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Abstract—Video-based crowd behaviour analysis techniques aim at tackling challenging problems such as detecting 

abnormal crowd behaviours and tracking specific individuals from complex real life scenes. In this paper, an innovative 

spatio-temporal texture-based crowd modelling technique and its corresponding pattern analysis methods have been 

introduced. Through extracting and integrating those crowd textures from live or recorded videos, the so-called 

homogeneous random features have been deployed in the research for behavioural template matching. Experiment results 

have shown that the abnormality appearing in crowd scenes can be effectively and efficiently identified by using the devised 

methods. This new approach is envisaged to facilitate a wide spectrum of crowd analysis applications in the future through 

laying a solid theoretical foundation and implementation strategy for automating existing Closed-Circuit Television (CCTV)-

based surveillance systems. 
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I. INTRODUCTION 

 Crowd scenes in a video can be denoted by the 
typified activities being carried out by a large number of 
identical entities at the given times, such as fast moving 
cars on a busy motorway, wandering people in high 
streets, and waving audiences at an open air concert. 
Detecting the so-called “abnormality” from a video can 
sometimes be treated as finding and extracting certain 
individual, or group actions that “disturb” the current and 
dominant crowd states. Practical techniques in the field 
can be widely adopted by surveillance industries for 
designing the automated early warning systems. 

For analysing crowd features. Early studies, such as 
the “Minkowski fractal dimension” model [1] and the 
flow-based “crowd motion” model [2], had focus on the 
extraction of crowd attributes from the flows such as 
density, moving direction, size and boundaries. In recent 
years, more attention has shifted towards application-
oriented techniques to improve the flow-based crowd 
pattern interpretation [3-5]. For example, in 2007, Ali [6] 
first introduced a crowd scene model based on “finite time 
Lyapunov exponent field” - an extension of the flow - 
filed model - for segmenting extremely dense crowd 
scenes recorded in videos. The segmentation outputs are 
then been used in the so-called “floor field model” 
calculation for tracking specific individuals from high 
density human crowds [7]. This model has also been 
applied in group tracking that containing multiple or 
intersected crowd entities [8]. Rodriguez’s off-line 
dominating crowd moving direction learning algorithm [9] 
has also been approved as an effective flow-based 
tracking approach. Those methods demonstrated their 
potentials in tracking the dynamic crowd under crowded 
and partial occluded conditions but are bound to certain 
type of crowd patterns (i.e., “extremely dense” crowd) and 
specific applications.  

However, the effective modelling of crowd behaviours 
from video recordings is still a challenging computer 
vision (CV) research problem to date. Firstly, a dynamic 
crowd scene can introduce many uncertainties to an 
application such as changes overtime on crowd size, 
density, and boundary, which leads to significant 
ambiguities to any crowd pattern definition and 
recognition attempts. Secondly, crowd-based events are 
often subject to complex inter-/intra- element/element-
group interaction and occlusion problems that can change 
the local/global observations and the dynamic entities of 
the measured crowd. For tackling those problems, a 
statistical approach for detecting crowd abnormalities has 
been developed in this research. As illustrated in Figure 1, 
the approach first defines a crowd scene as a series of 
textures across the spatial and temporal domains. Then, 
the so-called spatio-temporal texture (STT) is analysed by 
using the statistical features extracted from the 
Homogeneous Random Field (HRF). For detecting any 
abnormalities from a crowd scene, this approach 
continually extract and compare the dominant crowd 
pattern with the live feed-ins through measuring the 
differences in between the corresponding STTs.  

In this paper, an innovative pattern analysis algorithm, 
called the “visual distance”, has been developed to 
quantify the divergences of STTs. The method mimics 
human vision intuitions when evaluating different texture 
patterns and is based on the assumption that any abnormal 
behaviours can be localised and denoted in sub-STT 
regions. 

The paper is structured as follows: Section 2 defines 
the STT structure and the HRF-based statistical features 
for crowd modelling. The proposed abnormality detection 
algorithm is then introduced in the Section 3. Section 4 
explains the implementation strategy applied in a 
prototype system and the related experiments. Section 5 
concludes the work with a discussion on the anticipated 
future improvements 
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Figure 1. System framework overview 

II. STT-BASED CROWD PATTERN MODELLING 

A. STT Definiation 

Crowd behaviours recorded in videos are often treated 
as a group of identical elements, performing similar 
activities over a period of time. For describing the 
dynamics of video crowded patterns, this research utilises 
the STT to extract the crowd behaviour features. 

The STT is defined based on the concept of spatio-
temporal volume. As illustrated on the left hand side of 
Figure 1, a spatio-temporal volume is defined in a 3D 
Cartesian space denoted by X, Y, and T (time) axes. In a 
more observant manner, the spatio-temporal volume is 
composed of a stack of 2D arrays of pixels and projecting 
along the orthogonal temporal axis. In this structure, the 
concept of an individual frame is replaced by a continuous 
3D volume section, in which its density, envelop and 
slices are all factors to the final interpretation of the 
model. 

 
(a)original video 

  
(b) optical flow field (c) STT attributes 

  
(d) composed STT slices 

Figure 2. Spatio-temporal crowd volume and extracted STTs 

The STT can then be located from the volumetric 
crowd textured regions. Since the original video footages 
contain not just rich static and dynamic crowd scene data, 
but also signal noises and unwanted background 
information. It is essential to rapidly locate the crowded 
regions and filtering out the noises. As illustrated in 
Figure 2(b), the average optical flow has been used to 
locate the areas with most moving objects. Other 
algorithms, such as Ali’s dynamic flow-based crowd 

segmentation [6], can also be used for more accurate 
crowd identification with the trade-off on processing time. 

The spatio-temporal information of the detected crowd 
is then sampled into the STT by inserting and mapping 
clip planes into the volume. In Figure 2(c), a group of 
slices can be retrieved at any suitable locations inside the 
crowd regions, where interested local or global crowd 
features can be encapsulated. The length of each slice in 
the spatial domain is only limited by the boundary of the 
crowd. The STT slices in this research are only denoted by 
four orientations: 0°, 45°, 90° and 135°, which can be 
refined for more complex scenarios. The composed STT 
slices are then transformed into the grayscale for the 
crowd abnormality detection. 

B. Homogeneity of STT 

 
Figure 3. Local randomness of STT and the pre-attentive “similarity” 

STTs are consisted of texture regions inherited from 
the spatio-temporal crowd volume though denoting the 
local crowd distributions along the timeline. In Figure 3, 
the local STT regions (such as the sub-regions marked by 
the dashed lines), although containing different crowd 
details, their processed pattern textures are identical, 
which highlight the unique property of the STT. From the 
viewpoint of human intuition, the “appearance” (location, 
colour, shape, and size) of each element in the STT is 
different. However a close study on the selected regions in 
the STT images shows that they are actually looking 
“similar”. This similarity is contributed by the pre-
attentive decision of the human observer and is rooted into 
human vision biology and psychology. It is from this 
angle this research set to investigate the spatial similarity 
and randomness of crowded scenes in images/frames as 
pattern textures. This visual invariant characteristic also 
applies to 3D sub-regions in a spatio-temporal volume. In 
this paper, only 2D STT slices are applied in experiments 
for the system setup time and fast performance 
evaluations. 
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Figure 4. Sudden dispersing of a group of people and the STT texture 

patterns 

Figure 4 illustrates an abnormal crowd event taken 
from a real life footage that contains a sudden dispersing 
of a group of people. At the start of the video, people were 
standing normally along the street. As shown in Figure 4, 
the changed patterns of people were encapsulated in the 
STT slices highlighted by the left and right hand side of 
the solid lines across the STTs. The differences of the 2 
pattern textures are obvious to human observers. 

C. STT measurement using Homogeneous Random Field  

One of the suitable mathematic models for describing 
the relationship between “randomness” and “similarity” 
from STT is called Homogeneous Random Field (HRF) 
which was first introduced by Julesz [11] and then 
formalised by Zhu et al. [12] in 2000. It had since been 
widely adopted in nature image understanding [13] and 
texture feature modelling based on the statistical 
principles theories. 

In this research, a crowd image is defined in the two 

dimensional HRF space, where X(n,m) denotes a finite 

image lattice C of   2, ZCmn , here C stands for the 

image regions containing crowded elements. Each crowd 

observation x is a random example of X. Technically, the 

HRF can be defined in respect to a function RR 
C

f : , 

by given a tolerance   and probability p, the random 

variation X can then be named as a HRF if and only if X 

satisfies: 

       pXfExfPX    (1) 

where the denotes the expected value over the HRF and 

indicates an average over all possible spatial translation 

of the image that where the  E  denotes the expected 

value over the HRF and f  indicates an average over all 

possible spatial translation of the image that 

         
 




Cji

MN
jminxf

C
mnxf

,

,,

1
,  (2) 

where C  has a finite dimension  MN, , and  N
  denotes 

the coordinates taken from the module N . 

For automating the detection of abnormal crowd 

events, two main processes are involved. Firstly, the 

development of a crowd behavioural model containing a 

group of functions   cXf  ,,1,   to describe the 

statistical features of X . Secondly, an effective 

comparing algorithm for evaluating the similarity 

between any two STT patterns should be developed. The 

next section provides details of these closely coupled 

processes. 

III. CROWD ABNORMALITY EVALUATION 

A. STT feature extraction  

The proposed behaviour model for crowd abnormality 
detection relies on a set of feature extraction functions

 c

C
f  ,1,:  RR . To activate this model, a group 

of low-level statistical pattern image features need to be 
extracted first.  Since a crowded scene contains rich 
information in both local and global feature levels over the 
entire spatio-temporal space, this research has adopted 
translation- and rotation-invariant “steerable pyramid” 
wavelet framework [14] for a fine-to-coarse-based image 
feature extraction. 

The STTs are constructed through integrating 3-level 
of features: Firstly, the grayscale distributions extracted 
from each low-pass band and the down-sampled image of 
the steerable pyramid. The measurement is based on the 
normalised statistical sample moments including variance, 
skewness and kurtosis. Secondly, auto-correlations at each 
low-pass have been used for evaluating the periodical and 
long range correlations of the image distributions. Finally, 
“second-order” texture features [15], such as the 
correlation of magnitudes from image sub-bands has been 
integrated into the design. This type of features is 
calculated by using cross-correlation of the sub band pairs 
at adjacent positions, orientations and scales from two 
consecutive pyramid layers. 

B. Abnormality quantification 

Given a pattern texture described as  f , the tested 

crowd STT slice example STx  can be represented by 

feature vector xF


 that       Tx xfxfxfF
c ,,, 21 


. In this 

research, the properties of the HRF (see Equation 1) 
highlight the importance and the integration approach of 
the human perceptual inputs. Similar studies have been 
referred as “analysis-by-synthesis” in some academic texts 
[13]. In this project, an effective algorithm for measuring 
the visual differences of crowd behaviours is developed 
based on the so-called “visual indistinguishable” founded 
by Portilla et al. [16] where two HRFs, X  and Y , are 
perceptual equivalence if: 

         ,RcYfEXfE  (3) 

where c  is the statistical constraint set for the 

expectation of each feature extracted from the HRF. 

When applied in detecting abnormal crowd 

behaviours, a “normal behaviour” template drawn from 

the STT, STX , will be defined first using its feature 

extraction function  f  and its corresponding expectation 

set  c . Then the tested pattern crowd STT slices, STY , 

will be compared against STX  and indicating its 

“normality” if Equation 3 can be satisfied. However, it is 

difficult to compare features in the entire HRF with finite 

image samples provided in real-world application. An 

optimisation for the Equation 3 was inspired in this 

research by Zhu’s work in nature image statistics [12], the 
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visual difference is evaluated in this design by solving the 

constraint optimisation problem using the Ergodic theory. 

As abstracted in Equation 4: 

    







  yf
eyP , that    xfcyf    (4) 

where y is a sample from Y,   is the Lagrange multipliers 

chosen from the constraints given by c  based on the 

sample of template. 

The advantage of using this representation is that the 
visual similarity can then be analysed by using the 
statistical samples represented by Ergodic settings rather 
than the entire HRF. Another time-consuming task in this 
process is to choose suitable values for the multipliers   

with constraint c . A practical and effective solution to 

address this problem is to use the gradient descent 
projection, 

       ,, )1(1
,

1
,

)1()(   
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
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n
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nn yfddyy


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where x


, C
y R


 are the vector representations of sample 

HRF. In Equation 5, the image y


 gradually changes its 

appearance in an iteration loop. The changes are based on 
the gradient descent but also constrained by the step 
amplitude, set by  . Since the   is related to the image 

feature of x , the iteration output will satisfy 

    cxfxy n

n





:lim )(  (6) 

which means if the feature extraction method  f  is 

comprehensive, the appearance of x and y is then visually 
indistinguishable. The abnormality evaluation model 
describes the variation between the template and the tested 
samples using the formula: 

        
 
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in which the visual difference D  is defined by the length 

of a trajectory in an image space 
V

yx R


, . The overall 

distance is composed of the changes of y


 in each iteration 

step, which starts from the original y


 and always stops at 

nearby locations of x


 through applying corresponding 

constraints. 

Equation 8 can be also normalised as 

 D
RCn

D
2

1~


  (8) 

where C has a finite dimension (N,M) and R denotes the 
range (difference between maximum and minimum 
intensities) of the image.  

Since the   may contain multiple solutions, the 

minimal magnitude was always chosen to ensure the most 
subtle change in the image. In addition, the iteration stops 

when the change of y


 is smaller than a pre-defined 

threshold  , that is  

 

   






2

2

2

1

RC

ii yy


 (9) 

During the experiment, we set 6101   and the 

equation normally converges after the fifth or sixth 
iteration. One example has been illustrated in Figure 5. 
Two different crowd regions y  and z  drawn from two 

different STT slices of Figure 2 were compared with the 
“normal” template x. During the iteration, the appearance 
of y did not change too much. Actually, in this case, 

06.0
~

yD  and 35.0
~

zD , which means, y  looks similar to 

the template. 

IV. IMPLEMENTATION STRATEGY AND EVALUATIONS 

A prototype system has been implemented to test the 
devised crowd behavioural analysis model and the 
abnormality evaluation strategy. The prototype has been 
run on a host PC with a 64bit Core i7 CPU (2X3.07GHz) 
and 8GB RAM. 

As illustrated in Section 3.1, a 5-scale pyramid-based 
dense optical flow method [17] is used in the experiments 
for extracting crowd regions. The Gaussian filter has also 
been applied ( 5.1 ) for smoothing. The segmentation 

process removes areas smaller than 77  pixels due to 

their minimal contributions to the evaluation results. 

In this research, the concept of crowd “abnormality” is 
generalised to a group of crowd elements presenting 
different dynamics from the dominant crowd behavioural 
patterns. Therefore, any events that change the pattern of 
the dominant crowd motion in a STT region (local) or the 
entire model (global) will be classified as “abnormal” The 
developed algorithms in this module relied on the 
measurements of visual distances between the dominant 
crowd motions and the tested patterns.  

Each STT slice in the experiments detailed below was 
tested independently using the abnormality evaluation 
algorithms. In the experiment, the beginning period of the 
input video (the initial 10 to 100 frames) has been defined 
as the dominant crowd behaviour in all tested videos and 

been processed as template, x


. This is for the system 
evaluation purpose of the research and can be customised 
for real applications. The STT slices containing unknown 
crowd events, y


, is the localised and formulated by a 

sliding window along the temporal axis across the entire 
STT. The width of the window controls the sensitivity of 

the detection. In the prototype system, the width of y


 has 

always been set to equal to the x


. During the detection 

operation, a threshold for the visual difference needs to be 
defined. Any abnormal crowd behaviour can then be 
denoted whenever the calculated visual distance is greater 
than the threshold. 

Several popular online video databases have been used 
for the system tests. Those datasets contain various crowd 
behaviours under different density and background 
settings. During the experiments, a 4-scale and 4-
orienitation steerable pyramid wavelet has been used for 
the crowd feature extraction. 



 

Figure 5. Gradient descent projection example by using crowd template and patterns 

 

 Test on the UMN crowd video database 

The UMN Dataset [18] has been adopted for testing 
the system design under a controlled environment. As 
illustrated in Figure 6(a), it contains 11 scenarios 
subjecting to 3 different indoor and outdoor backgrounds. 
Each video records a group of people wondering in the 
scene and then escaping. 

 

(a) examples 

 

(b) ROC test 

Figure 6 UMN Test 

The experiment defines the 10 frames at start of each 
input clip as the template. After composing the average 
optical flow, 20 STT slices are then composed along each 
of the 4 directions (80 slices in total). The overall 
performance of the proposed approach and the prototype 
system based on the ROC and RP tests are comparable to 
other works in the field [10, 19]. 

The ROC and RP curves are used for evaluating the 
system robustness as shown in Figure 6(b). The curves 
generated from the experiments highlighted the 
performance variations in the developed system recorded 
at incremental threshold values (+10% for each plot in the 
curves). In the figure, the proposed method shows 
satisfactory performance when appropriate thresholds 
were selected. 

 Test on the DDC crowd video database 

A more challenging video database-data-driven-crowd 
(DDC) dataset [9] - has also been tested using the devised 
algorithms and techniques (see Figure 7(a)). This dataset 
contains more than 200 crowded scenes from uncontrolled 
and real-world settings. 

The system performance can be reviewed using the 
ROC curves illustrated in Figure 7(b). In order to generate 
an overall ROC from the database, all the videos have 
been connected to form an integrated input. The templates 
of each video clip and the average optical flow fields were 
automatically updated when the sliding window reaches 
the clip transition points. 

Most video clips in this dataset contain high density 
crowded scenes, which are considered ideal situation for 
the flow-filed based approaches detection mechanism. 
However, based on the test outputs shown in Figure 7(b), 
the detection performance is better than those popular 
flow-filed based approaches. The devised approach and 
algorithms in this research have shown promising 
characteristics for detecting crowd abnormality even from 
complicated and real-life video settings. 

 
(a) examples 

Template x

y
(0)

y
(1)

y
(2)

y
(3)

y
(4)

y
(5)

z
(0)

z
(1)

z
(2)

z
(3)

z
(4)

z
(5)

Normality Abnormality

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 

 

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

This method

 Reference [14]

 Reference [24]

Normality Abnormality



 
(b) ROC test 

Figure 7. DDC Test 

 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, an innovative HRF and STT based 
crowd behaviour modelling method has been introduced. 
Based on a rotation- and translation- invariant wavelet 
framework, the statistical image features can then be 
obtained and applied for measuring the similarity between 
two crowd scenes. The prototype system has shown 
satisfactory performance during the tests and promising 

potentials for future intelligent CCTV-based surveillance 
and security applications. 

The statistical HRF-based features are qualified 
representations for the image local uncertainties as well as 
its global similarity. The feature-encapsulating textures 
are suitable tools for a wide range of real-word pattern 
analysis applications, from individual to crowd-based 
event detections. The devised algorithms and the proposed 
general approach from this research have shown 
significant improvements for detecting abnormality from 
complex and real life crowd scenarios. 

It is worth noting that through using the distance 
output, the devised method can be readily extended into 
3D “abnormal regions” in a crowd scene, henceforth 
laying a foundation for denoting semantically defined 
crowd events, such as “gathering”,  “dispersing”, and 
other squared behaviours. Future work will see the 
recognition system being developed to adopt visual words 
from “abnormal” STT slices through training methods 
such as Latent Dirichlet allocation for classifying different 
events. 
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