
Service Capacity Enhanced Task Offloading and
Resource Allocation in Multi-Server Edge

Computing Environment
Wei Du∗†, Tao Lei∗, Qiang He‡, Wei Liu∗†, Qiwang Lei∗, Hailiang Zhao∗, Wei Wang§

∗ Wuhan University of Technology, Wuhan, China
{whutduwei,leitao1995, wliu, leiqiwang} @whut.edu.cn, hliangzhao97@gmail.com
† Hubei Key Laboratory of Transportation Internet of Things, Wuhan, China

‡ Swinburne University of Technology, Melbourne, Australia
qhe@swin.edu.au

§ East China Normal University, ShangHai, China
wwang@dase.ecnu.edu.cn

Abstract—An edge computing environment features multiple
edge servers and multiple service clients. In this environment,
mobile service providers can offload client-side computation tasks
from service clients’ devices onto edge servers to reduce service
latency and power consumption experienced by the clients. A
critical issue that has yet to be properly addressed is how to
allocate edge computing resources to achieve two optimization
objectives: 1) minimize the service cost measured by the service
latency and the power consumption experienced by service
clients; and 2) maximize the service capacity measured by the
number of service clients that can offload their computation
tasks in the long term. This paper formulates this long-term
problem as a stochastic optimization problem and solves it with
an online algorithm based on Lyapunov optimization. This NP-
hard problem is decomposed into three sub-problems, which are
then solved with a suite of techniques. The experimental results
show that our approach significantly outperforms two baseline
approaches.

Index Terms—edge computing; multi-server task offloading;
service capacity enhancement; Lyapunov optimization

I. INTRODUCTION

Edge computing has emerged as a new paradigm for
powering applications by offering computing, storage and
networking resources at the edge of the cloud [1], [2]. As
illustrated on the 5G standardization roadmap, edge servers
will be distributed at ultra-dense small-cell base stations (CBS)
[3], [4]. In such an environment, the coverages of adjacent
edge servers partially overlap to avoid blank areas not covered
by any edge servers [5]. Service providers can offload client-
side computation tasks from service clients’ devices onto edge
servers to reduce the service cost measured by the service
latency and power consumption experienced by service clients
[6], [7]. This is referred to as task offloading.

The edge infrastructure provider looks at task offloading
from two general perspectives. A large number of edge servers
sharing service clients offloaded computation tasks can provide
service clients with low service cost from service clients’ per-
spective. That is the benefit of computation loading. However,
the deployment of excessive edge servers result in overly high

operational cost from edge infrastructure provider’s perspec-
tive. After all, the edge infrastructure provider is interested
in the overall revenue, i.e., the benefit minus the cost. The
economy of scale maximizes the edge infrastructure providers
revenue by maximizing the service capacity,i.e., the ability to
serve the maximum number of service clients. To achieve a
cost-effective solution, the service cost needs to be traded off
to allow more service clients to be served by edge servers.
Thus, how to trade off the service cost and service capacity is
a critical problem in edge computing.

A lot of researchers have focused on solving the task
offloading problem in a single-server edge computing en-
vironment. However, in a particular area, there are usually
multiple edge servers available for offloading service clients’
computation tasks. The edge computing environment is in
fact a multi-server environment. In such an environment, it
is critical and challenging to optimize the utilization of edge
computing resources, including computation and transmission
resources, with the aim to maximize the service capacity
while minimizing the service cost. Firstly, the characteris-
tics of latency-tolerant applications, i.e., the coupling among
randomly-arrived tasks, must be captured [8]. Stochastic com-
putation partitioning strategies must be formulated to split the
resources to be shared among service clients. Secondly, each
service client needs to decide not only how to partition its
computation tasks between its device and the edge server but
also which edge server to offload its computation tasks to.

In this paper, we propose a holistic solution to compu-
tation offloading and resource allocation in multi-server edge
computing environment with the aim to serve as many service
clients as possible with minimum service cost. The main
contributions of this paper are as follows:
• Task offloading in such an environment is modelled as a

stochastic optimization problem with multiple optimiza-
tion objectives. It aims to maximize the number of service
clients served with minimum service cost in the long
term.

ar
X

iv
:1

90
3.

04
70

9v
1

 [
cs

.D
C

]
 1

2
M

ar
 2

01
9

• Based on Lyapunov optimization, the above long-term
stochastic optimization problem is converted to a de-
terministic optimization problem within each time slot,
which is then further decomposed into three sub-
problems.

• To solve the optimization problem, an online joint task
offloading and resource allocation algorithm (OJTORA)
powered by a suite of techniques is proposed to solve
each sub-problem with low complexity.

• Extensive experiments are conducted to evaluate OJ-
TORA. The results show that OJTORA outperforms the
baseline approaches significantly.
The remainder of this paper is organized as follows.

Section II reviews related work. Section III presents the
edge computing model. Section IV formulates the research
problem. Section V introduces the proposed approach. Section
VI experimentally evaluates the proposed approach. Section
VII concludes this paper.

II. RELATED WORKS

In recent years, joint task offloading and resource alloca-
tion in edge computing has attracted many researchers atten-
tion. Most existing work studied the problem in a single-server
edge computing environment [8]–[11]. Some researchers have
considered multi-server scenarios [12]–[18]. The authors of
[12] optimize task offloading, uplink transmission power of
service clients, and computing resource allocation on edge
servers to minimize task completion time and power consump-
tion. In [13], the tradeoff between latency and power consump-
tion was studied. The problem was formulated as computation
and transmits power minimization subject to latency and
reliability constraints. The authors of [14] studied how to
minimize mobile power consumption through data offloading.
Centralized and distributed algorithms for power allocation
and transmission channel assignment were proposed. In [15],
device-edge-cloud edge was investigated. A network-aware
multi-user and multi-edge computation partitioning problem
was formulated. Computation and radio transmission resources
were allocated such that service clients average throughput
was maximized. In [16], the shareable storage was considered,
and a constant-factor approximation algorithm was proposed
to decide the server placement and resource allocation. In [17],
the edge task offloading control was investigated in cloud
radio access network (C-RAN) environments, and a multi-
stage heuristic was proposed to minimize the refusal rate for
users task offloading requests. In [18], an online algorithm was
proposed to allocate edge server’s resource over time.

In the studies of task offloading, service latency and
power consumption have been commonly acknowledged as
two very important optimization objectives. However, few
researchers have considered service capacity, i.e., the total
number of service clients served, which is a key issue from the
edge infrastructure providers perspective in a multi-server edge
computing environment [5]. In [19]. A quality-of-experience
(QoE) driven LTE downlink scheduling scheme for VoIP
applications was proposed to improve the service capacity with

acceptable QoE for all service clients. However, they only
consider single-server environments. In addition, the proposed
LTE downlink scheduling scheme is specifically designed for
VoIP applications and thus is not applicable to most other
applications in the edge computing environment.

Our work differentiates from existing work in the follow-
ing ways. First, we consider a multi-server edge computing
environment. Second, our approach is applicable to most
latency-tolerant applications in the edge computing environ-
ment. Third, we consider both resource allocation and task
offloading. Finally, we attempt to achieve the optimization
objectives in the long term.

III. SYSTEM MODEL

An example multi-server edge computing scenario is
shown in Fig. 1. A service client can offload some or all of
its computation tasks to one of its nearby edge servers. Let us
denote the set of service clients with U, the set of edge servers
with S, the connection between the ith service client and the jth
edge server with ci,j = {0, 1}, where ci,j = 1 indicates that
the ith service client can access the jth edge server or ci,j = 0
otherwise. Let us define Gi = {j|ci,j = 1, j ∈ S}, i ∈ U , and
Zj = {i|ci,j = 1, i ∈ U}, j ∈ S. Task offloading in the edge
computing environment is an ongoing process. Let us denote
different time slots with T = {1, 2, 3, ...} and the time slot
length is τ . The available bandwidth of each edge server is ω
Hz and the noise power spectral density is N0.

𝒔𝟏

𝒔𝟐

𝒔𝟑

𝒔𝟒

𝒖𝟏

𝒖𝟐

𝒖𝟑

𝒖𝟒

𝒖𝟓

𝒖𝟔 𝒖𝟕

𝒖𝟖

𝒖𝟗

𝒖𝟏𝟎

𝒖𝟏𝟏

𝒖𝟏𝟐

Service Client

Base Station

Coverage of Edge Servers

…

𝑯𝟏 𝒕 … Local Task Queue

Virtual Task Queue

𝑯𝟐 𝒕
𝑯𝟏𝟏 𝒕 𝑯𝟏𝟐 𝒕

𝑸𝟏 𝒕

𝑸𝟐 𝒕

𝑸𝟑 𝒕

𝑸𝟒 𝒕

𝑸𝟓 𝒕

𝑸𝟔 𝒕 𝑸𝟕 𝒕

𝑸𝟖 𝒕

𝑸𝟗 𝒕

𝑸𝟏𝟎 𝒕

𝑸𝟏𝟏 𝒕

𝑸𝟏𝟐 𝒕

Edge Server

Fig. 1. A multi-server edge environment

A. Computation Task and Task Queue Model
The computation tasks running on service clients’ devices

are bit-wise independent [1]. Let us denote the amount of tasks
of the ith service client in the tth time slot as Ai(t), which
are independent and identically distributed in different time
slot within [0, Ai,max], Ai,max ∈ R+, with the expectation
E[Ai(t)] = λi, λi ∈ [0, Ai,max], i ∈ U . As shown in Fig. 2, at
the beginning of the tth time slot, the local queue length of the
ith service client is Qi(t). At tth time slot, the amount of tasks
which has arrived but not been executed locally or offloaded
will be put in Qi(t). Within the tth time slot, the ith service
client will locally execute Dl,i(t) tasks and will offload Dr,i(t)
tasks to an edge server, i.e., D∑

,i(t) = Dl,i(t) +Dr,i(t).

Qi(t+ 1) = max{Qi(t)−D∑
,i(t), 0}+Ai(t), i ∈ U. (1)

As shown in Fig. 2, a service client chooses only one
edge server to offload its tasks in each time slot. Thus, we
maintain a virtual task queue Hi(t) for each service client,
which represents the amount of tasks offloaded but not been
executed in all edge servers. In the tth time slot, let us denote
the amount of tasks of the ith service client that has been
offloaded but not executed by the jth edge server as Hi,j(t),
where Hi(t) =

∑
j∈Gi

Hi,j(t), the amount of tasks of the ith
service client which has been executed by the edge server as
Ds,i(t).

Hi(t+ 1) = max{Hi(t)−Ds,i(t), 0}+Dr,i(t), i ∈ U. (2)

𝒖𝒊

𝒔𝟏

𝒔𝟐

𝑨𝒊(𝒕)

𝑸𝒊(𝒕)

𝑯𝒊(𝒕)

𝑫𝒍,𝒊(𝒕)

𝑫𝒓,𝒊(𝒕)

𝒖𝒊
′𝐬 𝐭𝐚𝐬𝐤𝐬 𝐨𝐟𝐟𝐥𝐨𝐚𝐝𝐞𝐝 𝐛𝐮𝐭 𝐧𝐨𝐭 𝐞𝐱𝐞𝐜𝐮𝐭𝐞𝐝

𝑯𝒊,𝟏(𝒕)

𝑯𝒊,𝟐(𝒕)

𝐗𝟐 𝐋𝐢𝐧𝐤

𝑫𝒔,𝒊,𝟐(𝒕)

𝑫𝒔,𝒊,𝟏(𝒕)

𝒖𝒊
′𝐬 𝐯𝐢𝐫𝐭𝐮𝐚𝐥 𝐭𝐚𝐬𝐤 𝐪𝐮𝐞𝐮𝐞

𝒖𝒊
′𝐬 𝐭𝐚𝐬𝐤𝐬 𝐚𝐫𝐫𝐢𝐯𝐞𝐝 𝐛𝐮𝐭 𝐧𝐨𝐭 𝐞𝐱𝐞𝐜𝐮𝐭𝐞𝐝

Fig. 2. The task queues of edge system

B. Local Execution and Task Offloading Model

The ith service client’s device executes 1bit task using
Li (cycles/bit) CPU cycles [20], [21]. The dynamic frequency
and voltage scaling (DVFS) technique is used to adjust the
CPU-cycle frequency of service clients’ devices [1], [8], [12].
In the tth time slot, fl,i(t) is the CPU-cycle frequency of the
ith service client’s device.

Dl,i(t) = τfl,i(t)L
−1
i , i ∈ U. (3)

According to circuit theories [22], [23], the CPU power
consumption of the ith service client’s device in the tth time
slot is calculated as

pl,i(t) = kmod,if
3
l,i(t), i ∈ U, (4)

where kmod,i is the effective switched capacitance of the CPU
of the ith service client’s device. fmax,i is the maximum CPU-
cycle frequency of the ith service client’s device, i.e.,

0 ≤ fl,i(t) ≤ fmax,i, i ∈ U. (5)

In this paper, the operational frequency band of the jth
edge server is divided equally into |Zj | which Bj = ω/|Zj |. In
the tth time slot, let us denote the fading of wireless channels
between the ith service client’s device and the jth edge server
as γi,j(t), the channel power gain from the ith service client’s
device to the jth edge server as

Γi,j(t) = γi,j(t)g0(
d0

di,j
)θ, i ∈ U, j ∈ S, (6)

where g0 is a constant, θ is an exponent, d0 is the reference
distance [8], and di,j is the distance between the ith service
client’s device and the jth edge server. The task offloading
variables in the tth time slot are defined as X(t) = {xi,j(t)|i ∈
U, j ∈ S}, where xi,j(t) ∈ {0, 1}, where xi,j(t) = 1 indicates
that the ith service client’s device offloads its computation
tasks to the jth edge server in the tth time slot.∑

j∈S
xi,j(t) ≤ 1, i ∈ U. (7)

The transmit power of the ith service client’s device in the
tth time slot is denoted by pr,i(t). According to the Shannon-
Hartley formula [24], the transmit rate between the ith service
client’s device and the jth edge server in the tth time slot is

ri,j(t) =

{
Bj log2(1 +

Γi,j(t)pr,i(t)
BjN0

), xi,j = 1

0, xi,j = 0
(8)

Without loss of generality, pr,i(t) must not exceed the
maximum transmit power of the ith service client’s device.

0 ≤ pr,i(t) ≤ pmax,i, i ∈ U. (9)

Based on the above definitions, the number of offloading
tasks of the ith service client’s device is calculated as

Dr,i(t) =
∑
j∈S

ri,j(t)τ, i ∈ U. (10)

C. Edge Server Scheduling

As shown in Fig. 2, the edge server can transfer input
data to a neighboring edge server via an X2 link [25]. The
amount of tasks of the ith service client’s device that have
been executed by the jth edge server in the tth time slot is
denoted as Ds,i,j(t). Then, Ds,i(t) can be expressed as

Ds,i(t) =
∑
j∈S

Ds,i,j(t), i ∈ U. (11)

For the jth edge server, fmax,j is the maximum CPU-cycle
frequency and ϕj is the number of CPUs.∑

j∈S
Ds,i,j(t)Li ≤ τϕjfmax,j . (12)

IV. PROBLEM FORMULATION

This section first defines the service cost function and
then formulates the average service capacity, i.e., the long-
term average number of service clients that can offload their
tasks. Finally, the optimization problem studied in this paper
is formulated.

The service cost function is defined as follows:

ξi(t) = βξlatencyi (t) + (1− β)ξpoweri (t), i ∈ U, (13)

where β ∈ [0, 1]. ξlatencyi (t) and ξpoweri (t) are the latency cost
and power cost of the ith service client’s device in the tth time
slot. According to Littles Law, the average execution delay of

a service client’s device is proportional to the average amount
of its tasks in the edge environment.

ξlatencyi (t) = α(Qi(t)−D∑
,i) + (1− α)(Hi(t)−Ds,i(t)).

(14)
where α ∈ [0, 1]. Therefore, ξpoweri (t) is calculated as

ξpoweri (t) = pl,i(t) + pr,i(t), i ∈ U. (15)

Let us denote the long-term average number of service
clients that can offload their tasks as Ō.

Ō = lim
T→+∞

1

T ·m

T−1∑
t=0

∑
i∈U,j∈S

xi,j(t). (16)

Constraint (17) requires that the service clients’ task
queues are stable [26].

lim
T→+∞

E[|Qi(T)|]
T

= 0, lim
T→+∞

E[|Hi(T)|]
T

= 0. (17)

Let us denote the system operation at the tth time
slot with R(t) , {f(t),p(t),X(t),D(t)}, in which f(t) ,
{fl,i(t)|i ∈ U}, p(t) , {pr,i(t)|i ∈ U}, D(t) , {Ds,j(t)|j ∈
S}. Accordingly, the objective functions that minimize the av-
erage service cost and maximize the average service capacity
respectively are defined below as P1 together:

P1 : min
{R(t)}

lim
T→+∞

1

T

0∑
T−1

E

[∑
i∈U

ξi(t)

]
max
{R(t)}

Ō

s.t.(5)(7)(9)(12)(17), t ∈ T
V. ALGORITHM DESIGN

This section introduces an online algorithm for solving
the joint task offloading and resource allocation problem P1.
Based on Lyapunov optimization, the stochastic optimization
problem is converted into a deterministic optimization prob-
lem.

A. Lyapunov Optimization-based Online Algorithm

We employ the Lyapunov optimization to ensure the
stability of the task queues through minimizing the average
service cost. To model the problem as a Lyapunov optimization
problem, we define the Lyapunov function as:

L(Θ(t)) =
1

2

∑
i∈U

[Q2
i (t) +H2

i (t)]. (18)

where Θ(t) = [Q(t),H(t)]. Then, the conditional Lyapunov
drift is defined as

∆(Θ(t)) = E[(L(Θ(t+ 1))− L(Θ(t)))|Θ(t)]. (19)

The Lyapunov drift-plus-penalty function is defined as:

∆ν(Θ(t)) = ∆(Θ(t)) + V · E[ξ(t)|Θ(t)], (20)

where ξ(t) =
∑
i∈U ξi(t) and V ∈ (0,+∞) is a control

parameter to keep the balance between task queues and service
cost.

The upper bound of ∆(Θ(t)) with constraints (5), (7),
(9) and (12) is defined as:

∆ν(t) ≤C − E[
∑
i∈U

Qi(t)(D∑
,i(t)−Ai(t))|Θ(t)]

− E[
∑
i∈U

Hi(t)(Ds,i(t)−Dr,i(t))|Θ(t)]

+ V · E[ξ(t)|Θ(t)],

(21)

where C is a constant [8].
According to Lyapunov optimization, in order to min-

imize ξ(t) and maintain the stability of service clients’ task
queues, we need to minimize the upper bound of ∆ν(t) in each
time slot as expressed in formula (21). This minimization is
denoted as PPTS. All the constraints of P1 except constraint
(17) are included in PPTS. Algorithm 1 presents the pseudo
code of the Online Joint Task Offloading and Resource Al-
location Algorithm (OJTORA). The pseudo-code for solving
SP1, SP2 and SP3 are presented below in Section V-B.

Algorithm 1 Online Joint Task Offloading and Resource
Allocation (OJTORA)
Initialization: At the beginning of the tth time slot, the
{Γi,j(t)} and {Ai(t)} will be given.

1: Get optimal f(t),p(t),X(t)andD(t) by solving

PPTS : min
R(t)
−
∑
i∈U

Qi(t)D∑
,i(t)

−
∑
i∈U

Hi(t)(Ds,i(t)−Dr,i(t)) + V · ξ(t)

s.t.(5)(7)(9)(12)

in which the optimal f(t),p(t),X(t)andD(t) can be ob-
tained by solving SP1, SP2 and SP3, respectively.

2: According to the iteration formula in (1) and (2), update
the {Qi(t)} and {Hi(t)}.

3: Go to the next time slot, which t = t+ 1.

B. Optimal Solution to PPTS
1) Optimal CPU-Cycle Frequencies of Mobile Devices:

The SP1 is defined as

SP1 : min
{f(t)}

∑
i∈U

[−(Qi(t) + V · αβ)τL−1
i fl,i(t)

+ V · (1− β)kmod,if
3
l,i(t)]

s.t.(5).

The objective function of SP1 is convex and constraint (5)
is linear. Therefore, SP1 is a convex problem. For each service
client, we can find that fl,i(t) is independent. Let us denote the
optimal CPU-cycle frequency of the ith service client’s device
as f∗l,i(t). We can obtain f∗l,i(t) by finding the minimum point
of −(Qi(t) + V · αβ)τL−1

i fl,i(t) + V · (1 − β)kmod,if
3
l,i(t).

At the same time, f∗l,i(t) must fulfil constraint (5).

f∗l,i(t) =

{
min{

√
(Qi(t)+V ·αβ)τ

3kmod,iV (1−β)Li)
, fmax,i}, others

fmax,i, β = 1
(22)

2) Optimal Transmit Power Consumption and Task Of-
floading Policy: p∗r,i(t) and X∗(t) refer to the optimal pr,i(t)
and the optimal X(t) respectively. They are obtained by
solving SP2:

SP2 : min
{p(t),X(t)}

∑
i∈U

[−Ψi(t)Dr,i(t) + V (1− β)pr,i(t)]

s.t.(7)(9).

When there is Ψi(t) = Qi(t)−Hi(t)+V ·αβ ≤ 0, the object
function of SP2 is non-decreasing with pr,i(t). Then, because
of constraint (9), p∗r,i(t) = 0 means that the ith service client’s
device will not offload its tasks to edge servers. Let us denote
Uoff (t) = {i|Ψi(t) ≥ 0, i ∈ U}. The optimal transmit power
consumption and the optimal task offloading policy can be
achieved by solving SP

′

2:

SP
′

2 : min
{p(t),X(t)}

∑
i∈Uoff (t)

[−Ψi(t)Dr,i(t) + V (1− β)pr,i(t)]

s.t.(7)(9).

This objective function is determined by two variables,
i.e., p(t) and X(t). It is hard to obtain p∗r,i(t) and X∗(t) simul-
taneously. Therefore, we divide SP

′

2 into two sub-problems.
First, we assume a X∗(t). For a fixed computation of-

floading policy, we denote the first sub-problem of SP
′

2 as
SPPWR, which can be expressed as

SPPWR : min
{p(t)}

∑
i∈Uoff (t)

[−Ψi(t)Dr,i(t) + V (1− β)pr,i(t)]

s.t.(9)

where Dr,i(t) is non-decreasing with pr,i(t). The objective
function of SPPWR is convex and constraint (9) is linear.
Therefore, SPPWR is a convex problem. Similar to SP1,
SPPWR can be decomposed for individual mobile devices.
Let us denote the edge server to which the ith service client
offloads its computation tasks in the tth time slot as j∗, there
is xi,j∗ = 1. In addition, ri,j∗(t) can be obtained by

ri,j∗(t) = Bj∗ log2(1 +
Γi,j∗(t)pr,i(t)

Bj∗N0
), (23)

where ri,j(t) = 0 if j 6= j∗. Then, Dr,i(t) = ri,j∗(t)τ .
Therefore, we can obtain p∗l,i(t) by finding the minimum of
−Ψi(t)Dr,i(t) + V · (1 − β)pr,i(t). Let us denote Λi(t) =
Ψi(t)τBj∗

V ·(1−β) ln 2 −
N0Bj∗

Γi,j∗ (t) . Then, the p∗l,i(t) can be written as

p∗l,i(t) =

{
min{Λi(t), pmax,i}, others

pmax,i, β = 1
(24)

Secondly, we assume a fixed p∗(t) and denote the second
sub-problem of SP

′

2 as SPCO, expressed as follows:

SPCO : min
{X(t)}

∑
i∈Uoff (t)

[−Ψi(t)Dr,i(t)]

s.t.(7).

For a service client where i ∈ Uoff (t), it independently
selects an edge server to offload its computation tasks. There-
fore, SPCO can be decomposed for individual service clients.

In order to solve SPCO, we propose an algorithm to obtain
X∗(t), as described in Algorithm 2.

Algorithm 2 Offloading Server Selection
Initialization: εi(t) = ∅,mini = MIN DOUBLE.

1: for all i ∈ U do
2: for each j ∈ Gi(t)&j /∈ εi(t) do
3: min = Ψi(t)Dr,i(t);
4: if mini ≤ min then
5: j∗ = j;
6: end if
7: Gi(t) = Gi(t)|{j}, εi(t) = εi(t) ∪ {j};
8: end for
9: xi,j∗ = 1;

10: end for

3) Computing Resource Allocation of Edge Servers: All
the parts remaining in PPTS are only related to the allocation
of edge servers’ computing resources, defined as SP3:

SP3 : min
{D(t)}

∑
i∈U

[−[V (1− α)β +Hi(t)] ·Ds,i(t)]

s.t.(12).

The value achieved by the objective function of SP3

decreases with Ds,i(t). Let us denote valuei = V (1−α)β +
Hi(t). It can be found that the greater the valuei, the more
benefit will be generated when an edge server executes an
equivalent amount of tasks. Then, OJTORA employs Algo-
rithm 3 to solve SP3.

Algorithm 3 Computing Resource Allocation
Initialization: According to the value of valuei, sort mobile

devices in a decreasing order. i = 1, restj = τϕifmax,j .
1: while i ≤ n do
2: if

∑
j∈Gi(t)

restj ≥ Hi(t) then
3: Ds,i(t) = Hi(t);
4: restj = restj − restj∑

j∈Gi(t)
restj

Ds,i(t);
5: else
6: Ds,i(t) =

∑
j∈Gi(t)

restj ;
7: restj = 0;
8: end if
9: i = i+ 1;

10: end while

VI. EXPERIMENTAL EVALUATION

This section evaluates the performance of OJTORA
against two baseline approaches. All the experiments were
conducted on a machine equipped with Intel Core i5-7400T
processor (4 CPUs, 2.4GHz) and 8GB RAM, running Win-
dows 10 x64.

A. Baseline Approaches

To our best knowledge, OJTORA is the first attempt
to consider both the resource allocation and task offloading

in a multi-server edge computing environment for latency-
tolerant applications. Due to the issue of edge server coverage
overlapping, existing approaches designed for the single-server
edge computing environment cannot be directly applied to the
multi-server environment. Thus, in the experiments, OJTORA
is evaluated against two intuitive baseline approaches, namely
Random and Greedy:
• Random: The Random approach select edge servers

randomly to offload service clients’ tasks.
• Greedy: In (6), a shorter distance between an edge server

and a service client’s device results in a smaller commu-
nication interference. Based on this fact, the Greedy ap-
proach selects the closest edge servers to offload service
clients’ tasks.

B. Experiment Settings

The experiments are set up in a way similar to [8]. In
each experiment, a total of n service clients are distributed in
an area covered by m base stations. The radius of each base
station is 150 m, and there is γi,j(t) ∼ Exp(1), i ∈ U, j ∈
S. The simulation results are the average values over 10,000
time slots. In general, there is n=30, m=3. The Ai,max =
1000 bits.Table I presents the parameter settings used in the
experiments.

TABLE I
SYSTEM PARAMETERS

Parameter Value Parameter Value
ω 10 Hz N0 -174 dBm/Hz

g0 -40 dB d0 1 m

θ 4 kmod,i 1× 10−27

fmax,i 1 GHz pmax,i 500 mW

Li 737.5 cycles/bit fmax,j 2.5 GHz

ϕj 4 τ 2 ms

In the experiments, we vary three parameters that may
have an impact on OJTORA:
• Control Parameter V : We change the value of V ,

where V = 1 × 109, 2 × 109, ..., 9 × 109, under four
circumstances: 1) α = 0.3, β = 1 × 10−5; 2) α =
0.3, β = 1 × 10−6; 3) α = 0.7, β = 1 × 10−5; and
4) α = 0.7, β = 1× 10−6.

• Number of Users n: We change the number of ser-
vice clients, where n = 10, 20, 30, 100, 200, with α =
0.3, β = 1× 10−5, V = 1× 109.

• Number of Edge Servers m: We change the number
of edge servers, where m = 3, 6, 9, with α = 0.3, β =
1× 10−5, V = 1× 109.
Two performance metrics are employed to evaluate OJ-

TORA, corresponding to the two optimization objectives.
• Service Capacity. Service capacity is measured by the

long-term average number of service clients served, as
formally defined in (16).

• Service Cost. Service cost is defined as ξ̄∑ =
1
T ·n

∑T−1
t=0

∑
i∈U ξi(t). In order to compare the power

consumption and service latency more clearly, two more
specific metrics are defined and employed in the evalua-
tion: 1) the average power consumption of service clients’
devices, defined as p̄∑ = 1

T ·n
∑T−1
t=0

∑
i∈U (pl,i(t) +

pr,i(t)); and 2) the average queue length of service
clients’ devices: q̄∑ = 1

T ·n
∑T−1
t=0

∑
i∈U (Qi(t)+Hi(t)).

C. Experimental Results

1) Optimality: As shown in Fig. 3, OJTORA outper-
forms the two baselines approaches significantly in achieving
both optimization objectives. Specifically, it outperforms the
Random approach by 27.8%-41.1% in power consumption,
23.2%-37.1% in queue length, 0.2%-10.9% in average service
capacity and 23.1%-37.2% in average service cost. OJTORA
also outperforms the Greedy approach, by 25.6%-39.1% in
power consumption, 20.1%-35.7% in queue length, 0.2%-
6.7% in average service capacity and 22.1%-35.8% in average
service cost. Fig. 3 also shows that the Greedy approach
outperforms the Random approach. The reason is that the
Greedy approach selects the closest edge servers to offload
service clients’ tasks. This reduces the power consumed by the
data transmission between service clients’ devices and edge
servers.

(a) Average power consumption (b) Average queue length

(c) Average service capacity (d) Average service cost

Fig. 3. Average power consumption, average queue length and average service
cost, average service capacity (α = 0.3, β = 1× 10−5)

2) Impact of Parameter V : As shown in Fig. 4, as V
increases, the average service capacities achieved by all three
approaches decrease. However, the average service costs in-
crease. According to (22) and (24), as V increases, the transmit
power consumption of service clients’ devices decreases. This
results in the decrease in the average service capacity. With the
increase in V, the power consumption increases more rapidly
than the latency. As a result, the average service cost increases.

3) Impact of the Number of Service Clients n: As shown
in Fig.5, As n increases, the average service cost increases.
This is because the competition among service clients for the
computing resources on the edge servers becomes fiercer with
the increase in n.

4) The Impact of the Number of Edge Servers m: As
shown in Fig.6, with the increase in m, the average power
consumption, the average queue length and the average service

(a) Average service capacity (b) Average service cost

Fig. 4. Average service capacity and average service cost vs V .

Fig. 5. Average service cost per time slot vs the number of mobile devices.

cost increase. However, when m continues to increase, the
average service cost converges and remains steady. This is
because the resources are more than sufficient to allow all
service clients to be served.

Fig. 6. Average service cost vs the number of edge servers.

VII. CONCLUSION

In this paper, we investigated a joint task offloading and
resource allocation problem in multi-server edge computing
environments with the objectives to maximize service capacity,
i.e., the number of mobile devices served, and to minimize the
service cost, i.e., the service latency and power consumption
experienced by service clients. To solve this problem, we
proposed OJTORA, an online algorithm based on Lyapunov
optimization, which converts the stochastic optimization prob-
lem to a per-time-slot deterministic optimization problem.
The experimental results show that our approach significantly
outperforms two baseline approaches. However, OJTORA
does not consider the fairness in the resource sharing among
service clients because it assumes static bandwidth allocation
for now. In the future, dynamical allocation of bandwidth will
be studied. We will also extend OJTORA to accommodate
users service clients’ mobility.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey
on Mobile Edge Computing: The Communication Perspective,” IEEE

Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[2] Y. Zhou and Z. Zhi, “Near-End Cloud Computing: Opportunities and
Challenges in the Post-Cloud Computing,” Chinese Journal of Comput-
ers, vol. 41, no. 25, pp. 10–19, 2018.

[3] X. Ge, S. Tu, G. Mao, C.-X. Wang, and T. Han, “5G Ultra-Dense
Cellular Networks,” IEEE Wireless Communications, vol. 23, no. 1, pp.
72–79, 2016.

[4] Y. Qi, Y. Zhou, L. Liu, L. Tian, and J. Shi, “MEC Coordinated Future
5G Mobile Wireless Networks,” Journal of Computer Research and
Development, vol. 55, no. 3, pp. 478–485, 2018.

[5] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and
Y. Yang, “Optimal Edge User Allocation in Edge Computing with
Variable Sized Vector Bin Packing,” in International Conference on
Service-Oriented Computing (ICSOC). Springer, 2018, pp. 230–245.

[6] L. Zhang, S. Wang, and R. N. Chang, “QCSS: A QoE-aware Control
Plane for Adaptive Streaming Service over Mobile Edge Computing
Infrastructures,” in IEEE International Conference on Web Services
(ICWS). IEEE, 2018, pp. 139–146.

[7] H. Wu, S. Deng, W. Li, M. Fu, J. Yin, and A. Y. Zomaya, “Service
Selection for Composition in Mobile Edge Computing Systems,” in
IEEE International Conference on Web Services (ICWS). IEEE, 2018,
pp. 355–358.

[8] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic Joint Radio
and Computational Resource Management for Multi-User Mobile-Edge
Computing Systems,” IEEE Transactions on Wireless Communications,
vol. 16, no. 9, pp. 5994–6009, 2017.

[9] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint Optimization of Radio
and Computational Resources for Multicell Mobile-Edge Computing,”
IEEE Transactions on Signal and Information Processing over Networks,
vol. 1, no. 2, pp. 89–103, 2015.

[10] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multi-User Joint Task
Offloading and Resource Optimization in Proximate Clouds,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 4, pp. 3435–3447,
2017.

[11] B. Yu, L. Pu, Y. Xie, J. Xu, and J. Zhang, “Joint Task Offloading
and Base Station Association in Mobile Edge Computing,” Journal of
Computer Research and Development, vol. 55, no. 3, pp. 537–544, 2018.

[12] T. X. Tran and D. Pompili, “Joint Task Offloading and Resource
Allocation for Multi-Server Mobile-Edge Computing Networks,” arXiv
preprint arXiv:1705.00704, 2017.

[13] C.-F. Liu, M. Bennis, and H. V. Poor, “Latency and Reliability-Aware
Task Offloading and Resource Allocation for Mobile Edge Computing,”
in IEEE Global Communications Conference (Globecom Workshops).
IEEE, 2017, pp. 1–7.

[14] M. Masoudi, B. Khamidehi, and C. Cavdar, “Green Cloud Computing
for Multi Cell Networks,” in Wireless Communications and Networking
Conference (WCNC). IEEE, 2017, pp. 1–6.

[15] L. Yang, J. Cao, Z. Wang, and W. Wu, “Network Aware Multi-User
Computation Partitioning in Mobile Edge Clouds,” in International
Conference on Parallel Processing (ICPP). IEEE, 2017, pp. 302–311.

[16] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “Its Hard
to Share: Joint Service Placement and Request Scheduling in Edge
Clouds with Sharable and Non-Sharable Resources,” Technical Report,
December 2017.[Online]. Available: https://1drv. ms/b/s, Tech. Rep.,
2018.

[17] T. Li, C. S. Magurawalage, K. Wang, K. Xu, K. Yang, and H. Wang,
“On Efficient Offloading Control in Cloud Radio Access Network with
Mobile Edge Computing,” in International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2017, pp. 2258–2263.

[18] L. Wang, L. Jiao, J. Li, and M. Mühlhäuser, “Online Resource Allocation
for Arbitrary User Mobility in Distributed Edge Clouds,” in Distributed
Computing Systems (ICDCS). IEEE, 2017, pp. 1281–1290.

[19] A. Alfayly, I.-H. Mkwawa, L. Sun, and E. Ifeachor, “Qoe-Driven LTE
Downlink Scheduling for Voip Application,” in Consumer Communica-
tions and Networking Conference (CCNC). IEEE, 2015, pp. 603–604.

[20] A. P. Miettinen and J. K. Nurminen, “Energy Efficiency of Mobile
Clients in Cloud Computing,” HotCloud, vol. 10, pp. 4–4, 2010.

[21] S. Han, X. Wang, L. Xu, H. Sun, and N. Zheng, “Frontal Object
Perception for Intelligent Vehicles Based on Radar and Camera Fusion,”
in Control Conference (CCC). IEEE, 2016, pp. 4003–4008.

[22] X. Chen, “Decentralized Computation Offloading Game for Mobile
Cloud Computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 4, pp. 974–983, 2015.

[23] Y. Wen, W. Zhang, and H. Luo, “Energy-Optimal Mobile Application
Execution: Taming Resource-Poor Mobile Devices with Cloud Clones,”
in IEEE International Conference on Computer Communications (IN-
FOCOM). IEEE, 2012, pp. 2716–2720.

[24] T. M. Cover and J. A. Thomas, Elements of Information Theory. John
Wiley & Sons, 2012.

[25] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato,
and C. S. Hong, “Joint Communication, Computation, Caching, and
Control in Big Data Multi-Access Edge Computing,” arXiv preprint
arXiv:1803.11512, 2018.

[26] M. J. Neely, “Stochastic Network Optimization with Application to
Communication and Queueing Systems,” Synthesis Lectures on Com-
munication Networks, vol. 3, no. 1, pp. 1–211, 2010.

	I Introduction
	II Related Works
	III System Model
	III-A Computation Task and Task Queue Model
	III-B Local Execution and Task Offloading Model
	III-C Edge Server Scheduling

	IV Problem Formulation
	V Algorithm Design
	V-A Lyapunov Optimization-based Online Algorithm
	V-B Optimal Solution to PPTS
	V-B1 Optimal CPU-Cycle Frequencies of Mobile Devices
	V-B2 Optimal Transmit Power Consumption and Task Offloading Policy
	V-B3 Computing Resource Allocation of Edge Servers

	VI Experimental Evaluation
	VI-A Baseline Approaches
	VI-B Experiment Settings
	VI-C Experimental Results
	VI-C1 Optimality
	VI-C2 Impact of Parameter V
	VI-C3 Impact of the Number of Service Clients n
	VI-C4 The Impact of the Number of Edge Servers m

	VII Conclusion
	References

