

Luo, W., and Li, Y. (2016) Benchmarking Heuristic Search and Optimisation
Algorithms in Matlab. In: 22nd International Conference on Automation and
Computing (ICAC), 2016, University of Essex, Colchester, UK, 7-8 Sept 2016, pp.
250-255. ISBN 9781509028771.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/130854/

Deposited on: 25 November 2016

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/130854/
http://eprints.gla.ac.uk/130854/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Benchmarking Heuristic Search and Optimisation

Algorithms in Matlab

Wuqiao Luo

School of Engineering

University of Glasgow

United Kingdom

w.luo.1@research.gla.ac.uk

Yun Li

School of Engineering

University of Glasgow

United Kingdom

Yun.Li@glasgow.ac.uk

Abstract—With the proliferating development of heuristic

methods, it has become challenging to choose the most suitable

ones for an application at hand. This paper evaluates the

performance of these algorithms available in Matlab, as it is

problem dependent and parameter sensitive. Further, the paper

attempts to address the challenge that there exists no satisfied

benchmarks to evaluation all the algorithms at the same

standard. The paper tests five heuristic algorithms in Matlab, the

Nelder-Mead simplex search, the Genetic Algorithm, the Genetic

Algorithm with elitism, Simulated Annealing and Particle Swarm

Optimization, with four widely adopted benchmark problems.

The Genetic Algorithm has an overall best performance at

optimality and accuracy, while PSO has fast convergence speed

when facing unimodal problem.

Keywords—benchmarks; evolutionary algorithms; numerical

optimization; single-objective

I. INTRODUCTION

During the past four decades, many heuristic algorithms
have been developed. They are applicable to a wide range of
real-world problems and are made available conveniently in
Matlab, which is used daily by a significant number of
practising engineers and scientists. With the development of
these tools, it has become challenging to choose the most
suitable ones for an engineer’s application at hand. To provide
a practical review of these tools, this paper conducts and
reports their benchmarking tests.

Benchmarks used in this paper are consistent with but
exceed those used in measuring conventional optimisation
algorithms [1]. The tested algorithms from Matlab are the
Nelder-Mead simplex method, the Genetic Algorithm (GA), a
Genetic Algorithm with elitism (GAE), Simulated Annealing
(SA) and Particle Swarm Optimization (PSO), which are the
most representative and popular.

Section II of this paper presents the aforementioned
benchmarks and Section III introduces the test functions.
Benchmarking results are presented and analysed in Section
IV. Conclusions are drawn in Section V.

II. UNIFORM BENCHMARKS FOR HEURISTIC TESTING

A. Optimisality

For an optimization problem with single objective,
suppose that its objective function (performance index, cost
function, or fitness function) is:

𝑓(𝒙): 𝑿 → 𝐹
where 𝑿 ⊆ 𝑹𝑛 spans the entire search or possible solution
space in n dimensions, 𝒙 ∈ 𝑿 represents the n collective

variables or parameters to be optimised, 𝐹 ∈ 𝑹 represents
the space of all possible objective values.

The theoretical solve is usually reach at the minimum or
maximum value of the objective function as:

𝑓0 = 𝑚𝑖𝑛 𝑜𝑟 𝑚𝑎𝑥 {𝑓(𝒙)} ∈ 𝐹 (1)

An 𝒙𝟎 ∈ 𝑿 that satisfies:

𝑓(𝒙𝟎) = 𝑓𝟎 (2)

is said to be a corresponding theoretical solution to the
optimisation problem.

The uniform benchmarks used in this paper are defined as
in [1]. Optimality represents the relative closeness (or,

inversely, distance) of an objective found, 𝑓0, to the theoretical
objective, 𝑓0. It is defined as:

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦|𝑎 = 1 −
‖𝑓0−𝑓̂0‖𝑎

‖𝑓−𝑓‖
𝑎

 ∈ [0, 1] (3)

where 𝑓 and 𝑓 are the lower and upper bounds of 𝑓.

B. Accuracy

Accuracy represents the relative closeness of a solution
found, x0 , to the theoretical solution, x0. This may be

particularly useful if the solution space is noisy, there exist
multiple optima or “niching” is used. It may be defined as [1]:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦|𝑎 = 1 −
‖𝒙𝟎−𝒙̂𝟎‖𝑎

‖𝒙−𝒙‖
𝑎

 ∈ [0, 1] (4)

where x is the lower bound of x and x is the upper bound,

representing the search range.

C. Convergence

a) Reach-time

The most frequently used benchmark for convergence is
the number of evaluation times of function. The stop condition
is usually set to when there is little change, less than 1e-6. But
it could convergence very quickly ending at local extreme
point. Hence the optimality is also evaluated in convergence
as reach-time [1].

𝑅𝑒𝑎𝑐ℎ − 𝑡𝑖𝑚𝑒|𝑏 = 𝐶
𝑏 (6)

Wuqiao Luo is grateful to the China Scholarship Council and the

University of Glasgow for a CSC scholarship.

In Proceedings of the 22
nd

 IEEE International Conference on Automation &
Computing, University of Essex,Colchester city, UK, 7-8 September 2016

DOI: 10.1109/IConAC.2016.7604927

http://dx.doi.org/10.1109/IConAC.2016.7604927

where represent the total number of ‘function evaluations’
conducted by which the optimality of the best individual first
reaches 𝑏 ∈ [0, 1].

To estimate the order of the polynomial,
999999.0C may be

plotted against the number of parameters being optimized, n,
as revised in:

𝑁𝑃 − 𝑡𝑖𝑚𝑒(𝑛) = 𝐶0.999999(𝑛) (7)
b) Total number of evaluations

min {𝐶0.999999(𝑛), 400𝑛2) (8)
which implies that a benchmark test should terminate either
when the goal has been reached or 20n generations with a size
of 20nm have been evolved.

D. Optimizer overhead

Alternative to or in addition to the ‘total number of
evaluations’, the ‘total CPU time’ may be used in a benchmark
test. More quantitatively, the optimizer overhead may be
calculated by [1]:

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛−𝑇𝑃𝐹𝐸

𝑇𝑃𝐹𝐸
 (9)

where 𝑇𝑃𝐹𝐸 is the time taken for pure function evaluations.

III. BENCHMARK TESTING FUNCTIONS

A. Experimental set-up

In this experiments, we investigated the performance of
Simplex, GA, GAE, SA and PSO which are all searching
methods provided in Matlab Toolbox.

Each experiment was repeated 10 times to get a mean
value of benchmarks. For NM Simplex and SA, initial point is
needs. A random starting point is given for all 10 runs in these
two algorithms. In all runs, we kept a same criterial of stop
searching as description in equation 8 to provide a fair
performance comparison.

In order to get 𝑇𝑃𝐹𝐸 for each tested function, all the
benchmark functions (as in Table 2) are run 400n2 time and
the time is takes as average value from 10 runs in Matlab.
These data are given in Section IV as theoretical value of
optimizer overhead.

B. Algorithmic settings

All the algorithms are tested in Matlab. For NM Simplex,
reflection coefficient is 1, the expansion coefficient is 2, the
contraction coefficient is 0.5 and the shrink coefficient is 0.5.
For GA, the population size is set as 20n, which n is the
dimension number. The max generation times is 20n, so that
the maximum function evaluation is 400n2 as described in
Section II about reach-time. The crossover function is using
scattered which creates a random binary vector and selects the
genes from two parents based on that binary vector. Crossover
fraction is set as 0.8. Probability rate of mutation is 0.01. For
GA with elitism, 5 out of 100 population are guaranteed to
survive to the next generation. For SA, the initial temperature
is set to 100, and the temperature is lowered following
function of 𝑇 = 𝑇0 × 0.95

50. For PSO, swarm size is 10n, and

maximum iteration is set as 40n so that the maximum function
evaluations is 400n2.

C. Benchmark functions

For comparison, four non-linear functions used in [2, 3]
are used here in Table 1. All the functions are tested in 10 and
30 dimensions.Difference types of tested function are chosen
for a comprehensive comparison. The first function is Quadric
function, which is a unimodal function. The rest three
functions are multimodal ones. The n-D Varying Lanscape
problem, which is also the only maximization problem in the
four tested functions, that was introduced by Michalewicz [4]
and further studied by Renders and Bersini [5].

The objective function f2(x) is, in effect, de-coupled in

every dimension represented by 𝑓𝑖(𝑥𝑖) = sin (𝑥𝑖)𝑠𝑖𝑛
2𝑚(

𝑖𝑥𝑖
2

𝜋
) .

Every such member function is independent. The larger the
product mn is, the sharper the landscape becomes. There are n!

local maxima within the search space [0, ]n. The theoretical
benchmark solution to this n-dimensional optimization
problem may be obtained by maximizing n independent uni-
dimensional functions, 𝑓𝑖(𝑥𝑖), the fact of which is however
unknown to an optimization algorithm being tested.

The third is Scaffer F6 function with minimum at zero.
And the last one is a composition function of Schwefel’s
function, Rastrigin’s function and High Conditioned Elliptic
Function. The composition rate is 0.3, 0.3 and 0.4
respectively.

IV. BENCHMARKING RESULTS AND ANALYSIS

A. Compare among algorithms

The results reported in this section are summarized in from
Table 2 to Table 5 based on different tested function. All the
theoretical values are given at the bottom of each table for
comparison.

First function

The first test function is a unimodal function with only one
minimum point in the search area [-1.28 1.28]D. The searching
results are shown in Table 2, Fig.1 and Fig.2. The algorithms
are running for different dimension of 10 and 30.

All five tested algorithms had optimality up to 0.9999. In
lower dimension of 10, NM Simplex and PSO showed better
performance with lower optimization overhead and better
accuracy. In 30 dimension problem, the optimizer overhead of
GA and GAE decreased to the same level of Simplex, while the
PSO had the best with 32.49%. SA has the most optimizer
overhead for both 10-D and 30-D tests. Fig.1 and Fig.2 shows
convergence trace for each algorithms. For f1, all the
algorithms show a fast and relatively uniformed speed. Overall,
all the algorithms performant well for unimodal function.
Simplex and PSO are most suitable for this kind of problem.

TABLE 1 TESTED FUNCTIONS

 Name of

function
Test function Search Space Minimum/ Maximum

U
n

im
o

d
al

Quadric [6,

7]

min 𝑓1(𝑥) = ∑𝑖𝑥𝑖

4

𝐷

𝑖=1

 [-1.28,1.28]D D=10, 𝑦 ∈ [0, 147.6395]
D=30, 𝑦 ∈ [0, 1248.2]

M
u
lt

im
o
d

al

n-D

Varying

Landscape

[5, 8]

𝑚𝑎𝑥 𝑓2(𝒙) =∑𝑓(𝑥𝑖) =∑sin (𝑥𝑖)𝑠𝑖𝑛
2𝑚(

𝑖𝑥𝑖
2

𝜋
)

𝑛

𝑖=1

𝑛

𝑖=1

x  [0, pi]D

D=10, 𝑦 ∈ [0, 9.6547]
D=30, 𝑦 ∈ [0, 29.6252]

Scaffer’s

F6

Function

[2, 3]

𝑚𝑖𝑛𝑓3(𝒙)=g(𝑥1, 𝑥2) + g(𝑥2, 𝑥3) + … + g(𝑥𝐷−1, 𝑥𝐷) + g(𝑥𝐷, 𝑥1)

222

222

))(001.01(

)5.0)((sin
5.0),(

yx

yx
yxg






x  [-100,100]D
D=10, 𝑦 ∈ [0, 9.9760]
D=30, 𝑦 ∈ [0, 29.9280]

Compositi

on

Functions

[2, 3]

min 𝑓4 = 0.3 × 𝑓41 + 0.3 × 𝑓42 + 0.4 × 𝑓43

𝑓41 = 418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

𝑚 = 𝑚𝑜𝑑(|𝑧𝑖|, 500)

𝑔(𝑧𝑖) =

{

𝑧𝑖sin (|𝑧𝑖|)
1/2 𝑖𝑓 |𝑧𝑖| ≤ 500

(500 − 𝑚) sin (√|500 − 𝑚)|) −
(500 − 𝑧𝑖)

2

10000𝐷
𝑖𝑓 𝑧𝑖 > 500

(𝑚 − 500) sin (√|500 − 𝑚)|) −
(500 + 𝑧𝑖)

2

10000𝐷
𝑖𝑓 𝑧𝑖 < −500

𝑓42 =∑(𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10)

𝐷

𝑖=1

𝑓43 =∑(106
𝐷

𝑖=1

)
𝑖−1
𝐷−1𝑥𝑖

2

x  [-100,100]D D=10, 𝑦 ∈ [0, 5.5424𝑒 + 08]
D=30, 𝑦 ∈ [0, 1.2208𝑒 + 09]

Second function

The problem described in second function has multiple
extremes in [0, pi]D. The objective is to maximum the function
value, which is different from the other three tested function.

From Table 3, NM Simplex performance are not
satisfactory. It stalled at local maximum point. GA and GAE,
on the other hand, showed steady performance, though it took
much more time to reach the maximum point than NM
Simplex. Also, GA with elitism shows a little faster than GA to
reach to the stop criterial. But both GA and GA with elitism
stop at local maximum point. Fig.3 and Fig.4 shows
convergence trace for each algorithms. For f2, Simplex and SA
shows faster convergence speed at the beginning, but stall at
local extremes. GA, GAE and PSO can get closer to global
extreme with more iterations.

None of the tested algorithms can reach to 0.999999
optimality in N times of function evaluations. GA and GAE
have provided relatively better results than other. Though PSO
has a faster convergence speed.

Third function

Like the first and second functions, GA and PSO shows
consistence better performance than other two algorithms.
Fig.5 and Fig.6 shows convergence trace for each algorithms.
For f3, similar to the tests in f2, Simplex and SA have quick
convergence speed but soon stop at local extremes. PSO has a
slower convergence speed than GA and GAE, but can reach to
the same level of extreme point.

However, all the algorithms shows great overhead at this
tested functions, which suggested that optimizer overhead is

not only related to algorithms itself, but also related to the
fitness function.

Fourth function

The hybrid function is complex which should be expected
more optimizer overhead. However, except for Simplex and
SA, the overhead of other three algorithms are less than 100%.
The optimality all can reach to 0.9999, while the accuracy in
Simplex is 64.48% in 30-D. Overall, all the five algorithms can
locate the global extreme in the last tested function. Fig.5 and
Fig.6 shows convergence trace for each algorithms. Fig.7 and
Fig.7 shows convergence trace for each algorithms. For
f4,.convergence speed of SA is the slowest. Also because the
random value for initial point, initial value of Simplex is quite
large, while for GA and PSO, there are relative better point in
the first population. Hence in this tested function, NM shows
slower convergence speed than GA and PSO. Overall, GAE
has a relative better performance.

Fig. 9 gives the average of three benchmarks, optimality,
accuracy and optimizer overhead, between five algorithms. GA
and GA with elitism have an overall steady and good
performance. For optimality and accuracy, GA with elitism
didn’t show distinguished improvement. But it show steady
improvement in optimizer overhead.

B. Compare between functions

Because f1 is a unimodal function. All the algorithms are
performing well. In 30-D, the optimizer overhead of PSO is
only 32.49% because it only took less than 6% of set times of
function evaluations to reach to stop point. For multimodal
functions, heuristic methods have an overall better performance
than deterministic method as NM Simplex.

From the theoretical time of pure running of fixed function
evaluations, f4 took most long time and f3 is the shortest.
However, the optimizer overhead of all the algorithms in f3 is
the biggest while small in f1 and f4. Moreover, for NM Simplex,
the overhead is relatively stable in both 10-D and 30-D, while
the optimizer overhead decreased at 30-D for heuristic
methods. It is make sense that because GA and PSO are
imitation of group activating in nature, which depends on big
population to keep diversity. When the dimension increase, the
population size is also increased.

C. Evaluations of benchmarks

The mean optimality and mean accuracy represent relative
closeness to the theoretical value. It would lost meaning when
the range for x and y become very big. The relative value
would be too small to show difference between compared
algorithms.

The minimum value for function is 0, however, the
maximum value is increased expontially with dimension of n.
In this case, the benchmark of optimality can’t reflect the
distant of searching result to theoretical value. When the
distance between fmax and fmin

 is too big, the optimality could

be very close to 1 even the absolute distance between 0f̂ and

0f . As it is shown in Table 9 and Table 10. All the optimality

can reach to 0.9998, but the mean function value is up to 105
scale in SA and Simple.

Though reach-Time or N evaluations of functions also has
disadvantages, it gave a convergence speed reflected both
convergence and optimality. But because of large range of f in
f4, PSO and GA stops before it reaches to its best solutions.
Though the optimizer overhead in this test is very small, it is
not the actual overhead time because algorithms stops early.
For example, in Table 10, the times for function evaluation of

PSO is only 45780, compare to N=360000. The results could
be better if the search continue. But PSO stops search based on
the reach time setting. Thus it compromised its performance to
fit the testing standard.

Benchmarks of optimization, accuracy, convergence and
optimizer overhead have shown some advantages for a
uniformed standard to compare. Its application still has limits.

V. CONCLUSION

Using 4 commonly adopted tested functions, we have
compared 5 algorithms available in the Matlab Optimization
Toolbox. The Simplex has shown good performance for
unimodal problems, but has not delivered satisfactory
performance for multimodal and high dimension problems. The
GA and GAE have shown overall consistently performance
with all kinds of problems. The PSO has offered the highest
convergence speed and relatively lower optimizer overhead,
though the optimality and accuracy were not as good as the GA
and GAE. If we mark the best one in each benchmarks in green
in Table 2-7, the highest score in multimodal problems goes to
GA and GAE. But for unimodal function, PSO has the best
performance.

We have also evaluated the benchmarks and tested how
good the benchmarks can reflect the search performance.
Based on the analysis, discussions and examples shown in
Sections 5 and 6, it is evident that more work is required on
improving the existing benchmark measures. Whether it is
possible to have such a set of benchmark measures that gives
an accurate or distinguishable evaluation is still unknown. It is
important to note that without proper and widely accepted
benchmark measures, quantifying performance of heuristic
algorithms is challenging.

TABLE 2 BENCHMARK TEST RESULTS ON THE 10-D AND 30-D QUADRIC PROBLEMS

Algorithms

tested

Mean

Optimality

Mean

Accuracy

N or

Reach-Time

Optimizer

Overhead

Mean

Optimality

Mean

Accuracy

N or

Reach-Time

Optimizer

Overhead

Score

(green)

10-D 30-D -

Simplex 100% 100% 5766.6 118.09% 99.98% 94.80% 93779 104.84% 3

GA 100% 99.88% 19800 946.16% 100% 99.74% 134100 113.34% 2

GA with

Elitism
100% 99.86% 18480 833.43% 100% 99.71% 122040 100.46%

2

SA 99.98% 94.49% 8871 9378.15% 99.88% 91.32% 30709 1315.49% 0

PSO 99.99% 97.34% 4400 77.86% 99.99% 96.62% 19860 32.49% 4

Theoretical

value
100% 100% 40000 Max 0.0691 sec 100% 100% 360000 Max 1.6532 sec

-

TABLE 3 BENCHMARK TEST RESULTS ON THE 10-D AND 30-D VARYING LANDSCAPE FUNCTIONS

Algorithms

tested

Mean

Optimality

Mean

Accuracy

N or

Reach-Time

Optimizer

Overhead

Mean

Optimality

Mean

Accuracy

N or

Reach-Time

Optimizer

Overhead

Score

(green)

10-D 30-D -

Simplex 20.70% 69.22% 40000 342.49% 22.99% 69.71% 360000 169.96% 5

GA 95.38% 87.58% 40000 1684.73% 93.81% 87.59% 360000 734.99% 6

GA with

Elitism
95.29% 86.73% 40000 1618.96% 92.61% 86.69% 360000 704.96%

2

SA 33.62% 77.02% 40000 18206.36% 19.02% 75.61% 360000 2304.87% 2

PSO 86.10% 83.53% 40000 612.21% 72.80% 78.12% 360000 493.67% 2

Theoretical

value
100% 100% 40000 Max 0.0786sec 100% 100% 360000 Max 2.0406sec

-

TABLE 4 BENCHMARK TEST RESULTS ON THE 10-D AND 30-D SCAFFER FUNCTION

Algorithms

tested

Mean

Optimality

Mean

Accuracy

N or

Reach-Time

Optimizer

Overhead

Mean

Optimality

Mean

Accuracy

N or

Reach-Time

Optimizer

Overhead

Score

(green)

10-D 30-D

Simplex 55.78% 72.42% 40000 809.26% 53.06% 73.07% 360000 878.64% 4

GA 89.21% 95.79% 40000 3804.32% 87.18% 94.03% 360000 1835.67% 6

GA with

Elitism
88.74% 95.26% 40000 3532.41% 83.68% 91.07% 360000 1712.33%

2

SA 62.26% 74.95% 40000 45367.90% 54.47% 68.36% 360000 2961.18% 2

PSO 84.01% 89.91% 40000 1386.73% 70.73% 82.18% 360000 1138.23% 2

Theoretical

value
100% 100% 40000 Max 0.0324 sec 100% 100% 360000 Max 0.7300 sec

TABLE 5 BENCHMARK TEST RESULTS ON THE 10-D AND 30-D HYBRID FUNCTION

Algorithms

tested

Mean

Optimality

Mean

Accuracy

N or

Reach-Time

Optimizer

Overhead

Mean

Optimality

Mean

Accuracy

N or

Reach-Time

Optimizer

Overhead

Score

(green)

10-D 30-D

Simplex 99.99% 77.03% 10816 93.15% 99.98% 64.48% 360000 209.35% 0

GA 100% 99.88% 10400 170.76% 100% 99.62% 35700 35.85% 2

GA with

Elitism
100% 99.98% 11680 186.20% 100% 99.79% 32460 32.19%

5

SA 99.99% 85.59% 27019 10573.30% 99.99% 86.09% 275690 6236.73% 0

PSO 99.99% 91.33% 6560 49.84% 99.99% 94.17% 45780 41.50% 2

Theoretical

value
100% 100% 40000 Max 0.2131 sec 100% 100% 360000 Max 4.4989 sec

Figure 1 Convergence traces of tested algorithms in f1, 10-D

Figure 2 Convergence traces of tested algorithms in f1, 30-D

Figure 3 Convergence traces of tested algorithms in f2, 10-D

Figure 4 Convergence traces of tested algorithms in f2, 30-D

Figure 5 Convergence traces of tested algorithms in f3, 10-D

Figure 6 Convergence traces of tested algorithms in f3, 30-D

Figure 7 Convergence traces of tested algorithms in f4, 10-D

Figure 8 Convergence traces of tested algorithms in f4, 30-D

Figure 9 Average of optimality, accuracy and optimizer overhead of 4 tested

functions.

REFERENCES

[1] W. Feng, T. Brune, L. Chan, M. Chowdhury, C. K. Kuek and Y. Li.

"Benchmarks for testing evolutionary algorithms." in Asia-Pacific Conference

on Control and Measurement. 134-138. 1998.

[2] Q. Chen, B. Liu, Q. Zhang, J. Liang, P. Suganthan and B. Qu, "Problem

definitions and evaluation criteria for cec 2015 special session on bound

constrained single-objective computationally expensive numerical

optimization."

[3] J. Liang, B. Qu and P. Suganthan, "Problem definitions and evaluation

criteria for the cec 2014 special session and competition on single objective

real-parameter numerical optimization," Computational intelligence

laboratory, 2013.

[4] Z. Michelewicz, "Genetic algorithm+ data structure= evolutionary

programs," New York: Springer—Verlag, 1996. 1: p. 996.

[5] J.-M. Renders and H. Bersini. "Hybridizing genetic algorithms with hill-

climbing methods for global optimization: Two possible ways." in

Evolutionary Computation, 1994. IEEE World Congress on Computational

Intelligence., Proceedings of the First IEEE Conference on. 312-317. 1994.

[6] Z.-H. Zhan, J. Zhang, Y. Li and H. S.-H. Chung, "Adaptive particle swarm

optimization," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, 2009. 39(6): p. 1362-1381.

[7] X. Yao, Y. Liu and G. Lin, "Evolutionary programming made faster,"

Evolutionary Computation, IEEE Transactions on, 1999. 3(2): p. 82-102.

[8] Z. Michalewicz, Genetic algorithms+ data structures= evolution programs.

2013: Springer Science & Business Media.

0.00%

2000.00%

4000.00%

6000.00%

8000.00%

10000.00%

12000.00%

14000.00%

0%

20%

40%

60%

80%

100%

simplex GA GAE SA PSO

Average of optimality, accuracy and optimizer

overhead

Optimality Accuracy Optimizer overhead

