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Abstract—We propose a novel approach to select IaaS cloud
services for a long-term period where the service providers of-
fer limited QoS information. The proposed approach leverages
free short-term trials to obtain the previously undisclosed QoS
information. A new significance-based trial scheme is proposed
using frequency distribution analysis to test a consumer’s
long-term workloads in a short trial. We introduce a novel
IaaS signature technique to uniquely identify the variability
of a provider’s QoS performance. A Signature-based QoS
Performance Discovery (SPD) algorithm is proposed which
leverages the combination of free trials and IaaS signatures.
A set of exhaustive experiments with real-world datasets is
conducted to evaluate the proposed approach.

Keywords-Free Trials, Long-term Performance, Service Se-
lection, IaaS Signatures, Frequency Distribution Analysis

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) is a key service deliv-
ery model that offers virtualized computational resources
in the cloud market [1]. Virtual Machines (VMs), Virtual
Storage (VS), and Virtual Private Networks (VPNs) are some
common services provided through IaaS models. IaaS cloud
offers an effective alternative to manage an organization’s
in-house IT infrastructure in the cloud. Amazon, Google,
and Microsoft are examples of leading IaaS providers. IaaS
providers often promote long-term services (i.e., 1 - 3 years)
by offering significant discounts. For example, Amazon
offers up to 75% discounts for the reserved EC2 instances
compared to on-demand instances1.

Large organizations such as airline companies, banks,
and research institutes tend to utilize IaaS services on a
long-term basis for economic reasons. Selecting the right
IaaS service is an important business decision for long-
term consumers [2]. Consumers usually determine long-
term service requirements based on their expected revenue,
market expansion, history, and budget [3].

IaaS models utilize the service paradigm as a mechanism
to deliver services [4]. An IaaS service consists of two parts:
functional and non-functional. Functional attributes are set
based on the purpose of the service such as computing, data
storing, and networking. Non-functional attributes are the
Quality of Service (QoS) attributes such as availability, re-
sponse time, and throughput. QoS attributes help a consumer
to select the best performing services from a large number
of functionally similar services [5].

1https://aws.amazon.com/ec2/pricing/reserved-instances/

IaaS providers typically do not provide adequate informa-
tion about their service performance to make an informed
selection [6]. Selecting the best performing IaaS service is
challenging due to the incomplete IaaS advertisements and
limited performance history. We address these challenges
using a signature-based IaaS selection approach. The pro-
posed approach predicts service performance by utilizing the
patterns of service performance behavior as represented by a
provider’s performance signature. We identify the following
key challenges in the long-term IaaS selection:
a) Incomplete advertisements: IaaS providers reveal lim-
ited and short-term QoS information in their advertisements
[7]. IaaS advertisements typically contain a limited number
of QoS attributes. For instance, disk read/write throughput,
memory bandwidth, and availability are unavailable in most
advertisements [8]. The advertised performance information
may not be representative for a long period. For instance,
a consumer may want to know the performance in De-
cember where the advertised performance is recorded in
June. Additionally, the advertised information may not be
helpful to understand service performance due to the lack
of detailed information. For example, EC2 instances have
different types of virtual CPUs (vCPUs). Each vCPU can
be a thread of an Intel Xeon core, an AMD EPYC core, or
AWS Graviton processor according to AWS advertisements2.
Estimating the vCPU’s actual performance is difficult from
such limited information [9]. Providers often advertise an
average or maximum performance of their services. For
instance, the network performance of some EC2 instances
has up to a 10-gigabit data transfer rate. Existing studies
show that providers often fail to offer the promised QoS
performance in the long-term period [2].
b) Limited performance history: IaaS Providers usually
do not share detailed service performance history publicly
due to market competition and business secrecy [4]. There
exist third party data collectors such as CloudHarmony, and
CloudSpectator that provide summarized results or insights
on the performance of cloud services. These results are usu-
ally not fit for further analysis due to the reduced dimensions
in QoS attributes and time [10]. For instance, CloudHarmony
mainly monitors network availability and does not provide
any insight on response time and throughput. Moreover, col-
lectors often use proprietary benchmarks but reveal limited
information about the benchmarking process.

2https://aws.amazon.com/ec2/instance-types/
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Existing approaches to select IaaS services with incom-
plete information leverage free short-term trials advertised
by IaaS providers [2], [7]. For instance, Microsoft offers
$200 credits to explore any Azure service for 30 days.
A consumer may discover the short-term performance of
different QoS attributes based on its workloads in a free trial.
An equivalence-partitioning based trial strategy is proposed
to discover a provider’s long-term service performance [4].
The proposed approach focuses on the temporal restriction
of short-term trials during the trial workload generation. The
following aspects of the long-term selection using free trials
have not been addressed:
a) Workload characteristics: A consumer may execute a
wide variety of workloads over a long period. A service
may exhibit inconsistent performance behavior for differ-
ent types of workloads [7]. For example, a service may
exhibit higher throughput for CPU-intensive workloads than
network-intensive workloads. Free trials are typically offered
for a short period (e.g., 7 to 30 days). Effective utilization of
free trials is a prerequisite to make an informed selection. It
may be challenging to test all kinds of workloads in a short
period. Hence, trial workloads should be selected carefully
to maximize the utilization of free trials.
b) Performance variability: Commercial IaaS providers
typically operate in a multi-tenant environment and over-
commit resources. A provider’s service performance may
fluctuate based on several factors such as active co-tenants,
QoS management policy, and location [7]. It is therefore in-
adequate to rely only on the trial experience for a long-term
commitment. Most existing long-term selection approaches
assume that the long-term service performance of a provider
is known [4], [11]. In practice, a consumer does not know
the provider’s long-term service performance.

We propose a novel approach that leverages free trials
to select IaaS services for a long-term period according to
a consumer’s QoS requirements. The approach introduces
two new concepts: a) IaaS signature which captures the
long-term IaaS performance variability, and b) workload
significance which addresses a consumer’s future workload
characteristics. The contributions are summarized as follows:
• A significance-based trial scheme to discover the unknown

QoS performance for a consumer’s long-term workloads.
• An IaaS signature technique to uniquely identify a

provider’s QoS performance variability.
• A signature-based IaaS selection approach that utilizes the

trial experience and IaaS signatures to discover long-term
IaaS performance.

II. RELATED WORK

IaaS cloud selection is a topical research challenge in
cloud computing [12]. Several IaaS selection approaches
are proposed to find the optimal IaaS providers based on
their QoS performance. A cloud comparison approach called
CloudCom is proposed to help consumers select a cloud

provider that fits their needs [10]. CloudCom addresses
three key services, i.e., elastic computing, persistent storage,
and networking services. The performance of each service
is measured based on the most relevant QoS attributes
that may affect consumers’ applications directly. The IaaS
service selection problem is often modeled as a multi-criteria
decision-making problem [11]. We categorize the exiting
IaaS service selection approaches into the following groups:
a) Short-term IaaS selection: A common approach to
select IaaS services is to perform short-term trials using a
representative application or micro-benchmarks [7]. Existing
studies suggest that traditional benchmarks for computer
systems are not suitable for cloud performance discovery [1].
A generator approach is proposed to automate performance
testing in IaaS cloud [12]. The proposed work aims at re-
ducing human errors for large scale distributed experiments.
Several studies suggest that the IaaS performance fluctuates
considerably based on the application workloads [9]. These
studies focus on short-term selection and do not consider
the long-term performance change.
b) Long-term IaaS selection: The long-term IaaS selection
approach is considered in several studies [11]. A QoS-aware
selection approach is proposed using a multi-dimensional
time series [2]. The proposed approach selects providers
based on the consumer’s economic models. A qualitative
approach is proposed using CP-nets for the long-term se-
lection [13]. A QoS-aware approach is proposed to select
and compose long-term cloud services based on three meta-
heuristic approaches [11]. These approaches assume that
long-term performance is given for the selection. We focus
on a realistic environment where providers disclose limited
QoS performance information.

To the best of our knowledge, existing IaaS selection
approaches are not applicable when available QoS perfor-
mance information is limited or absent. Free trials are im-
portant sources of performance-related information. Cloud
consumers often run representative applications in free trials
and monitor IaaS performance to select providers. We aim at
leveraging free trials for the long-term selection. However,
the long-term selection based on free trials is challenging
due to the short-term trial restrictions and the long-term
performance variability of the cloud environment [4].

III. IAAS SIGNATURES

We adopt the concept of signature to represent a provider’s
long-term performance behavior for a service over a fixed
period. The term “signature” is typically utilized to indicate
the characteristics of an entity, work, or a piece of informa-
tion that represents their identity or uniqueness. The concept
of signature is used for different purposes in several domains
such as computing, cryptography, and security. For instance,
application performance signatures are used for resource
capacity planning and performance anomaly detection [14].



An IaaS signature is a relative representation of providers’
performance over a fixed period for a particular service.
The signature indicates a provider’s performance trends
and seasonality, i.e., how much a provider’s performance
may increase or decrease in one time compared to another
time. For instance, the signature of an IaaS provider may
inform that the provider’s performance increase by 10% on
weekend nights than regular weekdays. IaaS signature does
not provide the consumer with the actual performance of a
provider. A consumer would find it challenging to use the
signature without performing the trial using its workloads.

We utilize signatures to measure the confidence of trial ex-
perience and to discover a provider’s long-term performance.
First, the trial confidence is determined by a similarity
distance between the trial experience and IaaS signatures.
The trial experience may be utilized to discover the long-
term service performance when the experience has high
confidence. If the trial experience has low confidence, we
discard the provider based on a predefined threshold. Next,
we utilize the signature to estimate the provider’s long-term
service performance for the consumer’s long-term work-
loads. The optimal provider is selected based on a time series
similarity distance between the consumer’s expected service
performance and providers’ predicted service performance.

A. IaaS Signature Representation

IaaS Signature: An IaaS signature is a temporal represen-
tation of a provider’s relative performance change over time
for a service. The signature is defined by a set of QoS
parameters that are relevant to the service.

The relevant QoS attributes are the key QoS attributes to
measure the performance of the service [10]. For example,
data read/write throughput, and disk latency are the most
important QoS attributes for virtual storage services.

We denote the IaaS signature of a provider as S =
{S1, S2, ...Sn}, where n is the number of QoS attributes
in the signature. Each Sn corresponds to a QoS attribute
Qn. Sn denotes a time series for t period where Sn =
{sn1, sn2, ......snt}. Here, snt is the relative performance of
the provider at the time t for a particular QoS attribute. We
use the following representation IaaS signature:

S =


s11 s12 .. s1t
s21 s22 .. s2t
s31 s13 .. s3t
.. .. ...

sn1 sn2 .. snt

 (1)

where each row corresponds to the QoS signature of Qi

and each column represents a timestamp t.

B. IaaS Signature Generation

We aim to represent a provider’s long-term service per-
formance changes using its signature. A provider’s service
performance may vary based on several factors such as the
degree of resource overbooking, the number of co-tenants

and poor network conditions due to the external factors [7].
It is difficult to determine what are the factors behind the
performance variability over time from the consumer side.
However, the changes in performance often exhibit weekly,
monthly, or yearly seasonality [8]. Therefore, it may be
possible to capture the seasonal performance changes from
the experience of past trial users over different times [7].
Note that past trial users may not share their experience
publicly to protect their privacy, security, and the conflict of
interests with the provider [15].

It is reasonable to assume that past users may share
their trial experience with a trusted non-profit organization
(TNPO) for a limited period to help new consumers in
the selection [16]. Examples of such TNPOs are available
in public sectors where privacy-sensitive information about
individuals needs to be shared to deliver better services. For
instance, health research institutes often collect data about
individual patients to improve health services. TNPOs are
responsible for data integration and distribution of collective
knowledge without revealing individual’s privacy-sensitive
information. We assume that past trial users share their ex-
perience with a TNPO. The TNPO generates IaaS signatures
based on the aggregated experience of past trial users.

IaaS signatures can be generated in different ways based
on the purpose of the signatures. The purpose of the signa-
ture in this work is two-fold. First, we want to ascertain the
confidence of the trial experience using the signature. Sec-
ond, we want to utilize the signature to predict a provider’s
future performance behavior using the trial experience. We
represent the signature in a way that requires less detailed
performance information about the provider and the past trial
users. We apply a normalized averaging method to generate
the signature based on the experience of past trial users.

Let us assume that three IaaS providers (A, B, and C)
offer three VMs (VMa, VMb, and VMc) with similar
configurations (e.g., capacity, location) for free short-term
trials. There exist past users who utilized the trials to find the
performance of each VM in different time. Past trial users do
not want to share their trial experience publicly. However,
each trial user shares their experience with a Trusted Non-
profit Organization (TNPO) for a short period (Fig. 1).
The TNPO generates IaaS signatures to identify providers’
long-term performance variability for each VM. The TNPO
deletes users’ experience once the signatures are computed.
A signature provides an aggregated view of a provider’s
long-term performance variability. It is not possible to derive
individual trial experience from the signature. As a result,
the TNPO does not violate the privacy of past trial users.
The IaaS signatures do not contain the provider’s actual
performance information.

Let us assume that k number of past trial users share
their observed trial performance Pk over the period T for
a service. We denote Pk as a set of QoS time series
where Pk = {Q1k, Q2k, ..., Qnk}. Here, Qik refers to
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Figure 1. IaaS signature generation

the performance observed by the kth consumer for the
QoS attribute Qi over the period T . We denote Qik as
Qik = {q1ik, q2ik, .., qtik}. We perform the following steps
to generate the IaaS signature:
1) For each QoS attribute Qi, the performance observed by

the trial users is collected over time T .
2) At each timestamp t ∈ T , the average performance

observed by k number of consumers is measured for
each QoS attribute Qi. The average performance over
T period is denoted by Qik

3) Each Qik is normalized based on its standard deviation
σ(Qik). The normalized QoS time series groups forms
the IaaS signature S over time T .

The value of snt at any t represents the relative QoS
performance compare to any other time t′ in Equation
1. This simple representation of the signature offers two
benefits. First, the use of signature becomes easier once a
consumer utilizes free trials based on its workloads. The
performance for any other time can be found by comparing
the ratio between the trial month and other time. Second,
signatures can be stored and updated easily over time as it
does not require storing detailed information.

We assume that the signature provided by the TNPO
is accurate and complete for period T . We assume that
a provider’s signatures does not drastically over these T
period. The signature mainly reflects substantial changes
in the provider’s service performance. The effect of the
signature should be visible by most consumers in the trial
period unless the provider utilizes an isolated environment.

IV. SIGNIFICANCE-BASED TRIAL SCHEME

A consumer needs to evaluate a provider’s service perfor-
mance based on its long-term workloads. We assume that the
consumer’s long-term workloads are deterministic, i.e., the
expected workloads are known at the time of the selection.
Long-term workloads may be estimated based on the real-
world workload traces that can be found in previous activity
logs of the consumer. However, it may not possible to run the
consumer’s entire long-term workloads in a short trial [4].
Hence, representative trial workloads need to be generated
based on the characteristics of the long-term workloads.

The first step to generate representative workloads is to
determine the workload components (e.g., users, sessions,

and applications) and workload parameters. The workload
parameters are typically defined by the characteristics of
the service requests such as requests arrival times, type
of the requests, or resource demands of different types of
applications [9]. We select resource demands per second
as the workload parameter without the loss of generality.
We denote a consumer’s expected workload time series
as w = {w1, w2, ..., wT } over period of time T . Here,
wT represents the resource demand at time T . Note that
it is possible to model other workload parameters as w
depending on the service requirements. If multiple workload
parameters need to be modeled, we may consider that w
has multiple dimensions where each dimension represents a
specific workload parameter. The next step is to characterize
workloads based on the workload parameters. Workload
characterization is usually performed based on statistical
analysis such as clustering, specifying dispersion, PCA,
and frequency distribution analysis. We use the frequency
distribution analysis to characterize the consumer’s long-
term workloads. Finally, a subset of the long-term workloads
is selected as the representative workloads for the trial. The
selection criteria are defined based on the characteristics of
the long-term workloads.

A consumer needs to define the selection criteria for the
trial workloads carefully. Otherwise, the trial experience may
not be helpful for the selection. The trial needs to be per-
formed with the workloads that have the most significance to
the consumer. We define two types of workload significance
based on two workload parameters: a) occurrences, and b)
resource consumption.

• Frequency-based Significance: The type of workload that
is expected to appear more frequently in the future than
any other type of workload is considered significant to the
consumer.

• Resource Consumption-based Significance: The type of
workload that is expected to demand more resources in
the future than any other type of workload is considered
significant to the consumer.

The workload significance can be defined in terms of other
criteria based on various workload parameters. For instance,
a consumer may define short-term and long-term requests
based on the expected execution time of the requests. We
only focus on Frequency-based and Resource consumption-
based trial workload generation. Let us assume that the trial
period t has k number of timestamps and the consumer’s
long-term workload has n number of timestamps. We as-
sume that k << n, i.e., the value of k is significantly less
than the value of n. We need to generate k workloads from
n workloads to perform the trial. Algorithm 1 illustrates the
proposed scheme for the trial workload generation.

The algorithm 1 takes the long-term workloads W , the
trial period t, and the significance S as input. The output
of the algorithm is Wt, which is a subset of W . First, the



Algorithm 1 Significance-based Trial Scheme
1: Input: W , t, S
2: Output: Wt

3: n← size(W );
4: k ← length(t);
5: Uw ← unique(W );
6: Winfo = createArray(size(w))
7: for each workload w in Uw do
8: Winfo(w).frequency = count(w)
9: Winfo(w).level = level(w))

10: Wt = select(Winfo, k, S)
11: return Wt

algorithm computes the size of W and the length of t. Next,
it finds the unique workloads Uw in W . An array is then
created called Winfo that stores the level of each workload
and its frequency. The level of a workload defined by the
resource consumption of the workloads. For example, if a
workload requires 90% of the CPU units, the level is set to
high for the workload. The level function is predefined based
on the resource capacity. The frequency of each workload is
stored based on its number of occurrences in W using the
count function. Once the map is created for each workload,
a workload selection function is used to select k workloads
from n workloads using S. The value of S determines the
significance of the workloads. We use the following three
criteria for S to generate the trial workload:
1) Frequency-based Generation (FG): We select k trial

workloads that occur most frequently in W .
2) Resource Consumption-based Generation (RG): We se-

lect k trial workloads from W that have maximum
resource consumption.

3) Mixed Generation (MG): We select k/2 workloads based
on FG method and k/2 workloads using RG method.

The selection function can be implemented in different
ways based on the workload parameters and the significance.
We leave it for the future work to define workload signifi-
cance using other techniques.

V. SIGNATURE-BASED IAAS SELECTION

A. Trial Confidence Measure

The trial confidence is determined using the similarity
distance between the IaaS signature and the trial experi-
ence. The QoS performance observed in the trial should
be normalized before measuring the similarity distance. We
measure the similarity distance based on the shape of the
signature and the trial experience for each QoS attribute. We
decide to use the Pearson Correlation Coefficient (PCC) to
measure the trial confidence (Tconf ). The PCC is applied to
measure the trial confidence (TQi

conf ) for each QoS attributes
Qi as follows:

T
Qi
conf =

∑n
t=1(q′t − q̄′)(qt − q̄)√∑n

t=1(q′t − q̄′)2
√∑n

t=1(qt − q̄)2
(2)
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where n is the trial length, q′t is the normalized value of
the trial performance of Qi at time t. The normalized value
of the signature is qt at time t for the QoS attribute Qi. The
mean value of of Qi is indicated by q̄′. The total confidence
calculated by taking the average of all confidence for each
QoS attribute by the following equation:

Tconf =
1

k

k∑
i=1

T
Qi
conf (3)

where k is the total number of QoS attributes. Fig. 2
depicts a plot of normalized trial performance and signature
for CPU throughput. The figure shows that the shape of the
trial experience is similar to the signature. If the confidence
is lower than a predefined threshold (e.g., less than 70%),
the provider is discarded.

B. Signature-based Performance Discovery (SPD)

We utilize the IaaS signature to measure the provider’s
service performance beyond the trial period. The first step
is to estimate the service performance for the consumer’s
long-term workloads based on the trial experience. Then, we
need to apply the signature to adjust the performance of each
type of workload based on the time of its appearance. For
example, if a certain type of workload appears in January,
then the performance of that type of workload needs to
be changed using the signature. We apply algorithm 2 to
discover a provider’s service performance beyond the trial
period for the consumer’s long-term workloads.

Algorithm 2 Signature-based Performance Discovery
1: Input: W , Wtrial, Ptrial, S
2: Output: P
3: TotalT ime = length(W )
4: trialLength = length(Wtrial)
5: Strial = S(1 : trialLength)
6: for each t in TotalT ime do
7: t′ = NearestNeighbor(W (t),Wtrial)
8: TransForm = S(t)/Strial(t

′)
9: P (t) = TransForm ∗ Ptrial(t

′)

10: return P

Algorithm 2 takes input the trial workload Wtrial, trial
performance P , long-term workloads W , and IaaS signature
S. The algorithm returns the long-term performance P . First,



the algorithm measures the length of W to estimate the total
required service time. Then, the trial length is measured
based on Wtrial. The part of signature that is applicable
for the trial period is taken from S based on the trial
length trialLength. Next, for each timestamp in the total
time, the algorithm needs to measure the performance of
the corresponding workload. For each workload at time t,
the NearestNeighbor function finds the closest workload
that can be found in the trial workloads based on resource
demand. We use the euclidean distance to measure the sim-
ilarity between workloads. The function NearestNeighbor
returns the timestamp t′ that is the timestamp of the closest
workload. Next, the transformation factor TransForm is
measured by taking the ratio between the signature of the
current timestamp t and t′. The performance at the current
timestamp P (t) is found by multiplying the Ptrial(t

′) with
the transformation factor TransForm. Here, Ptrial(t

′) is
the performance of the trial workload that is closest to the
current workload W (t).

The performance Ptrial and P are shown as a one-
dimensional time series in the algorithm. However, the
algorithm is still applicable if the performance is considered
multi-dimensional, i.e., multiple QoS attributes.

C. Long-term IaaS Selection

The long-term selection is performed based on the con-
sumer’s requested performance and the predicted service
performance [2]. First, we normalize the value of QoS
attributes based on Min-Max Feature Scaling to have the
same scale for each QoS attribute using the following
equation:

Q
′
it =

Qi(t)−min(Qi)

max(Qi)−min(Qi)
(4)

where Qi(t) is the value of Qi at time t. Q′it is the
normalized value of Qi(t). Equation 4 is applied to each
QoS time series of the requested and predicted performance.
Next, we measure the Root Mean Squared Error (RMSE)
distance from the consumer’s requested performance and the
discovered IaaS performance for each QoS attribute using
the following equation:

RMSE(Q
r
i , Q

p
i ) =

√√√√ 1

T

T∑
t=1

(Qr
i (t)−Qp

i (t))2 (5)

where Qr
i and Qp

i are the requested and predicted QoS
performance of Qi over time T . Qr

i (t) and Qp
i (t) denote the

requested QoS performance and predicted QoS performance
respectively at time t. Finally, the rank of each provider is
measured by the following equation:

Rank(P ) =
k∑

i=1

RMSE(Q
r
i , Q

p
i ) (6)

where Rank(P ) is the predicted rank of the provider P
and k is the total number of QoS attributes.

Table I
EXPERIMENT VARIABLES

Attribute Value
Total Time 360 days
Number of Providers 7
Trial Period Length 30 days
Number of Trial Methods 4
Trial Month June

VI. EXPERIMENTS AND RESULTS

We conduct a set of experiments based on real-world
datasets. The proposed SPD approach is compared against
the baseline approach, i.e., LPD approach and EQ approach
[4]. The SPD-based long-term selection is evaluated based
on the expected ranking, short-term ranking [2], and LPD-
based ranking approaches.

A. Experiment Setup

1) Dataset from Public IaaS Providers: We run httperf
benchmark in Microsoft Azure and Google Compute En-
gine (GCP) in every 15 minutes for about 1 month. We
select Standard A1 v2 and n1-standard-1 types of instances
from Azure and GCP respectively. Three instances for each
type of VM are installed with similar configurations. Each
instance runs a web server that generates a CPU-intensive
load (Fibonacci number generator) for each request. The
one-month data is divided into 12 partitions. Each partition is
considered a one-month data. The signature of each provider
is generated using the proposed approach in III based on the
data collected from three instances of each provider.

2) Dataset from Private IaaS Providers: We utilize pub-
licly available Eucalyptus IaaS workload3 to generate long-
term consumer workloads. It contains about 34 days of
workload data. We generate 360 days of workload data for
each consumer based average workload per day. The long-
term performance of 5 private IaaS providers is generated
from benchmark results published SPEC Cloud IaaS 20164.
First, we map each unique workload of the cluster to unique
performance value of the benchmark results. We consider
the map as a baseline performance for the workload. Next,
we build long-term performance profiles for the providers
where each provider shows different performance behavior
based on the workloads and time. We run the workloads of
each consumer on five providers for the long-term period
and a short-term trial period to discover the corresponding
performances of each provider. The experiment variables are
shown in Table I.

3) Baseline Approach: We define a Long-term Perfor-
mance Discovery (LPD) approach as the baseline approach
to evaluate the proposed SPD approach. The trial experience
contains a subset of long-term workloads and corresponding
performance. We generate the performance of the long-
term workloads for each provider based on the consumer

3https://sites.cs.ucsb.edu/∼rich/workload/
4https://www.spec.org/

https://sites.cs.ucsb.edu/~rich/workload/
https://www.spec.org/
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Figure 3. Long-term throughput prediction (a) FG workloads (b) RG workloads (c) MG workloads (d) EQ workloads (e) LPD approach error (f) SPD
approach error

trial experience. For each workload wl in the long-term
workloads, we find a workload wt in the trial workload,
where wl and wt have similar resource consumption. We
consider the performance of wl is equivalent to wt.

4) Equivalence Partitioning-based Approach: An equiv-
alence partitioning-based (EQ) approach is proposed in [4]
where the consumer’s long-term workload is partitioned
based on the number of available VMs in the free trial
period. Then, workloads of each partition are compressed
within one day assuming that the performance of the
provider does not change considerably within a day. Each
VM runs the same workload for the trial period to under-
stand the performance variability.

B. Evaluation of Long-term Performance Discovery

Fig. 3 shows the results of the long-term IaaS performance
discovery. Fig. 3(a), (b), (c), and (d) show the predicted CPU
throughput of a provider using the FG, RG, MG, and EQ
trial schemes. Each figure shows the LPD throughput, SPD
throughput, and actual throughput. The predicted perfor-
mance using the LPD approach exhibits similar behavior in
each figure. The LPD predicted performance cannot capture
the temporal performance shifts. It is noticeable that the
predicted performance remains on the same performance
level of the trial month (151-180 days). The LPD approach
can be useful to predict the performance of the providers that
provide services with good performance isolation. The SPD
approach predicts the throughput more accurately compared
to the LPD approach as shown in each figure (Fig. 3(a),

(b), (c), and (d) ). The SPD approach utilizes the shape
of the signature to estimate long-term IaaS performance.
Hence, the predicted performance has a similar shape to
the signature. Fig. 3(e) and (f) shows the accuracy of the
predicted performance using normalize RMSE (NRMSE)
distances for 7 providers. Provider 6 and 7 are the public
IaaS provider and the rest are private IaaS providers. The
accuracy of the SPD approach (Fig. 3(f)) is considerably
higher than the LPD approach (Fig. 3(e)).

C. Effect of Trial Schemes in Performance Discovery

The effects of different trial schemes are noticeable in Fig.
3(e) and (f). The LPD approach exhibits less performance
variability for different trial schemes as it does not consider
the provider’s long-term performance variability. The predic-
tion accuracy of the SPD approach varies considerably based
on the selected trial scheme. The RG scheme-based SPD
approach (Fig. 3(f)) shows the lowest accuracy compared
to the other approaches (Fig. 3(f)). It is due to the char-
acteristics of the consumer’s long-term workloads. The RG
scheme mainly selects resource-intensive (i.e., requires high
resource usage) workloads similar to the traditional load and
stress testing based approaches. Hence, traditional load and
stress testing techniques may not provide good accuracy for
long-term performance discovery.

The FG scheme-based SPD approach shows the maximum
estimation accuracy compared to the other trial schemes
(Fig. 3 (f)). The reason is that it utilizes most frequently
occurred workloads in the consumer’s long-term workloads.



Table II
RANKING OF IAAS PROVIDERS

Rankings Orders
Expected p1 < p4 < p2 < p3 < p5 < p6 < p7
Short-term p1 < p6 < p7 < p3 < p4 < p2 < p5
LPD p2 < p4 < p5 < p3 < p1 < p6 < p7
SPD p1 < p4 < p3 < p2 < p5 < p6 < p7

The maximum number of workloads are tested in this
scheme. The estimation errors for the MG and EQ scheme
remain in between the FG and RG schemes. MG scheme is
built using the FG and RG scheme. As a result, the NRMSE
for the MG scheme is in between FG and RG schemes. The
EQ scheme shows poor performance for public providers.
The reason is that EQ scheme depends on the number of
available VMs to run the experiments.

D. Evaluation of IaaS Ranking

The ranking of the provider based on different approaches
is shown in Table II. We measure the expected ranking of
the providers to evaluate the proposed selection approach.
The expected ranking is computed based on the NRMSE
distance between the consumer’s throughput requirement
and a provider’s actual throughput. We rank the providers
based on three approaches using the FG scheme. First, we
rank the providers based on the short-term trial experience.
The short-term ranking cannot rank the providers correctly
compared to the expected ranking. Therefore, the short-
term selection approach is not applicable for the long-
term period. Next, we rank the providers based on the
predicted performance using the LPD approach, which does
not rank most providers correctly. Hence, the selection based
on the trial experience without considering the long-term
performance may lead to wrong provider selection. Finally,
we rank the providers based on the predicted performance
using the SPD approach that ranks most providers correctly.

VII. CONCLUSION

We introduce a novel approach to select the optimal
IaaS service according to a consumer’s long-term QoS
requirements. The proposed approach leverages free trials
and IaaS signatures to discover long-term service perfor-
mance of IaaS providers. The experiment results using the
real-world datasets show that the proposed SPD approach
effectively discovers long-term service performance using
different trial schemes. We conclude that the selection of an
appropriate trial scheme plays an important role in the long-
term performance discovery. The results also confirm that the
proposed approach ranks the IaaS services effectively using
the IaaS signatures and the consumer’s trial experience. We
focus on the deterministic workloads in this work. In the
future, we will explore the long-term IaaS selection for the
stochastic workloads.
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