we explain

150
A Model-Driven Framework for the Modeling and the Description of Data-as-a-Service

to Assist Service Selection and Composition

in details how DaaS providers can model and annotate their services within
MoDaaS.

MoDaaS Editor provides an intuitive user interface that allows DaaS providers
to define their services and the data they provide, through a simple graphical
modeling tool. A screenshot is shown in Figure 6.4. It is mainly composed
of three layouts:

Figure 6.4 – MoDaaS Editor

– Design Workspace: Here, users can define new DaaSs by designing
and validating the corresponding DaaS model. The essential building
blocks of a DaaS model, such as Operation, Input, Output, API tem-
plate, etc., can be dragged and dropped from a tools palette.

– Palette: It contains all the elements that can be used to create a DaaS
model, in other terms to define and describe a DaaS service (input/
output parameters, data source, data concerns, etc.).

– Configuration Tabs: each tab opens a view that displays the proper-
ties of the selected element in the design workspace (e.g., the name of
an input/output parameter and its corresponding data type, the name
and the size of a data source, etc.). All of these functional and non-
functional properties can be specified and edited.

The creation of a new DaaS model consists of defining the provider, the
input and output parameters, the QoS values, etc. Such information must
be specified in the configuration tab corresponding to each class. DaaS
providers must also integrate semantic information about their services by
modeling their capabilities according to a shared ontology in MoDaaS. As we
said earlier, it is also possible to introduce new ontologies in MoDaaS. The

6.2 MoDaaS for the Modeling and the Description of DaaS 151

semantic annotation of DaaS services is performed manually by selecting
the corresponding concept from the chosen ontology for each service I/O
parameter (cf. Figure 6.7).

6.2.4 Automatic Generation of RDF Views

The main idea behind service views is to deal with the possible semantic
and structural heterogeneities that may exist between the data formats and
types returned by different DaaS services. As a second contribution, our
model-driven framework provides a set of model-to-text transformations to
be automatically executed in order to generate service views from input
DaaS models. In the literature, most service selection and composition
approaches [81], [18], [7], explicitly regard DaaS as Parametrized RDF Views
(PRVs) over a mediated ontology to capture their semantics in a declarative
way. Thus, we propose in this work a transformation template, we call
M2RDF transformation pattern, which given an input DaaS model,
generates the corresponding RDF view over a domain ontology, initially
shared in the MoDaaS framework.

Using the annotations of the form described in the previous section, M2RDF
extracts the service view from the DaaS description file (xmi file) as follows:
Input and output parameters are declaratively represented based on concepts and
relations that are semantically defined in the domain ontology and selected by
the DaaS provider during the service annotation. We recall that a data service
requires a particular set of inputs (i.e., the parameter values) in order to retrieve
a particular set of outputs and thus outputs cannot be retrieved unless inputs are
bound. Therefore, it is also necessary to indicate in the RDF views to generate,
which parameters are inputs and which parameters are outputs. Thereafter, each
view is characterized by an access pattern, specifying whether a parameter is
input or output such as input and output variables are prefixed with the symbols
$ and ?, respectively. Formally, an RDF view of a DaaS service Si over a domain
ontology is a predicate of the form: Si($Xi, ?Yi) =< $Xi, ?Yi, R(Xi, Yi) >, where:

• Xi and Yi are the sets of input and output parameters of Si, respectively.
• R(Xi, Yi) represents the semantic relationship between input and output

variables using RDF triples of the form (subject,property,object). These
RDF triples are extracted from the .owl file representing the domain ontol-
ogy.

Using RDF Views expressed in terms of a shared ontology has several advantages.

152
A Model-Driven Framework for the Modeling and the Description of Data-as-a-Service

to Assist Service Selection and Composition

(1) The use of views over a mediated schema known from traditional database
integration area allows us to overcome the problem of data and schemas het-
erogeneity. (2) RDF Views can be used to figure out what possible data can be
returned by a given data service. (3) Expressing the mediated schema in terms of
the OWL ontology, which is independent of the local database technology, allows
us to treat different data sources in the same fashion (e.g., relational databases,
RDF stores, etc.). (4) Describing the data service as an RDF View independent
from the real physical schema behind allows to tackle the heterogeneity issues
faced during service selection and composition. This is explained in the following
section.

6.2.5 Assistance to DaaS Selection & Composition

Semantic, syntactic and structural heterogeneities could exist between the key-
words in the data query and the I/O parameters of data services, due to the
lack of consistent semantic annotation. For this purpose, most service selection
and composition approaches regard DaaSs as PRVs over a mediated ontology to
cope with possible heterogeneities. This assumption requires the definition of
service views beforehand, which has traditionally been carried out manually by
experts when looking for services. This is a complex task that requires consid-
erable effort, especially when considering a vast amount of services. By means
of automatically generating services’ views using MoDaaS, users are no longer
concerned with finding and manually orchestrating the relevant services. They
only need to specify their data queries over a domain ontology from MoDaaS
(stored internally in the system repository) and then the Service Composition
Engine of EuDaSL will find and orchestrate the DP services needed in answering
the query in a transparent and integrated fashion. Recall that answering a data
query may also require investigating combinations of multiple and heterogeneous
DaaSs. The same way, RDF views helps capturing all the possible and more cer-
tain interactions between the component services, resulting valid and executable
compositions.

6.3 Validation

To evaluate and assess the value of the proposed approach, we implemented
MoDaaS on top of the Eclipse Modeling Framework (EMF). In the following, we
first introduce the implementation details. Then, we present a case study in biol-
ogy to demonstrate how our editor can be easily used to model and semantically

6.3 Validation 153

annotate DaaS services. For this end, we considered three different services from
Amazon20, EMBL-EBI21 and from BioComputingUP22.

6.3.1 Implementation

EMF comprises a number of model-driven development capabilities such as the
modeling, the inter-model transformations, and code generation. More precisely,
it allows the definition of models and metamodels by means of the Ecore tools. We
created the meta-model DaaSMetaModel using the Ecore meta-metamodel, and
based on which, we built the editor MoDaaS enabling DaaS providers to create
and to manage DaaS models w.r.t DaaSMetaModel. Further, EMF provides
model-to-text transformations support through Acceleo. We used this latter to
implement the views generator M2RDF. The MoDaaS implementation process
and its building blocks are represented in Figure 6.5.

Figure 6.5 – MoDaaS Implementation Process

6.3.2 Case Studies

As a first case study, we consider the DaaS AWS-iGenomes23 which represents
a collection of reference sequences and annotation files for commonly analyzed
organisms. This information is made accessible using the service getGenomeInfo.
Our aim is to model and semantically annotate it using MoDaaS. In our current
prototype, we propose the well-known ontology EDAM according to which we
want to annotate the iGenomes capabilities. EDAM is a comprehensive ontology
of well-established, familiar concepts that are prevalent within bioinformatics and
computational biology, including types of data and data identifiers, data formats,

20https://registry.opendata.aws/
21https://www.ebi.ac.uk/

22http://protein.bio.unipd.it/
23https://registry.opendata.aws/aws-igenomes/

154
A Model-Driven Framework for the Modeling and the Description of Data-as-a-Service

to Assist Service Selection and Composition

operations and topics [45]. We provide in the following a step-by-step explanation
of the DaaS modeling process in MoDaaS:

Figure 6.6 – EDAM Ontology

6.3.2.1 Model Design

The first step was the creation of a DaaS model describing all the capabilities
and the properties of the service getGenomeInfo. We defined at the top of the
model an instance of the DaaS_provider metaclass representing the provider
AWS. We then created and defined an input "Genome_sequence" and three out-
puts , "Genome_index", "Chromosome_sequence" and "Gene_annotation" within
the service operation. Each parameter has been matched to a concept from the
chosen domain ontology, the EDAM ontology in this case. Actually, the seman-
tic annotation of an operation parameter consists of selecting the corresponding
concept, matching the parameter, from the set of proposed concepts within the
property annotation as shown in Figure6.7. This set can be automatically and
dynamically enriched each time a new ontology is introduced to the MoDaaS
editor. Finally, as each DaaS has its own properties such as the response time,
the reputation, the availability, etc. , we defined these values in the configuration
tab corresponding to each property.
Note that the validation of DaaS models can be performed during their creation.
Here, in Figure 6.7 we notice the appearance of two different errors. More details
about the errors may be shown by clicking on the red cross. For example, the
error depicted in the figure comes from the fact that we did not define the API
template. This is very useful for figuring out and avoiding model errors. Once all
errors are fixed, the provider can launch the generation of service views process.

6.3 Validation 155

Figure 6.7 – DaaS Modeling and Annotation according to the EDAM Ontology

6.3.2.2 Service Views Generation

The generated RDF view is depicted in Listing 6.1. This is the outcome of the exe-
cution of the transformation pattern M2RDF on the DaaS model "iGenomes.daas",
created for the service getGenomeInfo (cf. Figure 6.8). For the sake of the sim-
plicity, we just represent the RDF triples representing the corresponding ontology
concepts and not the semantic constraints.

Figure 6.8 – EMF Tree View and Property Sheet for the Created DaaS Model (*.daas)

156
A Model-Driven Framework for the Modeling and the Description of Data-as-a-Service

to Assist Service Selection and Composition

1 get GenomeInfo ($genome_sequence , ?genome_index , ?Chromosome_sequence , ?
gene_annotation ’) :

2 $<http :// edamontology . org /data_2909> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " Organism name"

3 ?<http :// edamontology . org /data_3210> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> "Genome index "

4 ?<http :// edamontology . org /data_0919> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " Chromosome r e p o r t "

5 ?<http :// edamontology . org /data_0916> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " Gene r e p o r t "

Listing 6.1 – Generated RDF View for the service getGenomeInfo

The RDF triples defined in Listing 6.1 were originally extracted from the EDAM
ontology. Given the xmi file(iGenomes.daas), the M2RDF template extracts the
RDF triple representing each service parameter in the mediated ontology. For
instance, the genome index is represented in the EDAM ontology using the RDF
triple<http://edamontolo- gy.org/data_3210><ht tp://www.w3.org//rdf-
schemalabel>"Genome index".
The same way, we generated the service view of getProteinByName (Listing 6.2)
providing access to information stored in the DisProt database24, a database of
experimental evidences of disorder. This service returns the UniProt accession,
the DisProt ID, the organism name, its taxonomy and the set of homologous
entries, given a protein name.

1 get ProteinByName ($Protein_Name , ?DisProt_ID , ? UniProt_Accession , ?Organism , ?
Taxonomy , ? Homologous_entries ’) :

2 $<http :// edamontology . org /data_1009> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " Prote in name"

3 ?<http :// edamontology . org /data_2723> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " Prote in ID (DisProt) "

4 ?<http :// edamontology . org /data_3021> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " UniProt a c c e s s i o n "

5 ?<http :// edamontology . org /data_2909> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " Organism name"

6 ?<http :// edamontology . org /data_1868> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " Taxon "

7 ?<http :// edamontology . org /data_3148> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " Gene fami ly r e p o r t "

Listing 6.2 – Generated RDF View for the service getProteinByName

As a third case study, we considered the Proteins REST API which provides ac-
cess to key biological data from UniProt and from Large Scale Studies, including
integrated protein and genome information [61]. Different services were proposed
to enable data consumers to access the data on the fly. Listing 6.3 depicts the
generated RDF view of the service getUniProtEntryByAccession, which given an
UniProtKB accession number, returns some entry related information such as
the protein name, the gene name, the organism name and the taxonomy.

24http://www.disprot.org/

6.4 Concluding Remarks 157

1 get UniProtEntryByAccession ($acce s s i on , ?name , ?Protein_name , ?Gene_name , ?
Organism_name , ?Taxon ’) :

2 $<http :// edamontology . org /data_3021> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " UniProt a c c e s s i o n "

3 ?<http :// edamontology . org /data_2291> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " UniProt ID "

4 ?<http :// edamontology . org /data_1009> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " Prote in name"

5 ?<http :// edamontology . org /data_2299> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " Gene name"

6 ?<http :// edamontology . org /data_2909> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " Organism name"

7 ?<http :// edamontology . org /data_1868> <http ://www. w3 . org /2000/01/ rdf−schema#l a b e l
> " Taxon "

Listing 6.3 – Generated RDF View for the service getUniProtEntryByAccession

6.4 Concluding Remarks

This chapter presents a model-driven framework for the modeling and the descrip-
tion of DaaS. Our goal was to provide flexible means of modeling DaaS services
and to allow their easy integration and invocation by data intensive analysis pro-
cesses. We describe the data services provided by DaaS providers as views over
a mediated domain ontology in order to deal with schemas heterogeneity. Specif-
ically, the capabilities (the local schema) of each DaaS is mapped to concepts
of a domain ontology, and its terms are used to define RDF service views. The
generated service views are then stored in a repository and thus can be re-used
and automatically processed by tools for answering data queries reformulated
over the same ontology.

Chapter 7

Conclusion & Perspectives

Contents
7.1 Context & Contributions 159
7.2 Open Issues & Future Directions 161

7.2.1 Specification of Data Services’ Views 161
7.2.2 Selection and Composition of Relevant Data Services

for Answering User Queries 162
7.2.3 Modeling and Description of Data Services 162

In this concluding chapter, we first summarize the contributions of this thesis.
Next, we discuss possible improvements on our ongoing works and some perspec-
tives that we aim to realize at short and long terms.

7.1 Context & Contributions

This dissertation has advanced the state of the art of data integration by designing
and implementing new solutions for enriching companies’ data sources. In the
light of recent advances in the field of web engineering, along with the increase
number of data services providing access to timely and high-quality information,
data services rapidly became the leading solution in providing valuable services
to answer data queries on the fly. In this thesis, we make use of data services
for enriching companies’ data sources in order to provide complete and relevant
answers to the user data queries. Although such enrichment task can be manually
implemented, it can be a tedious, error-prone and challenging task to accomplish,
especially when dealing with a large number of heterogeneous data sources.

160 Conclusion & Perspectives

The work presented in this dissertation lays ground for an active user-centric
data integration approach, aiming at alleviating developers and data scientists
tasks for enriching local data sources, and answering complex data queries. In
particular, we made four main contributions that cover the user-centric data in-
tegration process as follows:

User-Schema Enrichment: Our first contribution, presented in Chapter 3
aims at identifying the missing data that is required for the processing of users’
data queries but does not exist in the data sources they are interested in. There-
after, it enriches the underlying schema with the determined missing concepts
and associated attributes in order to enable the storage of new data when needed.
This contribution has been published in the International Conference Business
Information Systems (BIS 2017) [8].

Quality-Driven Service Selection and Composition for Query Answer-
ing: The objectives of our second contribution, presented in Chapter 4 are
twofold. First, the selection of the relevant data services that can be used to lever-
age the missing information in user data sources and fulfilling the data queries
he is interested in. Second, the selection of the best-quality query plans for the
enrichment of the user data source, given a cost threshold specified by the user.
In doing so, we elaborated a knapsack-based algorithm to select services that
yield good quality results without exceeding a given cost threshold (time and
monetary cost). The evaluation that we conducted showed the effectiveness of
our solution. This contribution has been published in the IEEE International
Conference on Web Services (IEEE ICWS 2018) [7]

Service Views Generation: Our third contribution, presented in Chapter
5 presents an automatic approach for defining data service views as conjunctive
queries over the concepts of the user data source. We therefore studied finding
top-k minimum cost group Steiner trees. The top-k found trees represent the
best-matching service views of a given data service. This approach is imple-
mented as a prototype and validated by experiments using a collection of real
data services.

Model-Driven Framework for the Modeling and the Description of
Data Services: MoDaaS, our fourth and final contribution, presented in Chap-

7.2 Open Issues & Future Directions 161

ter 6 presents a model-driven framework for the modeling and the description of
data services, more particularly the Data-as-a-Service model. Our goal was to
provide flexible means of modeling DaaS services and to allow their easy integra-
tion and invocation by data intensive analysis processes. We describe the data
services provided by DaaS providers as views over a mediated domain ontology
in order to deal with schemas heterogeneity. Specifically, the capabilities (the
local schema) of each DaaS is mapped to concepts of a domain ontology, and
its terms are used to define RDF service views. The generated service views are
then stored in a repository and thus can be re-used and automatically processed
by tools for answering data queries reformulated over the same ontology. This
contribution has been published in the International Conference on Database and
Expert Systems Applications (DEXA 2019) [9].

7.2 Open Issues & Future Directions

Our work still has a high potential for future improvements. We conclude our
discussion by enumerating some explicit future research concerns.

7.2.1 Specification of Data Services’ Views

In spite of the recent improvement in automatic matching tools, the matching
process often remains a semi-automatic process. Indeed, after executing a tool on
the schemas to match, the expert has to discard part of the proposed mappings
and to look for the ones missed by the tool. This emphasises the need for imple-
menting an interactive mode to capture the user feedback, in order to improve the
matching quality and then the quality of the generated views. We mainly aim to
provide two execution modes: automatic and interactive. In the first mode, the
system takes the schemas, interacts with an automatic matching tool to compute
the matches, without any user intervention. Whereas in the second mode, users
can provide feedback during the matching process, and the system can selectively
rerun the generation of service views based on the feedback. Furthermore, the
schema matching techniques that have been used can be combined with other
techniques to produce more accurate matching schema in query rewriting.

162 Conclusion & Perspectives

7.2.2 Selection and Composition of Relevant Data Ser-
vices for Answering User Queries

More and more web services with similar and overlapping data but different QoS
are available in the marketplace. Our service selection algorithm performs well
on sets of 100 data services, however efficient selecting from a set with a larger
number of services may bring some performance challenges. In this sense, we plan
to update the algorithm 8 and make use of MapReduce to select and compose
the appropriate services efficiently and equally from masses of services with the
aim of reducing the response time and sharing the computational workload more
fairly. As a matter of fact, MapReduce is a programming model and an associated
implementation for processing large data sets in parallel on different clusters in
a reliable and fault-tolerant manner, while hiding the complex underlying details
of parallelization, distributed storage, load balancing and fault tolerance. Based
on these, if we apply MapReduce to our work, it will improve the efficiency of
selecting the appropriate services from masses of data services.

7.2.3 Modeling and Description of Data Services

As a future work, we plan to implement a new user interface, enabling users to
model a composition of DaaS services, with generative tools to estimate the QoS
values of the composition, and to automatically generate and execute the cor-
responding web calls. Actually, we are implementing the aggregation functions
proposed in Chapter 4 for the estimation of QoS values, given a service com-
position. We will also be examining new techniques to generate data mapping
workflows that map data from a specific type to another, more specifically from
the type defined by the DaaS provider to a type in a domain ontology. This will
help to handle the structural and the semantic heterogeneities that may exist
between the data provided by different DaaSs in a service composition.

Bibliography

[1] Amazon data sets, http://aws.amazon.com/publicdatasets/.
[2] Enigma, https://www.enigma.com/public-data.
[3] Microsoft data market, https://datamarket.azure.com/.
[4] Oracle data cloud, https://www.oracle.com/fr/applications/customer-

experience/data-cloud/.
[5] 2008 IEEE International Conference on Web Services (ICWS 2008),

September 23-26, 2008, Beijing, China. IEEE Computer Society, 2008.
[6] S. Adali and R. Emery. A uniform framework for integrating knowledge in

heterogeneous knowledge systems. In Proceedings of the Eleventh Interna-
tional Conference on Data Engineering, pages 513–520, March 1995.

[7] Hiba Alili, Khalid Belhajjame, Rim Drira, Daniela Grigori, and Henda Ha-
jjami Ben Ghézala. Quality based data integration for enriching user data
sources in service lakes. In 2018 IEEE International Conference on Web Ser-
vices, ICWS 2018, San Francisco, CA, USA, July 2-7, 2018, pages 163–170,
2018.

[8] Hiba Alili, Khalid Belhajjame, Daniela Grigori, Rim Drira, and Henda Ha-
jjami Ben Ghézala. On enriching user-centered data integration schemas in
service lakes. In Business Information Systems - 20th International Con-
ference, BIS 2017, Poznan, Poland, June 28-30, 2017, Proceedings, pages
3–15, 2017.

[9] Hiba Alili, Rim Drira, Khalid Belhajjame, Henda Hajjami Ben Ghézala,
and Daniela Grigori. A model-driven framework for the modeling and the
description of data-as-a-service to assist service selection and composition. In
Database and Expert Systems Applications - 30th International Conference,
DEXA 2019, Linz, Austria, August 26-29, 2019, Proceedings, Part I, pages
396–406, 2019.

[10] Hiba Alili, Rim Drira, and Henda Hajjami Ben Ghézala. Model driven frame-
work for the configuration and the deployment of applications in the cloud.

164 BIBLIOGRAPHY

In 2016 International Conference on Cloud Computing, GRIDs, and Vir-
tualization, CLOUD COMPUTING 2016, Rome, Italy, March 20-24, 2016,
pages 61–68, 2016.

[11] Alexander A. Anisimov. Review of the data warehouse toolkit: the complete
guide to dimensional modeling. SIGMOD Record, 32(3):101–102, 2003.

[12] Mahtab Arafati, Gaby G. Dagher, Benjamin C. M. Fung, and Patrick
C. K. Hung. D-mash: A framework for privacy-preserving data-as-a-service
mashups. In IEEE 7th International Conference on Cloud Computing, An-
chorage, USA, June 27 - July 2, 2014, pages 498–505.

[13] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock. Re-
trieving and integrating data from multiple information sources. Int. J.
Cooperative Inf. Syst., 2(2):127–158, 1993.

[14] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm.
Schema and ontology matching with coma++. In Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’05, pages 906–908, New York, NY, USA, 2005. ACM.

[15] Oumayma Banouar and Said Raghay. Comparative study of the systems of
semantic integration of information: A survey. In 12th IEEE/ACS Inter-
national Conference of Computer Systems and Applications, AICCSA 2015,
Marrakech, Morocco, November 17-20, 2015, pages 1–8, 2015.

[16] M. Barhamgi, D. Benslimane, and B. Medjahed. A query rewriting approach
for web service composition. IEEE Transactions on Services Computing,
3(3):206–222, July 2010.

[17] Mahmoud Barhamgi and Djamal Benslimane. Composing data-providing
web services. In Proceedings of the VLDB,Lyon, France, August 24, 2009.

[18] Mahmoud Barhamgi, Djamal Benslimane, and Brahim Medjahed. A query
rewriting approach for web service composition. IEEE Trans.Services Com-
puting, pages 206–222, 2010.

[19] Domenico Beneventano, Sonia Bergamaschi, Silvana Castano, Alberto
Corni, R. Guidetti, G. Malvezzi, Michele Melchiori, and Maurizio Vincini.
Information integration: The MOMIS project demonstration. In Proc. of
26th Int. Conf. on Very Lare Data Bases, pages 611–614, 2000.

[20] Jacob Berlin and Amihai Motro. Autoplex: Automated discovery of content
for virtual databases. In Carlo Batini, Fausto Giunchiglia, Paolo Giorgini,
and Massimo Mecella, editors, Cooperative Information Systems, pages 108–
122, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

BIBLIOGRAPHY 165

[21] Geert Jan Bex, Sebastian Maneth, and Frank Neven. A formal model for an
expressive fragment of xslt. Information Systems, 27(1):21–39, 2002.

[22] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in databases using BANKS.
In Proceedings of the 18th International Conference on Data Engineering,
San Jose, CA, USA, February 26 - March 1, 2002, pages 431–440, 2002.

[23] Hugo Brunelière, Jordi Cabot, Grégoire Dupé, and Frédéric Madiot.
Modisco: A model driven reverse engineering framework. Information &
Software Technology, 56(8):1012–1032, 2014.

[24] Alexander Budanitsky and Graeme Hirst. Evaluating wordnet-based mea-
sures of lexical semantic relatedness. Computational Linguistics, 32(1):13–
47, 2006.

[25] Andrea Calì, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,
Paolo Naggar, and Fabio Vernacotola. Ibis: Semantic data integration at
work. In Johann Eder and Michele Missikoff, editors, Advanced Information
Systems Engineering, pages 79–94, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[26] M. Carey. Declarative data services: This is your data on soa. In IEEE
International Conference on Service-Oriented Computing and Applications
(SOCA ’07), pages 4–4, June 2007.

[27] Sudarshan S. Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly
Ireland, Yannis Papakonstantinou, Jeffrey D. Ullman, and Jennifer Widom.
The TSIMMIS project: Integration of heterogeneous information sources. In
IPSJ, pages 7–18, 1994.

[28] Víctor Cuevas-Vicenttín, Genoveva Vargas-Solar, and Christine Collet. Eval-
uating hybrid queries through service coordination in HYPATIA. In 15th
International Conference on Extending Database Technology, EDBT ’12,
Berlin, Germany, March 27-30, 2012, Proceedings, pages 602–605, 2012.

[29] Víctor Cuevas-Vicenttín, Genoveva Vargas-Solar, Christine Collet, Noha
Ibrahim, and Christophe Bobineau. Coordinating services for accessing and
processing data in dynamic environments. In On the Move to Meaning-
ful Internet Systems: OTM 2010 - Confederated International Conferences:
CoopIS, IS, DOA and ODBASE, Hersonissos, Crete, Greece, October 25-29,
2010, Proceedings, Part I, pages 309–325, 2010.

[30] Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin
Lin. Finding top-k min-cost connected trees in databases. In Proceedings

166 BIBLIOGRAPHY

of the 23rd International Conference on Data Engineering, ICDE 2007, The
Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 836–845, 2007.

[31] Hong-Hai Do, Sergey Melnik, and Erhard Rahm. Comparison of schema
matching evaluations. In Akmal B. Chaudhri, Mario Jeckle, Erhard Rahm,
and Rainer Unland, editors, Web, Web-Services, and Database Systems,
pages 221–237, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[32] Hong-Hai Do and Erhard Rahm. Coma: A system for flexible combination
of schema matching approaches. In Proceedings of the 28th International
Conference on Very Large Data Bases, VLDB ’02, pages 610–621. VLDB
Endowment, 2002.

[33] Hong Hai Do and Erhard Rahm. Matching large schemas: Approaches and
evaluation. Inf. Syst., 32(6):857–885, 2007.

[34] H. Elmeleegy, A. Ivan, R. Akkiraju, and R. Goodwin. Mashup advisor: A
recommendation tool for mashup development. In 2008 IEEE International
Conference on Web Services, pages 337–344, Sept 2008.

[35] Hazem Elmeleegy, Anca Ivan, Rama Akkiraju, and Richard Goodwin.
Mashup advisor: A recommendation tool for mashup development. In 2008
IEEE International Conference on Web Services (ICWS 2008), September
23-26, 2008, Beijing, China [5], pages 337–344.

[36] Wenfei Fan and Floris Geerts. Foundations of Data Quality Management.
Morgan & Claypool Publishers, 2012.

[37] G. Fandel and J. Spronk. Multiple Criteria Decision Methods and Applica-
tions. Springer Verlag, Berlin, 1985.

[38] Marc Friedman, Alon Levy, and Todd Millstein. Navigational plans for
data integration. In Proceedings of the 1999 International Conference on
Intelligent Information Integration - Volume 23, III’99, pages 72–78, Aachen,
Germany, Germany, 1999. CEUR-WS.org.

[39] Samer Abdul Ghafour, Mahmoud Barhamgi, and Parisa Ghodous. On-
demand data integration on the cloud. In IEEE 7th International Conference
on Cloud Computing, Anchorage, USA,June 27-July 2, 2014, pages 924–927.

[40] Robert Mac Gregor. 13 - the evolving technology of classification-based
knowledge representation systems. In JOHN F. SOWA, editor, Principles
of Semantic Networks, The Morgan Kaufmann Series in Representation and
Reasoning, pages 385 – 400. Morgan Kaufmann, 1991.

[41] Farshad Hakimpour and Andreas Geppert. Resolving semantic heterogeneity
in schema integration. In Proceedings of the International Conference on

BIBLIOGRAPHY 167

Formal Ontology in Information Systems - Volume 2001, FOIS ’01, pages
297–308, New York, NY, USA, 2001. ACM.

[42] Alon Y. Halevy. Answering queries using views: A survey. The VLDB
Journal, 10(4):270–294, December 2001.

[43] Alon Y. Halevy, Anand Rajaraman, and Joann J. Ordille. Data integration:
The teenage years. In Proc. of the 32nd Int. Conf. on Very Large Data
Bases, pages 9–16, 2006.

[44] Yanbo Han, Guiling Wang, Guang Ji, and Peng Zhang. Situational data
integration with data services and nested table. Service Oriented Computing
and Applications, 7(2):129–150, 2013.

[45] Jon C. Ison, Matús Kalas, Inge Jonassen, Dan M. Bolser, Mahmut Uludag,
Hamish McWilliam, James Malone, Rodrigo Lopez, Steve Pettifer, and Pe-
ter M. Rice. EDAM: an ontology of bioinformatics operations, types of data
and identifiers, topics and formats. Bioinformatics, pages 1325–1332, 2013.

[46] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan,
Rushi Desai, and Hrishikesh Karambelkar. Bidirectional expansion for key-
word search on graph databases. In Proceedings of the 31st International
Conference on Very Large Data Bases, Trondheim, Norway, August 30 -
September 2, 2005, pages 505–516, 2005.

[47] Maurizio Lenzerini. Data integration: A theoretical perspective. In Lucian
Popa, Serge Abiteboul, and Phokion G. Kolaitis, editors, PODS, pages 233–
246. ACM, 2002.

[48] Alon Y. Levy. The information manifold approach to data integration. IEEE
Intelligent Systems, 13:12–16, 1998.

[49] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Query-answering
algorithms for information agents. In IAAI, Portland, Oregon, August 4-8,
1996., pages 40–47.

[50] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heteroge-
neous information sources using source descriptions. In VLDB’96, Proceed-
ings of 22th International Conference on Very Large Data Bases, September
3-6, 1996, Mumbai (Bombay), India, pages 251–262, 1996.

[51] Wen-Syan Li, K. Selçuk Candan, Quoc Vu, and Divyakant Agrawal. Query
relaxation by structure and semantics for retrieval of logical web documents.
IEEE Trans. Knowl. Data Eng., 14(4):768–791, 2002.

[52] Wen-Syan Li and Chris Clifton. Semint: A tool for identifying attribute
correspondences in heterogeneous databases using neural networks, 2000.

168 BIBLIOGRAPHY

[53] Li-Ren Liu, D. H. C. Du, and Hsi-Chuan Chen. An efficient parallel critical
path algorithm. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 13(7):909–919, Jul 1994.

[54] Zohar Manna and Richard Waldinger. A deductive approach to program
synthesis. ACM Trans. Program. Lang. Syst., 2(1):90–121, January 1980.

[55] Sergey Melnik, Hector Garcia-molina, and Erhard Rahm. Similarity flood-
ing: A versatile graph matching algorithm and its application to schema
matching, 2002.

[56] George A Miller and Walter G Charles. Contextual correlates of semantic
similarity. Language Cognitive Processes, 6(1):1–28, 1991.

[57] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Daniel R. Kuokka,
Oren Etzioni, and Yolanda Gil. Explanation-based learning:a problem solv-
ing perspective. Artificial Intelligence, 40(1):63 – 118, 1989.

[58] Mohamed Mussa, Samir Ouchani, Waseem Al Sammane, and Abdelwahab
Hamou-Lhadj. A survey of model-driven testing techniques. In Proceedings
of the Ninth International Conference on Quality Software, QSIC 2009, Jeju,
Korea, August 24-25, 2009, pages 167–172, 2009.

[59] A. H. H. Ngu, M. P. Carlson, Q. Z. Sheng, and H. Paik. Semantic-based
mashup of composite applications. IEEE Transactions on Services Comput-
ing, 3(1):2–15, Jan 2010.

[60] Xuan Thang Nguyen, Huu Tam Tran, Harun Baraki, and Kurt Geihs.
FRASAD: A framework for model-driven iot application development. In
2nd IEEE World Forum on Internet of Things, WF-IoT 2015, Milan, Italy,
December 14-16, 2015, pages 387–392, 2015.

[61] Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas,
Leonardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner, and
Maria Jesus Martin. The proteins API: accessing key integrated protein
and genome information. Nucleic Acids Research, (Webserver-Issue):W539–
W544, 2017.

[62] Neelu Nihalani, Sanjay Silakari, and Mahesh Motwani. Integration of arti-
ficial intelligence and database management system: An inventive approach
for intelligent databases. In Proceedings of the 2009 First International Con-
ference on Computational Intelligence, Communication Systems and Net-
works, CICSYN ’09, pages 35–40, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[63] Siddharth Patwardhan and Ted Pedersen. Using wordnet-based context vec-
tors to estimate the semantic relatedness of concepts. In Proceedings of the

BIBLIOGRAPHY 169

EACL 2006 Workshop Making Sense of Sense-Bringing Computational Lin-
guistics and Psycholinguistics Together, volume 1501, pages 1–8, 2006.

[64] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Wordnet: :
Similarity - measuring the relatedness of concepts. In Proceedings of the
Nineteenth National Conference on Artificial Intelligence, Sixteenth Confer-
ence on Innovative Applications of Artificial Intelligence, July 25-29, 2004,
San Jose, California, USA, pages 1024–1025, 2004.

[65] Nicoleta Preda, Gjergji Kasneci, Fabian M. Suchanek, Thomas Neumann,
Wenjun Yuan, and Gerhard Weikum. Active knowledge: dynamically en-
riching RDF knowledge bases by web services. In Proc.of the ACM SIGMOD
Int. Conf. on Management of Data, pages 399–410, 2010.

[66] Nicoleta Preda, Fabian M. Suchanek, Gjergji Kasneci, Thomas Neumann,
Maya Ramanath, and Gerhard Weikum. ANGIE: active knowledge for in-
teractive exploration. PVLDB, 2(2):1570–1573, 2009.

[67] D. Pukhkaiev, T. Kot, L. Globa, and A. Schill. A novel sla-aware approach
for web service composition. In Eurocon 2013, pages 327–334, July 2013.

[68] Christoph Quix. Managing Data lakes in big data era. In Proc. 5th Int.
Conf. on Cyber Technology in Automation, Control and Intelligent Systems,
pages 820–824, 2015.

[69] Gabriele Reich and Peter Widmayer. Beyond steiner’s problem: A vlsi ori-
ented generalization. In Manfred Nagl, editor, WG, volume 411 of Lecture
Notes in Computer Science, pages 196–210. Springer, 1989.

[70] Gabriele Reich and Peter Widmayer. Beyond steiner’s problem: A vlsi ori-
ented generalization. In Manfred Nagl, editor, Graph-Theoretic Concepts in
Computer Science, pages 196–210, Berlin, Heidelberg, 1990. Springer Berlin
Heidelberg.

[71] Herbert Rubenstein and John B. Goodenough. Contextual correlates of
synonymy. Commun. ACM, 8(10):627–633, October 1965.

[72] Manivasakan Sabesan and Tore Risch. Adaptive parallelization of queries
over dependent web service calls. In Proceedings of the 25th International
Conference on Data Engineering, ICDE 2009, March 29 2009 - April 2 2009,
Shanghai, China, pages 1725–1732, 2009.

[73] Pushpak Sarkar. Introduction to DaaS, pages 368–. Wiley-IEEE Press, 2015.
[74] Ángel Mora Segura, Jesús Sánchez Cuadrado, and Juan de Lara. Odaas:

Towards the model-driven engineering of open data applications as data
services. In EDOC Workshops, pages 335–339. IEEE Computer Society,
2014.

170 BIBLIOGRAPHY

[75] Jun’ichi Tatemura, Songting Chen, Fenglin Liao, Oliver Po, K. Selçuk Can-
dan, and Divyakant Agrawal. UQBE: uncertain query by example for web
service mashup. In SIGMOD, Canada, June, pages 1275–1280, 2008.

[76] Junichi Tatemura, Arsany Sawires, Oliver Po, Songting Chen, K. Selcuk
Candan, Diviyakant Agrawal, and Maria Goveas. Mashup feeds: Continuous
queries over web services. In Proceedings of the 2007 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’07, pages 1128–1130,
New York, NY, USA, 2007. ACM.

[77] H. L. Truong and S. Dustdar. On analyzing and specifying concerns for
data as a service. In 2009 IEEE Asia-Pacific Services Computing Conference
(APSCC), pages 87–94, Dec 2009.

[78] Hong Linh Truong and Schahram Dustdar. On evaluating and publishing
data concerns for data as a service. In 5th IEEE Asia-Pacific Services Com-
puting Conference, APSCC 2010, 6-10 December 2010, Hangzhou, China,
Proceedings, pages 363–370, 2010.

[79] Rattapoom Tuchinda, Craig A. Knoblock, and Pedro A. Szekely. Building
mashups by demonstration. TWEB, 5(3):16:1–16:45, 2011.

[80] Rattapoom Tuchinda, Pedro Szekely, and Craig A. Knoblock. Building data
integration queries by demonstration. In Proceedings of the 12th Interna-
tional Conference on Intelligent User Interfaces, IUI ’07, pages 170–179,
New York, NY, USA, 2007. ACM.

[81] Roman Vaculín, Huajun Chen, Roman Neruda, and Katia P. Sycara. Mod-
eling and discovery of data providing services. In 2008 IEEE International
Conference on Web Services (ICWS 2008), September 23-26, 2008, Beijing,
China [5], pages 54–61.

[82] Quang Hieu Vu, Tran Vu Pham, Hong Linh Truong, Schahram Dustdar,
and Rasool Asal. DEMODS: A description model for data-as-a-service. In
AINA, pages 605–612. IEEE Computer Society, 2012.

[83] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam,
and Quan Z. Sheng. Quality driven web services composition. In Proc. of the
12th International Conference on WWW, pages 411–421, New York,USA,
2003.

[84] Patrick Ziegler and Klaus R. Dittrich. Three decades of data integration -
all problems solved? In Building the Information Society, IFIP 18th World
Computer Cong., pages 3–12, 2004.

RÉSUMÉ

De nos jours, d’énormes volumes de données sont créés en continu et les utilisateurs s’attendent à ce que ceux-ci
soient collectés, stockés et traités quasiment en temps réel. Ainsi, les lacs de données sont devenus une solution
attractive par rapport aux entrepôts de données classiques coûteux et fastidieux (nécessitant une démarche ETL), pour
les entreprises qui souhaitent stocker leurs données. Malgré leurs volumes, les données stockées dans les lacs de
données des entreprises sont souvent incomplètes voire non mises à jour vis-à-vis des besoins (requêtes) des utilisateurs.
Les sources de données locales ont donc besoin d’être enrichies. Par ailleurs, la diversité et l’expansion du nombre de
sources d’information disponibles sur le web a rendu possible l’extraction des données en temps réel. Ainsi, afin de
permettre d’accéder et de récupérer l’information de manière simple et interopérable, les sources de données sont de
plus en plus intégrées dans les services Web. Il s’agit plus précisément des services de données, y compris les services
DaaS du Cloud Computing. L’enrichissement manuel des sources locales implique plusieurs tâches fastidieuses telles
que l’identification des services pertinents, l’extraction et l’intégration de données hétérogènes, la définition des mappings
service-source, etc. Dans un tel contexte, nous proposons une nouvelle approche d’intégration de données centrée
utilisateur. Le but principal est d’enrichir les sources de données locales avec des données extraites à partir du web via
les services de données. Cela permettrait de satisfaire les requêtes des utilisateurs tout en respectant leurs préférences
en terme de coût d’exécution et de temps de réponse et en garantissant la qualité des résultats obtenus.

MOTS CLÉS

Intégration de données centrée utilisateur, Lacs de Services, Enrichissment de schéma, Composition des
services, Services de Données, Qualité de données, Qualité des Services, Préférences Utilisateur, Nuage
de données, Données en tant que Service, Ingénierie Dirigée par les Modèles, Annotation Sémantique.

ABSTRACT

In the Big Data era, companies are moving away from traditional data-warehouse solutions whereby expensive and time-

consuming ETL (Extract, Transform, Load) processes are used, towards data lakes in order to manage their increasingly

growing data. Yet the stored knowledge in companies’ databases, even though in the constructed data lakes, can never be

complete and up-to-date, because of the continuous production of data. Local data sources often need to be augmented

and enriched with information coming from external data sources. Unfortunately, the data enrichment process is one of the

manual labors undertaken by experts who enrich data by adding information based on their expertise or select relevant

data sources to complete missing information. Such work can be tedious, expensive and time-consuming, making it

very promising for automation. We present in this work an active user-centric data integration approach to automatically

enrich local data sources, in which the missing information is leveraged on the fly from web sources using data services.

Accordingly, our approach enables users to query for information about concepts that are not defined in the data source

schema. In doing so, we take into consideration a set of user preferences such as the cost threshold and the response

time necessary to compute the desired answers, while ensuring a good quality of the obtained results.

KEYWORDS

User-Centric Data Integration, Data Provisioning Service Lakes, Schema Enriching, Service Composition,
Data Services, Service views, Data Quality, Quality of Service (QoS), User Preferences, Cloud Computing,
Data as a Service (DaaS), Model Driven Engineering, Semantic Annotation.

