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Abstract—In Variational Quantum Simulations, the construc-
tion of a suitable parametric quantum circuit is subject to two
counteracting effects. The number of parameters should be small
for the device noise to be manageable, but also large enough
for the circuit to be able to represent the solution. Dimensional
expressivity analysis can optimize a candidate circuit considering
both aspects. In this article, we will first discuss an inductive
construction for such candidate circuits. Furthermore, it is
sometimes necessary to choose a circuit with fewer parameters
than necessary to represent all relevant states. To characterize
such circuits, we estimate the best-approximation error using
Voronoi diagrams. Moreover, we discuss a hybrid quantum-
classical algorithm to estimate the worst-case best-approximation
error, its complexity, and its scaling in state space dimensionality.
This allows us to identify some obstacles for variational quantum
simulations with local optimizers and underparametrized circuits,
and we discuss possible remedies.

Index Terms—parametric quantum circuits, dimensional ex-
pressivity analysis, best-approximation error, variational quan-
tum simulations, Voronoi diagrams

I. INTRODUCTION

Noisy intermediate-scale quantum (NISQ) computers [1] are
opening up a new avenue to address a large class of computa-
tional problems that cannot be solved efficiently with classical
computers. Applications of quantum computing range from
machine learning [2] to finance [3] to various optimization
problems [4], [5]. In physics, quantum computers intrinsically
circumvent the sign problem that prevents Monte Carlo simu-
lations of strongly correlated quantum-many body problems in
certain parameter regimes [6]. Although current hardware is of
limited size and suffers from a considerable level of noise, the
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ability for NISQ devices to outperform classical computers has
already been demonstrated successfully [7], [8] and techniques
for mitigating the effects of noise are rapidly developing [9]–
[13].

Many algorithms designed for NISQ devices make use
of parametric quantum circuits. Variational quantum simula-
tions (VQSs) [14], [15], a class of hybrid quantum-classical
algorithms for solving optimization problems, are a particu-
larly important example. Using a parametric quantum circuit,
i.e., a quantum circuit composed of parameter dependent gates,
a cost function is evaluated efficiently for a given set of
parameters using the quantum coprocessor. The cost function
is then minimized on a classical computer in a feedback
loop based on the measurement outcome obtained from the
quantum device. Using cost functions related to the energy of
the quantum state prepared on the quantum device, VQSs have
been successfully applied to quantum many-body systems in
quantum chemistry [10], [14], [16], [17] and even quantum
mechanics and quantum field theory [18]–[22].

Since VQSs depend on the choice of parametric quantum
circuits, there are many open questions related to finding
a good or optimal quantum circuit. For example, in order
to be able to find the solution – or at least find a good
approximation – a parametric quantum circuit needs to have
many parameters. However, many parameters means many
gates and thus large noise. One measure for a “good” quantum
circuit is therefore to have as many parameters as necessary
while being able to parametrize the entire state space of the
simulated model. An optimal circuit taking this point of view
would be minimal (there are no redundant parameters) and
maximally expressive (the circuit can generate all relevant
states). Parametric quantum circuits can be analyzed from
this point of view using dimensional expressivity analysis
(DEA) [23] which we will review in section II. However, DEA
can only tell us whether or not a given circuit is minimal
and maximally expressive. The construction of a maximally
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expressive circuit is still highly non-trivial even though DEA
does provide some guiding information. Additionally, having
a maximally expressive circuit may not always be necessary
or prudent for a given application, and DEA as described
in [23] does not provide any information on how useful a
non-maximally expressive circuit is.

In this article, we will expand on the DEA by providing
a method of constructing a minimal, maximally expressive
circuit on N+1 qubits given a minimal, maximally expressive
circuit on N qubits in section III.

From section IV onwards we will move to non-maximally
expressive circuits. These, by definition, cannot represent
arbitrary states and, thus, the best case scenario is for a
VQS to reproduce the best-approximation of the solution. In
section IV we will define the necessary notation to discuss
the worst-case error of the best-approximation. In particular,
we will discuss Voronoi diagrams [24], [25] to estimate the
best-approximation error. Given a set of points pi, a Voronoi
diagram is a partition of space into regions. Each region is
associated to one of the points pi and contains all points x that
are closer to pi than any other pj . In other words, the Voronoi
region associated with pi is the set of points whose best-
approximation is pi. Knowing the Voronoi diagrams therefore
allows us to compute the worst-case best-approximation error
which is the largest distance a point x can be from its
corresponding best-approximation pi, i.e., the largest possible
distance between x and pi where x is an arbitrary point in the
Voronoi region of pi. This leads to an upper bound for the
best-approximation error of a parametric quantum circuit by
choosing the points pi to be a discrete set of sample states the
given parametric quantum circuit can generate.

In section V we will consider a minimal, maximally expres-
sive circuit on the Bloch sphere as an example for the behavior
of the here proposed best-approximation error estimates if
applied to a maximally expressive circuit. A first example of
a non-maximally expressive circuit will be provided in sec-
tion VI. This example also highlights a potential problem if the
best-approximation error is computed naı̈vely. In section VII
we will expand on this potential problem with some practical
remarks. In particular, we will propose splitting the analysis
into two steps. The first step will provide conditions that
allow us to circumvent the obstacles identified in section VI
and provide a large lower bound on the best-approximation
error should these conditions not be fulfilled. In the second
step, once these conditions are fulfilled, the detailed analysis
described in section IV is applicable without running into the
potential problems observed in section VI. In section VIII
we will discuss the computational complexity of the best-
approximation error estimate, in section IX we propose an
efficient mapping procedure that allows for exponential speed-
up using a quantum device, and in section X we will discuss
the scaling with respect to dimensionality. In section XI we
will describe a relationship between the best-approximation
error and the internal volume of the circuit image. This
relationship will be illustrated with an example in section XII,
and we will discuss its impact on VQSs in section XIII.

Finally, we conclude the article in section XIV.

II. DIMENSIONAL EXPRESSIVITY ANALYSIS

Within the context of dimensional expressivity analysis [23],
we consider a parametric quantum circuit to be a contin-
uously differentiable map C : P → S . Here, P is the
parameter space and assumed to be a (usually compact)
manifold without boundary. For example, if only rotation gates
RG(ϑ) = exp

(
−iϑ2G

)
for gates G with G2 = 1 are used,

then P is the flat torus (R/2πZ)N , where N is the number of
parameters in the circuit. S is the “relevant” state space, i.e., a
submanifold of the unit sphere in the complex 2Q-dimensional
Hilbert space for a Q-qubit quantum device.

The primary objective of the DEA is to identify redundant
parameters in a given circuit C. Once these redundant param-
eters are identified, the parameter space P can be restricted
by setting all redundant parameters to constants, and the thus
restricted circuit is locally surjective to the image M of the
original (unrestricted) circuit. This furthermore allows us to
prove that M is locally a manifold and that the restricted
circuit is minimal, i.e., removal of any further parameters
(by setting them constant) will result in a restriction of the
image M.

DEA identifies independent and redundant parameters in-
ductively. The first parameter ϑ1 is always independent (un-
less the circuit is invariant under change of ϑ1 which is
assumed to be not the case). Assuming that ϑ1, . . . , ϑk are
already identified as independent, we need to check ϑk+1.
The parameter ϑk+1 is redundant if and only if the change
in C(ϑ) given a perturbation of ϑk+1 can also be achieved
keeping ϑk+1 fixed and varying ϑ1, . . . , ϑk appropriately. In
other words, ϑk+1 is redundant if and only if the tangent
vector ∂ϑk+1

C(ϑ) is a linear combination of the tangent
vectors ∂ϑ1

C(ϑ), . . . , ∂ϑkC(ϑ). Since our parameter space P
is a real manifold, this linear combination is to be taken with
respect to real coefficients. To test this linear independence,
we consider the matrix

Sk+1 = (<〈∂ϑmC(ϑ), ∂ϑnC(ϑ)〉)1≤m,n≤k+1 . (1)

This matrix is invertible if and only if ϑk+1 is independent.
If ϑk+1 is found to be redundant (i.e., Sk+1 is not invertible),
then ϑk+1 is removed as a parameter (i.e., it is kept constant)
and the remaining parameters are tested after possibly re-
labeling ϑj 7→ ϑj−1 for j > k + 1 in the redundant case.

Furthermore, the matrix Sk+1 can be measured efficiently
using a quantum device. If all parametric gates are rotation
gates RGn(ϑn) = exp

(
−iϑn2 Gn

)
for some gate Gn (which

can be non-trivial like CCNOT or Xq1Xq2Yq3 , i.e., two X
gates acting on qubits q1 and q2 and a Y gate acting on
qubit q3 simultaneously), then ∂ϑnC(ϑ) = − i

2γn, where γn
is a quantum circuit with the additional gate Gn inserted after
the application of the gate RGn(ϑn). Hence, we obtain

<〈∂ϑmC(ϑ), ∂ϑnC(ϑ)〉 =
1

4
<〈γm, γn〉, (2)

and <〈γm, γn〉 can be measured on the quantum device.



Following the algorithm outlined in section 6 of [23], we
add an ancilla qubit, which we initialize in |0〉+|1〉√

2
. We then

apply the gate sequence of our parametric quantum circuit
but after application of RGm and RGn we insert the gates
XancCGmXanc and CGn, respectively. Here, CGj denotes
a controlled Gj gate that uses the ancilla as control, and the
pair of X gates on the ancilla (Xanc) ensures that CGm is
conditioned on the ancilla being in |0〉. Finally, we apply
another Hadamard gate to the ancilla. The state of the quantum
device after all these steps is

|0〉 ⊗ (|γm〉+ |γn〉) + |1〉 ⊗ (|γm〉 − |γn〉)
2

, (3)

and measuring the ancilla qubit yields the probability of
finding the ancilla in |0〉

prob(anc = 0) =
1 + <〈γm, γn〉

2
. (4)

This algorithm of testing linear independence requires
O((k+1)2ε−2) quantum device calls, where ε is the acceptable
level of uncertainty for the measurement prob(anc = 0)
(a result of quantum device noise and finite statistics). The test
for invertibility is classical and scales like O((k+1)3), and the
entire process needs to be repeated for 2 ≤ k+1 ≤ N . Hence,
this independence test algorithm scales like O(N4ε−2). On the
quantum device it also requires an additional ancilla qubit and
six additional gates.

It is important to note that this algorithm can be extended to
compute any <〈C1, C2〉 for circuits C1 and C2 by controlling
all gates in C1 and C2 on an ancilla and ensuring that C1 is
conditioned on the ancilla being in |0〉 and C2 is conditioned
on the ancilla being in |1〉. This will become important in
section VIII, section IX, and section X.

III. CONSTRUCTION OF MINIMAL, MAXIMALLY
EXPRESSIVE CIRCUITS ON Q+ 1 QUBITS

DEA as described in section II requires a candidate circuit to
be optimized. In many cases, finding such a candidate circuit
is not an easy task. However, once a candidate is found, even
if it is “too expressive” in the sense that it can generate states
that are not physically meaningful, DEA provides a powerful
tool. In particular, DEA can be used to remove symmetries
such as invariance under a global phase transformation or
even gauge invariance. In this section, we therefore want to
discuss a means of generating candidate circuits. In order
for this construction to be sufficiently general, we want the
candidate circuits to be maximally expressive on Q qubits.
Furthermore, for the method to be efficient, we want the
candidate circuits to be minimal in the number of parameters.
Thus, if we can construct a minimal, maximally expressive
circuit with an image manifold that still contains symmetries
we wish to remove, then DEA can be used for the symmetry
removal, while not having to remove any additional redundant
parameters, which keeps the entire circuit construction process
streamlined.

Such streamlining can be achieved using a minimal, maxi-
mally expressive circuit for the entire Q-qubit quantum device

state space. Of course, further streamlining can be achieved if
some of the unwanted symmetries can already be removed
at this stage, but in the most general case, in which all
symmetries are to be removed via DEA, a minimal, maximally
expressive circuit for the entire device state space is the
optimal starting point. Since the Q-qubit state space is the
unit sphere in the complex 2Q-dimensional Hilbert space, any
minimal, maximally expressive circuit must have 2Q+1−1 real
parameters. Starting with a single qubit, a minimal, maximally
expressive circuit C1 is given by

C1(ϑ) = RY (ϑ3)RZ(ϑ2)RX(ϑ1) |0〉 . (5)

The fact that this circuit is minimal and maximally expressive
can be checked using DEA [23].

Given a Q-qubit minimal, maximally expressive circuit CQ,
we want to construct a minimal, maximally expressive circuit
CQ+1 on Q + 1 qubits. The circuit CQ+1(ϑ1, ϑ

′, ϑ′′) can be
constructed by controlling the circuit CQ on the newly added
qubit and considering

|0〉 RX(ϑ1) • X •

|0〉⊗Q CQ(ϑ′) CQ(ϑ′′)

where ϑ′ and ϑ′′ are a set of 2Q+1 − 1 parameters each. The
new circuit CQ+1 therefore has 2Q+2 − 1 parameters, i.e., it
is minimal if and only if it is maximally expressive.

To show maximal expressivity of CQ+1, we recall that any
(Q+ 1)-qubit state |ψ〉 can be expressed as

|ψ〉 = cos
ϑ0

2
|0〉 ⊗ |ψ0〉+ sin

ϑ0

2
|1〉 ⊗ |ψ1〉 (6)

with Q-qubit states |ψ0〉 and |ψ1〉. Through direct computa-
tion, we obtain

CQ+1(ϑ1, ϑ
′, ϑ′′)

= cos
ϑ1

2
|1〉 ⊗ CQ(ϑ′′)− i sin

ϑ1

2
|0〉 ⊗ CQ(ϑ′),

(7)

and choosing ϑ1 = π−ϑ0, −iCQ(ϑ′) = |ψ0〉, and CQ(ϑ′′) =
|ψ1〉 shows that CQ+1 is maximally expressive on Q+1 qubits
if CQ is maximally expressive on Q qubits (which we assumed
by induction).

Finally, we need to consider the controlled circuit CCQ.
By induction, we assume that CQ contains only single-qubit
gates and CNOT gates. Then, CCQ contains only controlled
single-qubit gates and Toffoli gates. Controlled single-qubit
gates can be constructed from CNOT and single-qubit gates,
and the Toffoli gate can be constructed from RY and CNOT
gates [26]. Hence, CQ+1 can be constructed using only CNOT
and single-qubit gates.

It should also be noted that this construction can be
extended to automatically remove some unwanted symme-
tries. For example, two states on the quantum device dif-
fering only by a phase factor are equivalent. Therefore,
we may wish to remove global phase symmetry from the
set of states the proposed circuit can generate. On a sin-
gle qubit, such a circuit without global phase symmetry is



given by C1(ϑ) = RZ(ϑ2)RX(ϑ1) |0〉. Similarly, this global
phase symmetry can be incorporated into a circuit if we
need it. To illustrate this, let us consider a Q-qubit circuit
CQ(ϑ) = U(ϑ) |init〉 and consider a gate set Uinit such that
|init〉 = Uinit |0〉. Then, we can incorporate global phase sym-
metry into CQ by adding an additional parameter ϕ and con-
sidering the circuit C̃Q(ϕ, ϑ) = U(ϑ)UinitRZ(ϕ)U∗init |init〉
where the RZ gate may act on any qubit. Choosing the Q-qubit
initial state |init〉 to be |0〉, we can adapt the construction
described above by considering the (Q+ 1)-qubit circuit

|0〉 RX(ϑ1) • X •

|0〉⊗Q RZ(ϑ2) CQ(ϑ′) CQ(ϑ′′)

which generates the state

CQ+1(ϑ1, ϑ2, ϑ
′, ϑ′′) = cos

ϑ1

2
|1〉 ⊗ CQ(ϑ′′)

− i sin
ϑ1

2
|0〉 ⊗ C̃Q(ϑ2, ϑ

′).

(8)

This circuit CQ+1 does not have a global phase symmetry as
the choice of phase factor is fixed by cos ϑ1

2 |1〉 ⊗ CQ(ϑ′′).

IV. BEST-APPROXIMATION ERROR

In section III we have shown how to generate minimal, max-
imally expressive circuits on arbitrarily many qubits. Should
we wish to remove symmetries from the image M, we can
achieve this using DEA as well. This leaves us with the
problem that sometimes maximally expressive circuits may not
be feasible experimentally. In such circumstances, we want
to use a circuit that is no longer maximally expressive and
therefore may not be able to represent the solution of a given
VQS. In this case, we want to estimate the worst-case error
of a best-approximation for a given state using a given non-
maximally expressive circuit.

Let us consider a parametric quantum circuit C : P → S
mapping a parameter space P into a state space S that is no
longer necessarily the entire unit sphere as we discussed in
section III. Let d : S2 → R≥0 be a suitable distance in S,
e.g., the orthodromic (great-circle) distance as induced by the
geometry of the quantum device state space, and define the
distance of a point in S to M as

dM : S → R≥0; x 7→ inf
ϑ∈P

d(x,C(ϑ)). (9)

Thus, the quantum circuit C is dense, i.e., it has a dense image,
if and only if supx∈S dM(x) = 0. We note that this is only
possible if P is non-compact or C is maximally expressive.
As P is commonly a compact manifold, we note in such cases

dM(x) = 0 ⇐⇒ ∃ϑ ∈ P : x = C(ϑ). (10)

In other words, if P is compact, then C being dense is
equivalent to C being maximally expressive. Furthermore, if
P is compact and C is not maximally expressive, then

αC := sup
x∈S

dM(x) (11)

is strictly positive and denotes the largest distance that a point
in S can be separated from M. αC is therefore the best-
approximation error of the circuit C in the sense that
• the best-approximation C(ϑx) of a given point x ∈ S

satisfies d(x,C(ϑx)) ≤ αC and
• for all α with 0 < α < αC there exists an x ∈ S

such that the best-approximation C(ϑx) of x satisfies
d(x,C(ϑx)) > α.

Hence, αC is a measure of how good a given quantum
circuit C approximates the state space S.

In order to find an upper bound on αC , let us approxi-
mate M with a discrete point set D. For example, we can
choose k ∈ N sufficiently large, uniformly sample values
ϑ1, . . . , ϑk ∈ P , and set D := {C(ϑ1), . . . , C(ϑk)}. We
say that D is an ε-dense approximation of M if and only
if supx∈M infy∈D d(x, y) < ε. Choosing an ε-dense approxi-
mation D, we obtain

αC ≤ sup
x∈S

inf
y∈D

d(x, y) ≤ αC + ε. (12)

Our objective is therefore to compute supx∈S infy∈D d(x, y)
as an estimate for αC .

Let δ be a point in D. The Voronoi region Rδ corresponding
to δ is defined as the set

Rδ :=

{
x ∈ S; d(x, δ) = min

δ′∈D
d(x, δ′)

}
. (13)

Furthermore, let Vδ be the set of vertices of Rδ . Then,

sup
x∈S

inf
y∈D

d(x, y) = max
δ∈D

max
v∈Vδ

d(δ, v) (14)

can be checked in finitely many steps and provides the estimate
for αC we were looking for.

V. A FULL BLOCH SPHERE EXAMPLE

As an initial example, let us consider a circuit that is
maximally expressive for the Bloch sphere. Given that the
circuit in this section will be maximally expressive, this
example should reproduce αC = 0 and highlight the optimal
behavior of the analysis.

In this section, we will choose the representation of vec-
tors |ψ〉 on the Bloch sphere

|ψ〉 = cos
Θ

2
|0〉+ eiΦ sin

Θ

2
|1〉 (15)

with 0 ≤ Θ ≤ π and 0 ≤ Φ < 2π, as well as, the circuit

C(ϑ) =RZ(ϑ2)RY (ϑ1) |0〉

∼= cos
ϑ1

2
|0〉+ eiϑ2 sin

ϑ1

2
|1〉 .

(16)

From Equation 15 and Equation 16, we immediately observe
that the circuit is maximally expressive – in fact, a double
cover for 0 ≤ ϑ1 ≤ 2π – and we may restrict ϑ1 to the interval
[0, π]. The mapping of |ψ(Θ,Φ)〉 into R3 is then given by

|ψ(Θ,Φ)〉 7→

sin Θ cos Φ
sin Θ sin Φ

cos Θ

 . (17)



Using

αC(N) := max
δ∈DN

max
v∈Vδ

d(δ, v) (18)

as an estimate for αC , where DN = {C(ϑ1), . . . , C(ϑN )},
and generating the ϑk using a scrambled Sobol’ sequence in
[0, π] × [0, 2π], we expect to see αC(N) → 0 as N → ∞.
Figure 1 shows that this is indeed the case and that the rate of
convergence is comparable to Monte Carlo type convergence
αC(N) ∝∼ 1/

√
N . Furthermore, we will observe in section X

that this rate of convergence (including the prefactor) is
comparable to the theoretically optimal rate of convergence
for the estimation of αC based on Voronoi vertices.

Fig. 1. Estimate of αC(N) for the circuit C given in Equation 16 using N
scrambled Sobol’ points.
The blue triangles show αC(N) = maxδ∈DN maxv∈Vδ d(δ, v) as obtained
from spherical Voronoi diagrams. The dashed green line is a convergence rate
fit of the form αC(N) ∝ N%.

VI. A FIRST NON-MAXIMALLY EXPRESSIVE EXAMPLE

In contrast to the maximally expressive example of sec-
tion V, we will now consider a non-maximally expressive
circuit on the Bloch sphere. This circuit will represent a very
bad choice of non-maximally expressive examples since it will
only map to a great circle of the Bloch sphere. This has two
important effects. Firstly, the worst-case best-approximation
error will be very large; αC = π

2 in fact. Secondly, the
computation of the Voronoi regions will encounter some
non-trivial obstacle which we will discuss in more detail in
section VII.

For ease of computation, we will consider the Bloch sphere
embedded into R3 using the real basis |0〉, |1〉, and i |1〉.
Furthermore, let us consider the circuit

C(ϑ) = RY (ϑ) |0〉 = cos
ϑ

2
|0〉+ sin

ϑ

2
|1〉 . (19)

Then M is the great circle in the |0〉-|1〉-plane and conse-
quently the worst-case best-approximation error is given by
the distance of M to the poles ±i |1〉, i.e.,

αC = dM(i |1〉) =
π

2
. (20)

To compute αC from a set D and its corresponding Voronoi
vertices, we draw values

0 ≤ ϑ1 < ϑ2 < . . . < ϑk < 2π (21)

and consider the points

C(ϑk) = cos
ϑk
2
|0〉+ sin

ϑk
2
|1〉 . (22)

We assume that k is large enough and that the ϑk are
sufficiently well distributed such that

D = {C(ϑj); 1 ≤ j ≤ k} (23)

is an ε-dense approximation with ε < π. For example, we may
choose k ≥ 3 equidistant points ϑj = 2π(j−1)

k .
For 1 < j < k, the corresponding Voronoi region therefore

is bounded by the great circles connecting i |1〉 and −i |1〉,
which pass through cos

ϑj+ϑj−1

4 |0〉 + sin
ϑj+ϑj−1

4 |1〉 and
cos

ϑj+ϑj+1

4 |0〉 + sin
ϑj+ϑj+1

4 |1〉. Hence, we can set VC(ϑj)

to these four points and obtain

max
v∈VC(ϑj)

d (C(ϑj), v) = d (C(ϑj), i |1〉) =
π

2
. (24)

For VC(ϑ1) and VC(ϑk), we note that C(2π) = − |0〉
is equivalent to C(0) = |0〉. Thus, VC(ϑ1) and VC(ϑk)

contain the already discussed points i |1〉 and −i |1〉, as
well as, cos ϑ1+ϑ2

4 |0〉 + sin ϑ1+ϑ2

4 |1〉 and cos ϑk+ϑk−1

4 |0〉 +

sin ϑk+ϑk−1

4 |1〉, respectively. Furthermore, both VC(ϑ1) and
VC(ϑk) contain the point between C(ϑ1) and C(ϑk), i.e.,

C

(
2π + ϑ1 + ϑk

2
mod 2π

)
. (25)

Again, we conclude

max
v∈VC(ϑ1)

d (C(ϑ1), v) = d (C(ϑ1), i |1〉) =
π

2
(26)

and

max
v∈VC(ϑk)

d (C(ϑk), v) = d (C(ϑk), i |1〉) =
π

2
. (27)

Hence, we have shown that

αC ≤ max
δ∈D

max
v∈Vδ

d(δ, v) =
π

2
≤ αC + ε (28)

holds for all ε > 0 and thus

αC =
π

2
. (29)

VII. PRACTICAL REMARKS

The computation of αC relies on the computation of Voronoi
diagrams. This may be tricky due to the nature of a lower
dimensional circuit manifoldM. As the example above shows,
this is relatively easy to see if the state space S is the entire
unit sphere ∂BC2Q of the Q-qubit Hilbert space C2Q and ifM
is contained in a lower dimensional subspace L of C2Q . The
Voronoi regions then only have two proper vertices (i |1〉 and
−i |1〉 in the case above) and we artificially added the mid-
points between samples to properly define the Voronoi regions.
This is likely to be difficult for an automated process to handle.
However, if we use spherical Voronoi diagrams with samples
such that the matrix (C(ϑ1) · · ·C(ϑk)) has rank 2Q+1, then
the Voronoi regions are well-defined on the sphere ∂BC2Q .
Should S be a submanifold of the quantum device state space,



then this may require further analysis of Voronoi diagrams
in S. However, if M is contained in a lower dimensional
subspace L of the quantum device Hilbert space, then the poles
normal to L will be separated fromM and therefore αC ≥ π

2 .
This can be extended to state spaces S that are not the unit
sphere by considering points in S that are not in L and taking
their distance as a lower bound for αC .

In many physical examples, we consider a state space S
that is an intersection of a lower dimensional subspace L
of the quantum device Hilbert space and the unit sphere
in the quantum device Hilbert space, e.g., if we are con-
sidering state spaces S that are eigenspaces of an operator
describing a symmetry, such as the momentum 1 sector for
translational symmetry (cf., e.g., section 5 in [13]). Then, S
is the unit sphere in the lower dimensional subspace. In
other words, all statements about spherical state spaces above
hold. In particular, we need at least dimR L points for the
matrix (C(ϑ1) · · ·C(ϑk)) to have rank dimR L. As long as
rank(C(ϑ1) · · ·C(ϑk)) < dimR L, we know that all points
lie in a lower dimensional subspace intersected with S, which
implies αC ≥ π

2 considering the poles of S with respect to
that lower dimensional space.

With respect to the problem of |0〉 ∼= − |0〉 we noticed
in the example, we can circumvent this by artificially in-
troducing a phase symmetry to the circuit. In other words,
if C(ϑ) = U(ϑ) |init〉 and |init〉 = Uinit |0〉, then we may
analyze

C̃(ϕ, ϑ) = U(ϑ)UinitRZ(ϕ)U∗init |init〉 (30)

instead.
Alternatively, for rotation gates RG(ϑ) = exp

(
−iϑ2G

)
with

G2 = 1, we could also consider ϑ ∈ [0, 4π] instead of
ϑ ∈ [0, 2π].

VIII. COMPLEXITY ANALYSIS

The estimation of αC on a spherical state space S has two
primary components. First, we need to ensure that the sample
matrix

ΣN =



| | |
<C(ϑ1) <C(ϑ2) · · · <C(ϑN )
| | |

| | |
=C(ϑ1) =C(ϑ2) · · · =C(ϑN )
| | |


(31)

has rank dimR S + 1. If this is not the case, then all C(ϑk)
lie in the intersection of S with a linear space L of dimension
dimR L ≤ dimR S . This implies that there exist points in S
that are orthogonal to L and thus αC(N) ≥ π

2 . We can
compute rankΣN by computing the rank of

SN = Σ∗NΣN . (32)

For this, we observe that the (j, k)-element of SN is given by

(SN )j,k =<〈C(ϑj), C(ϑk)〉 (33)

and note that the hybrid quantum-classical algorithm described
in section II can be used to compute the N × N -matrix
SN = Σ∗NΣN with O(N2ε−2) many QPU calls, where ε is the
acceptable level of error on the QPU data. The rank of SN can
then be computed classically, e.g., using QR decomposition in
O(N3). Overall, this step therefore costs O(N3ε−2).

Only once rankSN = dimR S + 1, we need to consider
the Voronoi diagrams. To compute the Voronoi diagrams, we
need to embed S into RdimR S+1 and compute the vectors
C(ϑ1), . . . , C(ϑN ) using this RdimR S+1-representation. This
step is discussed in section IX. Once this embedding is
achieved, computing the Voronoi diagrams is efficient with

worst-case cost in O
(
N

⌈
dimR S

2

⌉)
via stereographic projec-

tion and Delaunay triangulation [27]. Since the Voronoi ver-
tices are the circumcenters of Delaunay simplices, the number
of Voronoi vertices coincides with the number of Delaunay
simplices of N points in D = dimR S + 1 dimensions, i.e.,
O(NdD/2e). Computing αC(N) inefficiently via

αC(N) = max
v∈V

min
1≤j≤N

d(v, C(ϑj)), (34)

where V is the entire set of Voronoi vertices – i.e., by
comparing all Voronoi vertices to all sample points rather than
restricting the comparison only to vertices of each sample’s
Voronoi region – we obtain a worst-case cost in O(NdD/2e+1)
to compute αC(N).

IX. MAPPING C(ϑ) EFFICIENTLY INTO RdimR S+1

In order to efficiently map C(ϑ) into into RdimR S+1, we
need to employ the quantum device again. But first, since
we are working with real vector spaces, we cannot use C(ϑ)
directly. Instead, we need to consider the real vector

CR(ϑ) :=

(
<C(ϑ)
=C(ϑ)

)
. (35)

Hence, we are looking to map the sequence of samples
CR(ϑj) ∈ R2Q+1

efficiently into RdimR S+1. To make this
mapping efficient, we will map the set {CR(ϑj); j ≤ k} into
the subspace lin{ej ; j ≤ r}, where {ej ; j ≤ dimR S + 1}
denotes the canonical basis of RdimR S+1 and

r = rank
(
CR(ϑ1) CR(ϑ2) . . . CR(ϑk)

)
. (36)

CR(ϑ1) is automatically mapped to

v1 =


1
0
0
...
0

 . (37)

Then, we map CR(ϑ2) to

v2 =


v2,1

v2,2

0
...
0

 (38)



with

v2,1 =〈v2, v1〉 = <〈C(ϑ2), C(ϑ1)〉, (39)

which we can compute efficiently on the quantum device, and

v2,2 =
√

1− v2
2,1. (40)

At this point, we need to keep track of the current subspace ba-
sis Bk after mapping C(ϑ1), . . . , C(ϑk). The initial basis B1

contains only the vector v1. The vector v2 is an element of
Bk with k ≥ 2 if and only if v2,2 6= 0.

If v2 /∈ B2, then B2 = {v1} and C(ϑ3) is mapped to

v3 =


v3,1

v3,2

0
...
0

 (41)

with

v3,1 =<〈C(ϑ3), C(ϑ1)〉 (42)

and

v3,2 =
√

1− v2
3,1. (43)

Similarly, v3 is added to B3 if and only if v3,2 6= 0.
On the other hand, if v2 ∈ B2, then C(ϑ3) is mapped to

v3 =



v3,1

v3,2

v3,3

0
...
0


(44)

with

v3,1 =〈v3, v1〉 = <〈C(ϑ3), C(ϑ1)〉,

v3,2 =
<〈C(ϑ3), C(ϑ2)〉 − v3,1v2,1

v2,2
,

v33 =
√

1− v2
3,1 − v2

3,2,

(45)

and v3 is added to B3 if and only if v3,3 6= 0.
In order to map C(ϑk), we have already mapped

C(ϑ1), . . . , C(ϑk−1) and identified a basis Bk−1 with bk−1

elements. We denote the elements of Bk−1 by vβ1
, . . . , vβbk−1

.
Then C(ϑk) is mapped to

vk =



vk,1
...

vk,bk−1+1

0
...
0


(46)

with

vk,1 =<〈C(ϑk), C(ϑβ1
)〉,

vk,2 =
<〈C(ϑk), C(ϑβ2)〉 − vk,1vβ2,1

vβ2,2
,

...

vk,bk−1
=
<〈C(ϑk), C(ϑβbk−1

)〉 −
∑bk−1−1
j=1 vk,jvβbk−1

,j

vβbk−1
,bk−1

,

vk,bk−1+1 =

√√√√1−
bk−1∑
j=1

v2
k,j .

(47)

This is possible since by construction vβj ,j 6= 0. Of course,
vk is added to Bk if and only if vk,bk−1+1 6= 0.

Combining this mapping of quantum states with the com-
plexity analysis of section VIII shows that αC can be estimated
efficiently.

X. SCALING FOR SPHERICAL STATE SPACES AND
MAXIMALLY EXPRESSIVE CIRCUITS

Now that we know that the Voronoi estimation of αC is
efficiently implementable, the question becomes how many
points are necessary for the Voronoi estimation to yield a
sufficiently reliable estimate of αC .

The optimal scaling for αC(N) on a (D − 1)-dimensional
sphere would be given by equidistant points. As such a
configuration is not possible for arbitrary values of N , we
must approximate this type of scaling. Considering spherical
coordinates in D − 1 dimensions

x1 = cosϕ1

x2 = sinϕ1 cosϕ2

x3 = sinϕ1 sinϕ2 cosϕ3

...
xD−1 = sinϕ1 sinϕ2 · · · sinϕD−2 cosϕD−1

xD = sinϕ1 sinϕ2 · · · sinϕD−2 sinϕD−1,

(48)

we choose circles of constant ϕ1 which are spaced a dis-
tance d1 apart on the surface of the sphere. Then, we dis-
cretize ϕ2 on each of the ϕ1 circles such that the ϕ2 values
are spaced a distance d2 apart (d2 depends on the specific
circle of constant ϕ1) and each value of d2 is as close as
possible to d1. Iteratively, we can space ϕk for each chosen
ϕ1, . . . , ϕk−1 such that the corresponding distances satisfy
d1 ≈ d2 ≈ . . . ≈ dk as closely as possibly. As such, the
volume of the sphere attributed to each point is approximately∏D−1
j=1 dj , i.e., approximately dD−1

1 . Since the surface area of

a (D − 1)-dimensional unit sphere is 2πD/2

Γ(D/2) , this means we

can place N ≈ 2πD/2

Γ(D/2)dD−1
1

points. Conversely, although we
wish to place N points, we may not be perfectly able to, but
we can place N ′ ≈ N points by choosing d1 to be a fraction of

π as close as possible to
(

2πD/2

Γ(D/2)N

)1/(D−1)

. Each sample can



then be interpreted as the approximate center of a cube with

side length
(

2πD/2

Γ(D/2)N

)1/(D−1)

, which means the maximal
distance that an arbitrary point can be away from any of

these sample points is approximately
(

2πD/2

Γ(D/2)N

)1/(D−1) √
D
2 .

In other words, the best case scaling we can expect for αC(N)
with D = dimR S + 1 is

αopt
C (N) =

(
2πD/2

Γ(D/2)N

)1/(D−1) √
D

2
. (49)

Returning to the Bloch sphere example, we have D = 3, i.e.,

αopt
C (N) =

√
3πN−

1
2 ≈ 3.07N−

1
2 . (50)

A comparison with the observed αC(N) ≈ 3.46N−.46 using a
Sobol’ sequence to generate samples C(ϑk) in Figure 1 shows
that the Sobol’ point approximation is almost optimal.

XI. αC AND THE VOLUME OF LOWER DIMENSIONALM
The scaling analysis of section X is optimized for spherical

state spaces and maximally expressive circuits. If we wish
to use a circuit C with lower dimensional image M and
guarantee a chosen best-approximation error αC , then we need
to compare αC to vol(M) and observe that M has to have a
large volume. In this section, we want to approximate a lower
bound for vol(M) in terms of αC .

First, we note that dimM = dimS − 1 is the best case
scenario (in terms of smallest possible volume of M) since
the projection onto a dimM + 1 dimensional subspace of
S reduces the distance between points and thus, reduces the
volume of M as well as αC . After a suitable choice of
coordinate transformation, we may therefore assume that C(ϑ)
takes the form

C(ϑ) =

 cos(γ1(ϑ1))
sin(γ1(ϑ1)) cos(γ2(ϑ1))

sin(γ1(ϑ1)) sin(γ2(ϑ1))σ(ϑ2, . . . , ϑn)

 , (51)

where σ is surjective onto the (dimM − 1)-dimensional
sphere, and (γ1, γ2) is the path C takes in the projection of S
onto the 2-dimensional subspace of S orthogonal to the sphere
σ maps to.

To estimate the minimal volume ofM, we can use a greedy
algorithm to construct a path γ on the 2-dimensional sphere
that is αC close to all points. For example, we may start at
the north pole and move south for a distance 2αC . Then, we
move east along the reached latitude stopping 2αC short of a
full revolution. Now we move south again for 2αC and then
move east stopping 2αC short of a full revolution. We continue
this process until we reach the south pole. For simplicity, we
assume that 2αC is an integer fraction of π, i.e., 2αC = π

n .
Then, this path contains n sections of going south for 2αC
and n − 1 sections of moving east for a full revolution but
stopping short 2αC . The length of this path `1 is therefore

`1 =2αC +

n−1∑
j=1

2π sin
πj

n
=
π

n
+ 2π cot

π

2n
. (52)

Finally, we obtain the corresponding volume

V1 =`1volSdimM−1 =
4π

dimM
2 (αC + π cotαC)

Γ
(

dimM
2

) . (53)

Another possible greedy algorithm is to use a spiral with
γ1(ϑ1) = πϑ1 and γ2(ϑ1) = 2πnϑ1 where ϑ1 ∈ [0, 1]. This
spiral wraps n times around the sphere and therefore has
2αC ≈ π

n for large n. We may compute the length of this
curve as

`2 =

∫ 1

0

‖γ′(t)‖ dt =
√
π2 + 4π2n2 (54)

and thus the corresponding volume

V2 =`2volSdimM−1 ≈
2π

dimM
2 +1

√
1 + π2

α2
C

Γ
(

dimM
2

) . (55)

For αC � 1, we can use cot(αC) = 1
αC

+O(αC) to observe

V1

V2
≈ 2 cotαC√

1 + π2

α2
C

≈ 2

π
, (56)

i.e., both estimates are of the same order of magnitude, and
given the volume of the circuit image M, we can re-arrange
the V1 estimate to obtain

αC &
4π

dimM
2 +1

Γ
(

dimM
2

)
vol(M)

. (57)

Of course, for this relation to be useful, we either need to
compute αC , e.g., from Voronoi diagrams, or vol(M). If we
wish to compute vol(M), then we may choose a quadrature
rule with points ϑj and weights ωj and estimate

vol(M) =

∫
P

√
det g(ϑ)dvolP(ϑ)

≈
∑
j

ωj

√
det g(ϑj),

(58)

where

gjk(ϑ) = <〈∂jC(ϑ), ∂kC(ϑ)〉, (59)

for which we already have an efficient algorithm in section II.
It is important to note that g is the same matrix as SN in
section II. Thus, for det g to not be zero, the vectors ∂jC(ϑ)
need to be linearly independent. In other words, the volume
element

√
det g(ϑ)dvolP(ϑ) needs to be computed with a

minimal circuit.

XII. A BLOCH SPHERE SPIRAL EXAMPLE

To illustrate this relationship between αC and vol(M), let
us consider the family of circuits

Cn(ϑ) =RZ(nϑ)RY (ϑ) |0〉

= cos
ϑ mod π

2
|0〉+ e2inϑ sin

ϑ mod π

2
|1〉

(60)

on the Bloch sphere with ϑ ∈ [0, 2π]. Here the “mod π”
condition simply ensures that the coefficient in front of |0〉



is non-negative as per our representation of the Bloch sphere
introduced in section V. In terms of the Bloch sphere repre-
sentation

cos
Θ

2
|0〉+ eiΦ sin

Θ

2
|1〉 7→

sin Θ cos Φ
sin Θ sin Φ

cos Θ

 , (61)

Cn(ϑ) is represented by the vector

γ(ϑ) =

sin(ϑ mod π) cos(2nϑ)
sin(ϑ mod π) sin(2nϑ)

cos(ϑ mod π)

 , (62)

and we obtain

det g(ϑ) =1 + 4n2 sin(ϑ mod π)2, (63)

i.e.,

vol(Mn) =

∫ 2π

0

√
det g(ϑ)dϑ = 4E(−4n2) (64)

using the elliptic integral

E(m) =

∫ π
2

0

√
1−m sin(ϑ)2dϑ. (65)

As in this case dim(Mn) = 1, the estimated lower bound
for αCn becomes

αCn &
4π

3
2

Γ
(

1
2

)
vol(Mn)

=
4π

vol(Mn)
=

π

E(−4n2)
. (66)

Since Cn is a “spiral” circuit that is also taking into account
that the parameter space P should be a manifold without
boundary (here R/2πZ), we expect to see strong agreement
between αCn estimated using π

E(−4n2) and αCn extracted from
Voronoi diagrams. Figure 2 confirms this expectation.

Fig. 2. Estimate of αCn for the circuit C given in Equation 60 using the
volume estimate and the Voronoi diagram estimate. The Voronoi diagrams
use 215 samples generated from scrambled Sobol’ points.

XIII. VORONOI ANALYSIS FOR INITIALIZATIONS OF VQS
WITH LOCAL OPTIMIZERS

The example in section XII and the estimate

αCvol(M) &
4π

dimM
2 +1

Γ
(

dimM
2

) (67)

show that quantum circuits that are not maximally expressive
can be able to approximate points in the state space S to a
given precision αC at the cost of having large vol(M). In
particular, the spiral example shows that points that are close
in state space S may have best-approximations with parameter
values ϑ that are far apart in parameter space P . This can be
illustrated using the circuit

Cn(ϑ) =RZ(nϑ)RY (ϑ) |0〉

= cos
ϑ mod π

2
|0〉+ e2inϑ sin

ϑ mod π

2
|1〉

(68)

and a point p half-way between points Cn(ϑ) and Cn(ϑ′) with
ϑ′ = ϑ+ 2π

n . Any arbitrarily small perturbation of p towards
Cn(ϑ) will have best-approximation parameters close to ϑ,
whereas a perturbation towards Cn(ϑ′) has best-approximation
parameters close to ϑ′, i.e., an entire revolution around the
sphere later. If this point p is equatorial, then arbitrarily small
perturbations in p yield best-approximations that are a distance
approximately 2π apart as measured in M. Considering an
energy-type cost function

Cost(ϑ) = 〈Cn(ϑ)|H |Cn(ϑ)〉 (69)

for some Hamiltonian H and supposing n large, Mn is
packed tightly around the solution state |ψ〉 that needs to be
approximated by Cn(ϑ). However, this implies Cost(ϑ) has
many local minima corresponding to states Cn(ϑ) that are
close to |ψ〉 in S , but these minima are far away from each
other as measured in the metric ofM. Hence, having an initial
guess Cn(ϑ) close to |ψ〉 in S is not sufficient for a local
optimizer to guarantee convergence to the best-approximation
Cn(ϑψ) of |ψ〉. Instead, the initial guess Cn(ϑ) must satisfy
ϑ ≈ ϑψ in parameter space as well.

The Voronoi analysis provides precisely such a set of initial
guesses. Since every point of the state space S is αCn close
to one of the Voronoi sample points, we can use the Voronoi
sample points as initial guesses and run a local optimizer VQS
for each of them (or at least those that have near optimal cost
function values). The best-approximation will then be selected
as the C(ϑψ) among the solution candidates C(ϑj) provided
by each VQS for which Cost(C(ϑψ)) = minj Cost(C(ϑj)).

XIV. CONCLUSION

In this article we have extended previous work on dimen-
sional expressivity analysis (DEA) [23] in two important direc-
tions. First, we reviewed DEA and highlighted that it requires
to have a candidate circuit to be optimized. However, finding
a candidate circuit is not always straightforward. Hence, in
section III we proposed an inductive process of constructing
minimal, maximally expressive circuits on arbitrarily many
qubits. This can be used directly, if the entire quantum device
state space needs to be parameterized, or it may be optimized
using DEA if certain symmetries are to be removed.

The second major open question surrounding DEA is related
to non-maximally expressive circuits. Previously, DEA made
no statements about non-maximally expressive circuits. Hence,
we considered the worst-case best-approximation error and



proposed estimating it using Voronoi vertices in section IV.
This was supplemented with examples highlighting the optimal
behavior of the analysis in section V and some possible
obstacles in section VI, a discussion of practical aspects
surrounding these obstacles in section VII, and an example
applying the Voronoi estimation of the best-approximation
error on a maximally expressive circuit in section VII.

In section VIII and section IX we then discussed the
computational complexity of the proposed Voronoi diagram
based estimation of the best-approximation error using a
hybrid quantum-classical algorithm that allows us to map the
quantum states efficiently into classical memory and compute
the Voronoi vertices. In particular, the quantum part of the
algorithm scales quadratically in both the number of sample
points N required for the Voronoi estimates and the inverse
acceptable level of noise ε−1 coming from the quantum device.
The algorithm without the Voronoi vertices computation is
still in O(N3ε−2). The bottlenecks of the algorithm are
therefore the computation of the Voronoi vertices which, in
D = dimR S+1 dimensions, is worst case in O(NdD/2e), and
testing all O(NdD/2e) Voronoi vertices against (worst case) all
Voronoi sample points is in O(NdD/2e+1).

In section X we then discussed the necessary number of
points N required to estimate the best-approximation error to
a chosen level of accuracy. The optimal scaling is proportional
to N

1
D−1 and achieved for maximally expressive circuits. For

non-maximally expressive circuits, as discussed in section XI,
the internal volume of the set of reachable states M by
the quantum circuit needs to be considered. In the same
section, an efficient hybrid quantum-classical algorithm for
the estimation of vol(M) is also provided. Furthermore, we
tested the relationship between the best-approximation error
and vol(M) using an example of a spiral circuit imageM on
the Bloch sphere in section XII. Finally, we have discussed
some of the expected obstacles when applying non-maximally
expressive circuits to variational quantum simulations with
local optimizers in section XIII.

The work presented here therefore extends DEA [23] by
multiple practical aspects. We have provided minimal, maxi-
mally expressive candidate circuits that can be optimized using
DEA on arbitrarily many qubits, which can further be opti-
mized by removing unwanted symmetries via DEA. Should
we choose to employ non-maximally expressive circuits, then
we have provided the means of estimating the worst-case best-
approximation error a priori to any VQS. In particular, if we
want to ensure a certain best-approximation error αC , then
we can predict the minimal number of samples necessary to
construct a set of VQS initial states, such that every element of
the relevant state space is αC close to at least one point in the
VQS initialization set. The VQS can then be used to optimize
any of these initial states to find the best-approximation of the
VQS solution for non-maximally expressive circuits.
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