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Abstract—We propose a novel robust composition frame-
work for drone delivery services considering changes in the
wind patterns in urban areas. The proposed framework incor-
porates the dynamic arrival of drone services at the recharging
stations. We propose a Probabilistic Forward Search (PFS)
algorithm to select and compose the best drone delivery services
under uncertainty. A set of experiments with a real drone
dataset is conducted to illustrate the effectiveness and efficiency
of the proposed approach.
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I. INTRODUCTION

Drones have created a myriad of new opportunities in var-
ious practical fields [1]. Commercial applications of drones
include agriculture, healthcare, and delivery [2]. During
the COVID-19 pandemic, several countries have leveraged
drone technology to provide safe, contactless, and more
resilient alternatives to deliver goods in remote locations
[3]. Major competitors in the delivery service industry such
as Amazon and Google are expanding the use of drones
for delivery services as a complement to traditional delivery
modes [4]. Drones offer fast, convenient, and cost-effective
delivery services compared to land-based delivery [5].

The service paradigm [6] provides a powerful abstraction
of the functional and non-functional or Quality of Service
(QoS) properties of a drone termed as Drone-as-a-Service
(DaaS) [7]. The functional property is expressed as the
package delivery from a designated source (take-off) station
(e.g., warehouse rooftop) to a destination (landing) station.
The QoS properties of a DaaS include payload, battery ca-
pacity, and flight range. DaaS usually uses a skyway network
to operate in a geographic area [8]. A skyway network is
defined as joining a set of nodes (vertices) representing take-
off and/or landing and/or recharging stations. A line segment
between any two nodes represents the service abstraction.
An instantiation of this service representation is delivering
a package between the two nodes of the segment under a
set of requirements/constraints.

DaaS composition is the process of selecting the best
drone-based services that form a skyway path from a given
source to a destination [9]. The composition is naturally fit
to deliver packages considering different QoS requirements

from the end-users, e.g., fastest, cost-efficient, safe, and
contactless delivery.

Existing DaaS composition approaches are deterministic
in nature [9], [10], [11]. These compositions do not consider
uncertainties that affect the QoS of the composition, e.g.,
failed deliveries, longer delivery time, and excessive battery
recharging time at intermediate nodes. Uncertainty is an
extrinsic part of the dynamic drone service environment. For
example, uncertainty in the flight behavior is caused by real-
time variations in environmental conditions such as wind
conditions and temperature [12]. High-rise buildings greatly
impact the amplification of wind speed and temperature in
urban areas [13]. In this study, our particular focus is on the
wind effects on drone delivery time, including “headwind”
and “tailwind”. Flying with strong wind could increase
(tailwind) or decrease (headwind) energy consumption and
drone speed [14]. The headwind reduces the flight range
of a drone while tailwind extends the flight range. The
accurate predictions of wind for a long-term period may
not be possible due to its highly stochastic nature [15]. In
addition, multiple drone delivery services which operate in
the same network may cause congestion at certain charging
stations, thus creating uncertainty. Congestion occurs due to
the simultaneous arrival of other drones at the same station
occupying all the available pads.

We propose a robust DaaS composition framework to
select and compose a set of best drone services. In this paper,
the term robust refers to the algorithm’s ability to resist
the unwanted effects of uncertain environmental changes.
We assume that no handover of packages occurs among
drones in the air or at intermediate stations as each drone
has its own delivery plan, i.e., the same drone delivers the
package from source to destination. We focus on recharging
constraints and changes in wind patterns as uncertainty
factors in urban settings. We assume that intrinsic factors
are deterministic, whereas extrinsic factors are stochastic.
The payload, battery capacity, and flight range of each drone
are known beforehand. The availability of recharging pads
at each station and the wind conditions are assumed to be
probabilistic in nature.

We propose a Probabilistic Forward Search (PFS) algo-
rithm to find the robust DaaS composition. The PFS ap-
proach uses a probabilistic distribution of predicted wind for
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the selection of drone services. The decision-making in the
PFS approach is based on the recharging pads’ availability
at adjacent and next-to-adjacent recharging stations. In addi-
tion, the decision-making depends upon the wind conditions
on the skyway segments leading to these recharging stations.
Therefore, the PFS approach may provide better results than
baseline approaches. The main contributions of this paper
are as follows:
• Designing an uncertainty-aware DaaS system model for

drone-based services.
• Developing a Probabilistic Forward Search (PFS)-based

approach for the best drone service selection and com-
position.

• Conducting experiments using a real drone dataset to
illustrate the performance of the proposed probabilistic
composition approach.

II. RELATED WORK

In recent years, the routing and scheduling of drone
services has become an active area of research. Most existing
works focus on combined delivery of drones with ground
vehicles. An adaptive large neighbourhood search method
is developed to address the TSP with multiple drones [16].
The goal of this work is to reduce the delivery cost to serve
all customers for both ground vehicle and drones. A greedy
algorithm is used for generating an initial TSP solution. The
proposed approach uses the initial solution to remove nodes
from the vehicle route and adds them to the drone routes.
A TSP solution with multiple drones is compared to a TSP
solution with a single drone. It is concluded that more drones
support the generation of efficient routes in comparison to a
single drone. The proposed method uses a ground vehicle for
deliveries which is not appropriate for locations with no road
access. In addition, the proposed method does not take into
account the recharging constraints and wind uncertainty.

An energy consumption model is presented for automated
drone delivery services in [17]. They assumed that drones
can perform multi-package deliveries in a predefined ser-
vice area. The drone fleet size is optimized by analyzing
the impact of payload weight and flight range considering
battery capacity. They explore the relationship between four
variables (working period, drone speed, demand density of
service area, and battery capacity) to minimize the total costs
of the drone delivery system. The study indicated that the
long hours of operation would benefit both service providers
and customers. They found that drone deliveries are more
cost-effective in areas with high demand densities. This study
does not consider the dynamic congestion conditions at
recharging stations and uncertain wind conditions.

There is a paucity of literature concerning the wind effects
on drone delivery. Selecky et al. [18] studied the wind
effects which influences the flight direction of a drone. An
accelerated A* algorithm is developed to incorporate the
wind effects and generate reachable states. The wind is

assumed to be constant which does not capture the real-
world scenarios. The proposed approach does not consider
the wind variation and wind uncertainty in different areas.

The drone delivery problem is abstracted using service
paradigm in [7]. The function of the drone is to deliver
a package from one node to another node over a line
segment in the skyway network. A service model is designed
considering the spatio-temporal feature of drone services. A
heuristic-based algorithm is developed to select and compose
right drone services taking into account the QoS properties.
The proposed approach focuses only on the deterministic
properties of services which is not realistic. This work has
been extended in [9] as a constraint-aware deterministic
composition approach to incorporate the recharging con-
straints at stations. A lookahead heuristic-based algorithm is
presented for selection and composition of optimal services.

A resilient composition framework is proposed for
drone delivery services considering congestion conditions at
recharging stations [19]. The framework includes a formal
service model for the representation of constraint-aware
drone services. An initial offline drone service composition
plan is generated using a deterministic lookahead algorithm.
A heuristic-based resilient composition approach is proposed
to adapt the runtime changes in the initial composition plan
and update it to meet the delivery requirements of the user.
The proposed approach does not consider the probabilistic
nature of the wind, which changes with time. In addition,
the robustness of the composition is not considered, which
is of paramount importance for efficient service delivery. To
the best of our knowledge, this paper is the first attempt
to present a robust DaaS composition that considers the
uncertain wind conditions.

III. UNCERTAINTY-AWARE DAAS SYSTEM MODEL

We propose an uncertainty-aware DaaS system model
for drone delivery services. The proposed system model is
divided into two sub-models: (1) DaaS Model and (2) DaaS
Delivery Model under Uncertainty.

A. DaaS Model

The DaaS, composite DaaS service, and DaaS composi-
tion problem are defined as follows.
Definition 1: Drone-as-a-Service (DaaS). A DaaS is a 3-
tuple < DaaS id, DaaSf , DaaSq >, where
• DaaS.id is a unique drone service ID,
• DaaSf represents the delivery function of a drone over

a line segment. The location and time of a DaaS are
2-tuples < locs, loce > and < ts, te >, where

– locs and loce represent the pickup location and the
delivery location,

– ts and te represent the start time and the end time,
• DaaSq is an n-tuple < q1, q2, . . . , qn >, where each
qi represents a quality parameter of a DaaS, e.g., flight
range.



Definition 2: Composite DaaS Service (CS). A CS is a
3-tuple < CSID,CSF,CSQ >, where
• CSID is a unique CS identifier,
• CSF is a set of functions {f1(DaaS1), f2(DaaS2),
. . . , fn(DaaSn)}, where each fi represents function
of corresponding component DaaS DaaSi ∈ CS

• CSQ is an m-tuple < Q1, Q2, . . . , Qm >, where
each Qj denotes an aggregated value of jth quality
parameter of component DaaS DaaSi ∈ CS.

Definition 3: DaaS Composition Problem. We build
upon and extend the drone service and quality model
proposed in [7]. Given a set of DaaS services SDaaS =
{DaaS1, DaaS2, ..., DaaSn}, the DaaS composition prob-
lem is to compose the services for delivering a package from
the warehouse to the customer location in minimum time.

B. DaaS Delivery Model under Uncertainty

In the existing DaaS model [7], all the drone services and
the service environment are deterministic, i.e., the availabil-
ity and QoS-values of services are known beforehand. We
extend this model by introducing the dynamic recharging
constraints and incorporating the wind effects.

The stochastic nature of wind has a significant nonlinear
effect on the energy consumption rate and flight range of a
drone [14]. The headwinds drain the drone’s energy more
quickly, while the tailwinds reduce energy consumption.
We determine the impact of wind speed and direction (i.e.,
headwind and tailwind) on the travel time of the drone. We
use the method in [20] to calculate the effects of headwind
and tailwind on the travel time from node i to j as follows.

δ = θij − θWS (1)
A =WS. cos(180− δ) (2)
C =WS. sin(180− δ) (3)

B =
√
AS2 − C2 (4)

GS = A+B

=WS. cos(180− δ) +
√
AS2 −WS2. sin2(180− δ)

(5)

Tij =
dij
GS

(6)

where θij is the bearing from node i to j, θWS is the wind
bearing, δ is the course correction angle, WS is the wind
speed, A is the headwind/tailwind, C and B are the wind
adjustment angles, AS is the air speed, GS is the ground
speed, dij is the distance between nodes i and j, and Tij
is the travel time from node i to j. When |δ| < 90, A is
negative and denotes headwind. When 90 < |δ| ≤ 180, A is
positive and denotes tailwind.

A drone can take a finite set of actions at each node
during its journey from source to destination. A drone can
either wait, recharge, or travel from one node to another. The

objective is to take the right actions to reach the destination
faster. Based on the probability distribution of wind speed
and direction, the actions create a huge set of state space.
Therefore, we transform the problem of action selection at
any node into probabilistic state transition tree. We formally
define a state as follows.

Definition 4: State. A state is a 3-tuple < N.id, TSTP,
BP >, where
• N.id is a unique node identifier,
• TSTP is a timestamp which represents a recorded time

snapshot of a state,
• BP represents the number of busy recharging pads at

a certain station.
A single DaaS may not satisfy a user’s long-distance

delivery requirements. In such cases, a robust drone ser-
vice composition is required from a large set of candidate
services. The DaaS composition under uncertainty is a
challenging task. An adjacent attractive drone service may
lead to a highly time-expensive service. For instance, we
are given a skyway network with the source location and
destination location. Our target is to find the selection and
composition of temporally optimal drone services consid-
ering wind conditions. In this context, temporally optimal
refers to leading towards the destination faster. The wind
conditions are time-variant which cause uncertainty for
future drone services. We require to predict the future wind
conditions and their effects on the overall delivery time. We
focus on the uncertain wind conditions that may result in
longer delays for delivery by drones.

C. Informed Exhaustive Search

Informed Exhaustive Search (IES) approach is an all-
paths search method [21]. In this approach, no uncertainty
is involved during the service composition process, i.e.,
the actual information about wind speed and direction is
known. IES computes all possible DaaS compositions from
source to destination and selects an optimal composition
based on QoS parameters (i.e., delivery time). Finding all
possible DaaS compositions is computationally not feasible
and limits the use of IES for large-scale problems. The
time complexity of IES is exponential, which reduces its
performance significantly.

D. Robust Composition using Probabilistic Forward Search

We propose a Probabilistic Forward Search (PFS)
heuristic-based solution for robust DaaS composition under
uncertainty. In the proposed approach, the term forward
search refers to considering next-to-adjacent states (services)
in decision making. The accuracy of the predicted probabil-
ity distribution of wind affects the selection of an optimal
drone service. Our predictive model is based on the historical
data of wind speed and direction in a specific time slot. The
prediction is made for each skyway segment to estimate
the arrivals of other drone services in the future. Most of
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Figure 1. State selection using PFS

the existing prediction models focus on the shortest path
from source to destination. Due to the wind uncertainty
and congestion conditions at recharging stations, the shortest
path’s travel time may not guarantee the overall shortest
time from source to destination. We compute the sum of
the travel, waiting, and recharging times to select a service.
Fig. 1 illustrates how the PFS approach favors the optimal
service (state) selection. Using the PFS approach provides
more information to guide the selection of overall optimal
states. The principle of PFS-based tree exploration is similar
to a depth-first search. However, we use the PFS approach
to select only one service at a time. The details are given in
Algorithm 1.

In Algorithm 1, the output is a robust DaaS composition
from a designated source to a destination. We first use the
Block Nested Loop (BNL) [22] algorithm for selecting a set
of optimal drones from a large set of delivery drones given
the payload weight (Line 2). Multiple service providers
offer drone services. Each provider has several drones with
different quality attributes. The BNL approach helps select
a set of drones determined to be a good fit for the de-
livery request. We then obtain a set of reachable stations
by the selected drone considering the payload weight and
predicted probability distribution of wind (Line 3). The
get reachable stations function finds the nearby stations
based on the travel distance from the current drone position.
If the desired destination lies within reachable stations, the
drone delivers the package without recharging (Line 4-7).
In such a case, service composition is not required (a single
drone service fulfills the request). We compute the time
to travel the skyway segment from source to destination
considering wind conditions (Line 5). We compose optimal
drone services from source to destination to serve long-
distance areas (Lines 9-25). If the destination does not lie
within reachable stations, we compute the time to each
reachable station (Line 11).

We select the optimal drone service based on the travel
time (calculated using equation 6), its probability of occur-
rence, availability of the recharging pads, current waiting
time, expected waiting time on the next node, and flight

Algorithm 1 Probabilistic Forward Search based DaaS
Composition
Input: Spatio-Temporal Graph G, Drones D, Source src, Desti-

nation dst, Package Weight w, Forward Search fs, Start Time
sT ime, Wind Wi, Probability Distribution Pr

Output: DaaS Composition CompDaaS
1: curLoc← src, curT ime← sT ime
2: dsel ← block nested loop (D, w)
3: Streach ← get reachable stations (G, src, dsel, w, Wi, Pr)
4: if dst ∈ Streach then
5: deliveryT ime← travel time (src, dst, Wi)
6: CompDaaS ← skyway segment (src, dst)
7: return CompDaaS
8: else
9: while Streach 6= φ do

10: if dst /∈ Streach then
11: nextStT ime← reachable station time (G, curLoc,

dsel, w, Wi, Streach, fs, dst, Pr)
12: nextSt← Streach [index (min (nextStT ime))]
13: deliveryT ime← (curT ime + travel time (curLoc,

nextSt, Wi) + wait and recharge time (G, nextSt))

14: DaaS ← skyway segment (curLoc, nextSt)
15: CompDaaS.append(DaaS)
16: curLoc← nextSt
17: curT ime← deliveryT ime
18: Streach ← get reachable stations (G, curLoc, dsel,

w, Wi, Pr)
19: else
20: deliveryT ime← (curT ime + travel time (curLoc,

dst, Wi)
21: DaaS ← skyway segment (curLoc, dst)
22: CompDaaS.append (DaaS)
23: return CompDaaS
24: end if
25: end while
26: end if
27: print (“No suitable composition found for the given source to

destination”)

time to the destination (Lines 12-13). On each iteration, we
add the selected optimal services to DaaS Comp (Line 15).
We update the current location and time of the drone (Lines
16-17). This process continues till the destination node is
discovered or the reachable stations’ list is empty (i.e., no
suitable composition found).

IV. PERFORMANCE EVALUATION

In this section, we analyze the effectiveness of the Prob-
abilistic Forward Search (PFS) approach.

A. Experiment Settings with Real-world Datasets

We develop a robust DaaS composition framework for
delivery services to evaluate the performance of the PFS
approach. We build a skyway network using the NetworkX
python library, where each node can be a delivery target
or a recharging station. We model multiple drone services
from different drone service providers operating in the same
network. The drone set consists of quality parameters of



Table I
EXPERIMENTAL VARIABLES

Variable Values
Drone model DJI M200 V2
Maximum payload capacity 1.45 Kg
Maximum drone flight time 24 min
Maximum drone flight range 32.4 km
Maximum drone speed 81 km/h
Recharging time from 0% to 100% 2.24 hours
Maximum nodes in the skyway network 1000
No. of pads at each recharging station 5
Experiment run the total number of nodes 50%
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Figure 2. Average execution time

each drone operating in the skyway network, e.g., flight
range and payload capacity. The experiments are conducted
for an average of 50% times the total number of nodes.
For example, if there are 40 nodes in the network, the
experiment is performed 20 times. We select a random
source and a random destination point for each experiment.
We use a real dataset of drone trajectories, including data
for altitude, coordinates, and timestamps [23]. We augment a
dataset for different types of drones considering the payload,
speed, flight range, recharging time, and battery capacity.
The experimental variables are described in Table I. All the
experiments are run on an Intel Core i9-9900X processor
(3.50 GHz and 32.0 GB RAM) under Windows 10. All the
algorithms are written in Python.

B. Results and Discussion

The PFS approach performs robust composition of the
right drone services to deliver the package faster.

1) Average Execution Time: The time complexity is an
important parameter to evaluate the performance of an algo-
rithm. The IES approach is very computationally expensive
compared to the proposed PFS approach. The execution
time increases as the number of possible drone service
compositions increase. The average execution times for IES
and PFS approaches are presented in Fig. 2. The execution
time for the PFS approach is much less because it avoids
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Figure 3. Average delivery time

exhaustive drone service compositions. As expected, the
average execution time for the IES approach grows exponen-
tially for an increasing number of nodes. The experiments
indicate that when the nodes are above 40, the results’ trends
are similar. As a result, we set the maximum number of
nodes at 40 for the skyway network. The use of the baseline
approach is not practical in real-world scenarios for large-
scale problems because of its exhaustive nature.

2) Average Delivery Time: The delivery time of a drone
is a summation of recharging, waiting, and flight times. The
delivery time is mainly affected by the occupancy of certain
recharging stations for long periods of time. Fig. 3 shows the
delivery times of IES and PFS approaches. The IES approach
always computes all possible drone service compositions,
which in turn provides exact solutions. The decision-making
of the proposed PFS approach relies on the congestion
information from the next-to-adjacent nodes. Therefore, the
PFS approach provides delivery solutions close to the IES
approach. However, the PFS approach is significantly faster
than the IES approach, as shown in Fig. 2.

V. CONCLUSION

We propose a novel framework for robust drone service
composition considering uncertain wind conditions over the
skyway segments in a skyway network. A Block Nested
Loop algorithm is used for the selection of the right drone at
the source location. The proposed approach incorporates the
dynamic arrival of drone services at the recharging stations.
We select and compose the optimal services using the
Probabilistic Forward Search (PFS) approach to minimize
the delivery time. We run a set of experiments to evaluate
the efficiency of the proposed approach compared to IES
approach. The experimental results prove that the proposed
approach is computationally efficient than the IES approach.
Moreover, our proposed approach is a practical solution
for real-world scenarios of drone delivery services due
to its computational efficiency and near-optimal solutions.



We plan to consider handover among drones at recharging
stations in the future.
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