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Abstract — The paper presents a Distributed Measurement
and Control System (DMCS) applied to a physical process
equipped with all the instrumentation needed to run control
loops for temperature, level, flow and pressure, quantities
widely found in the process industry. The system is supported
by a service-oriented middleware platform based on the IEEE
1451.1 std and the Windows Communication Foundation
(WCF). Tests were made to evaluate the performance of the
system in terms of sampling frequency and behavior of control
loops. The methodology of each experiment is described,
results are analyzed and conclusions are extracted.
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I. INTRODUCTION

The productivity and interoperability offered by the .NET
Framework [1] and the Windows Communication Foun-
dation (WCF) [2] are very tempting to be applied in the
context of Distributed Measurement and Control Systems
(DMCS). Following this idea, we developed a service-
oriented middleware platform that takes advantage of the
object model defined by the IEEE 1451.1 [3] and the
communication model provided by WCF services. This
approach is very promising but has some pitfalls and
drawbacks, in particular those related with the overhead
introduced by additional software layers involved in data
transfer and data processing.

In order to clarify the performance issues of the mid-
dleware platform, we built a pilot DMCS and saw how it
worked on a real plant. Tests were made to evaluate the
performance of the system in terms of sampling frequency
and behavior of control loops. The results obtained can serve
as guidelines and benchmarks for the future. The paper is
organized as follows: section II explains the architecture of
the system, section III presents the physical process used
as test bench, section IV describes the tests performed, and
section V extracts conclusions.

II. SYSTEM ARCHITECTURE

The pilot system is completely based on the service-oriented
middleware platform. The middleware platform provides the
“bricks” with which we can build distributed control and
supervision applications.

A. Service-Oriented Middleware Platform

The middleware platform merges the strengths of the IEEE
1451.1 std with the benefits supplied by the .NET Frame-
work and WCE. The idea was to materialize the 1451.1-
object model using last-generation software technologies,
in order to obtain an open middleware solution targeted for
instrumentation. The solution thus found was named Service
eXtensions for Instrumentation (SXI).

The SXI platform implements a fully-functional subset
of the 1451.1-object model (see table I). The subset is
composed by blocks, components and services, making a
total of 19 classes, all coded in VB.NET 2008 and assem-
bled in the reusable library sxi.dll. Despite all attempts to
follow as closely as possible the 1451.1-object model, some
changes had to me made, such as the modification of some
classes and the introduction of new ones, the redefinition of
some datatypes and methods, and the use of native WCF
proxies instead of client and publisher ports. Therefore, we
do not expect the SXI platform to be compatible with the
IEEE 1451.1 std, but rather an alternative (and improved)
approach.

On the field side, the SXI platform works with Data Ac-
Quisition (DAQ) boards compliant with the DAQmx driver
[4] from National Instruments (NI). Field sensors/actuators
are respectively connected to the input/output channels of
a DAQ board. Each DAQ channel can be automatically
configured by reading the Transducer Electronic Data Sheet
(TEDS) of the attached transducer according the directives



Class name Description
Root It is the base class of all other classes.
Entity It provides functionalities to identify and localize objects in the context of the application
or across the network.
Block It provides functionalities to retrieve information about the block itself, to change its
executing state, and to interact with its owned objects.

PBlock Processor block that represents the application as a whole. It provides information
about the application (including mechanisms to intercept and acknowledge errors), as
well as common resources to other objects.

FBlock It provides basic functionalities to execute processing algorithms.
HysteresisFBlock Function block that implements the Schmitt-trigger algorithm used in on/off control.
PIDFBlock Function block that implements the PID algorithm used in process control.
TBlock It provides common functionalities to all transducer blocks.
DAQmxTBlock Transducer block that works with DAQ boards compliant with the DAQmx driver from
National Instruments.
Component It is the base class of all components.
Parameter It represents a network visible variable that can be read and written.
ParameterWithUpdate It provides functionalities to synchronize the value of the network variable with its
owning block.
PhysicalParameter |It adds metadata structures to describe the contents of the network visible variable.
ScalarParameter |lt represents a physical quantity well described by a mathematical scalar.
DAQmxTChannel Component that exposes the properties of a DAQ channel.
Service Itis the base class of all services.

Client Itis a kind of improved WCF proxy.

Publisher It issues publications on a multicast address using UDP.

Subscriber It listens to publications on a multicast address using UDP.

Notes:

1) Classes listed in bold are non-abstract.
2) The indexing of each class represents its position in the hierarchy.

Table I. OBJECT MODEL OF THE SXI PLATFORM.

of the IEEE 1451.4 std [5]. At the present, only numeric
field variables, well represented by mathematical scalars,
can be handled.

On the network side, communications are completely
based on WCF services following the best practices de-
scribed in the literature [6]. All non-abstract classes of
the SXI platform are implemented as services marked with
following attributes:

o InstanceManagement = single: This means that the
service is a unique instance that is shared by all the
clients.

ConcurrencyMode = single: This means that remote
calls are served one at a time, in absolute exclusivity.
As a result, the internal state of the service is preserved
between remote calls.

UseSynchronizationContext = false: This means that
each remote call is served by a dedicated thread. In
each moment, there may be multiple threads servicing
multiple remote calls on different services.

All WCEF services natively support the client/server commu-
nication model. Whenever a service is created, it registers
itself on a client/server endpoint and exposes its methods
on the network. If a client wants to invoke a method, it
gets the dispatch address of the service, creates a proxy at
run-time, invokes the remote call, and collects the results (if

any). Client/server endpoints can use one of the following

bindings:

e BasicHttpBinding: This binding is totally compatible
with web services [7]. It uses the Simple Object Ap-
plication Protocol (SOAP) [8] to format messages, and
the Hyper Text Transport Protocol (HTTP) to transport
them over the wire. It promotes interoperability over
performance making it suitable for communications
between cross-platform applications in the internet.
WSHttpBinding: This binding also uses the SOAP
format and the HTTP transport. However, it also sup-
ports WS* extensions [9] (which are not compatible
with web services), making it more versatile but also
less interoperable. It is indicated for communications
between uni-platform applications in the internet.

o NetTcpBinding: This binding uses a proprietary binary
protocol to format messages and the Transmission
Control Protocol (TCP) to transport them. It promotes
performance over interoperability making it suitable
for communications between uni-platform applications
inside an intranet.

By choosing the right binding, client/server communications
can be tuned for performance or interoperability, depending
on the needs of the system.

On the other hand, the publish/subscribe communication



model is trickier as it requires the dedicated classes Pub-
lisher and Subscriber. These classes use a non-standard
binding [10], based on the User Datagram Protocol (UDP),
to issue/intercept publications to/from a multicast address.
A publication is a method with no return values (equivalent
to a “one-way” message) that is called by the publisher
and forwarded to all subscribers registered in the multicast
address.

For now, the SXI platform is limited to one transducer
block, two function blocks and one type of parameter. In the
future, the object model shall include new transducer blocks
(to improve field communications), new function blocks (to
improve data processing capabilities), and new classes to
support vector parameters, time parameters and files.

B. Control Stations

Control stations are object-oriented applications that use
the SXI platform to control physical processes. They are
hosted in computers connected to an intranet allowing the
execution of local control loops (inside a control station),
as well as distributed control loops (involving two or more
control stations).

A control station resembles a Programmable Logic Con-
troller (PLC) in the sense that it executes the control routine
periodically by means of a timed loop. On every loop
iteration, data is acquired from sensors (using one or more
transducer blocks), control algorithms are executed (using
one or more function blocks), and output values are written
to actuators (using one or more transducer blocks), always
by this order, as depicted in figure 1. Each block owns a
predefined set of components and services, all working as
its assistants: parameters are used to store block variables,
publishers are used to broadcast block variables across the
network, and subscribers are used to collect data from the
network and feed block variables.

All control stations must provide publications to an-
nounce themselves to the network and to describe all the
WCEF services they expose. These publications must be
issued at start-up and on demand (and optionally at regular
intervals as a heart beat).

Figure 2 proposes a Graphical User Interface (GUI) for
control stations. The interface is dominated by a tree list
where the operator can see all objects created by the applica-
tion. Each object is identified by its name and is positioned
according its owning relation. In the right column, the
operator can see (and edit) the value of application variables.

C. Engineering Stations

Engineering stations are object-oriented applications that
use the SXI platform to configure and monitor control
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a) Each block is assisted by a predefined set of
components and services. Each component or service is
itself an object with network-visibility.

b) Components and services were omitted in the figure for
the sake of simplicity.

Figure. 1. Data flow inside a control station.
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Figure. 2. Proposal of GUI for control stations.

stations. They are hosted in computers connected to the
same intranet as the control stations. This arrangement
makes possible for an engineering station to “take care”
of the control stations located in the neighborhood. An
engineering station serves two main purposes:

« System configuration: System configuration is done by
intercepting publications carrying announcements of
control stations and their WCF services. The attached
data is extracted and used to build a virtual image
of the network, including the type, name, identifier
and dispatch address of all registered services. This
information is all we need to create a proxy and invoke
any method on any service. In other words, this is all
we need to configure the entire system.

o Data monitoring: Data monitoring is done by intercept-



ing publications carrying block variables. The attached
data, which includes the value of the variable and its
identification, is extracted and optionally logged to a
file.

Figure 3 presents the GUI of engineering stations. On the
left pane, the operator can see all the services registered in
the network. By clicking on a given service, the operator
gains access to the properties of the remote object on the
right pane.
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Figure. 3. GUI of engineering stations.

III. PHYSICAL PROCESS

The pilot system was tested in the physical process pre-
sented in figure 4. The process is a training plant — model
TE34 from Plint & Partners Ltd — that includes all the
instrumentation needed to run the following control loops:

o Pressure loop: The pressure inside the closed tank C2
is measured by the transmitter PT and is controlled by
operating the control valves PCV1 and PCV2 (which
form a complementary pair). The pressure increases
when PCV1 opens and PCV2 closes, and vice-versa.

o Level loop: The water level inside the closed tank C2
is measured by the transmitter LT and is controlled
by operating the control valves FCV1 and FCV2
(which also form a complementary pair). The water
is continuously pumped from the open tank C1 to C2
and returns back through FCV1 and the hand valve
HV.

o Temperature loop: The temperature of the water enter-
ing in the open tank C1 is measured by the transmitter
TT and is controlled by operating the control valve
TCV. The flow of hot water is constant while the flow

of cold water can be adjusted. C1 is equipped with an
overflow tube that drains the excess water out to the
Sewer.

Two control stations were used to execute the control loops:
the pressure and level loops were assigned to control station
number one (CS1) and the temperature loop was assigned
to control station number two (CS2). Both control stations
were equipped with a DAQ board, model USB-6008 from
NI.

The control strategy of station CS1 consists of two
Proportional-Integral (PI) controllers implemented by two
objects of type PIDFBlock, both having the derivative
component equal to zero. The control strategy of station
CS2 is slightly different as it consists of one fully-functional
Proportional-Integral-Derivative (PID) controller. In this
case, the derivative component is needed to compensate the
high inertia of the temperature loop.

Finally, an engineering station (ES) was added to con-
figure and monitor the system. The three stations were
installed on three distinct machines, all having the same
characteristics. The three computers were connected to
an eight port Ethernet hub (model 3C16753 from 3Com)
forming a 100 Mbit intranet. Figure 5 presents the final
arrangement of the system.
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Figure. 4. Physical process.
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IV. EXPERIMENTAL RESULTS

The performance of the pilot system was evaluated in terms
of sampling frequency and behavior of control loops.

A. Sampling Frequency

Each control station executes the control routine periodi-
cally by means of a timed loop. Precise timing is achieved
by performing passive waits with a resolution of 1 ms. The
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Intel DG41RQ Essential Series, processor Intel Pentium Dual
Core E5300, 4 GB of RAM DDR2 800 MHz, hard drive Seagate
320 GB SATA Il ST3320613AS, operating system Windows XP
Home SP3 plus .NET Framework 3.5.

b) Analog Input number zero.

¢) Analog output number zero.

Figure. 5. Arrangement of the pilot system.

elapsed time between loop iterations, here called ‘“cycle
time”, determines the sampling frequency of the control
station and has a strong impact on the quality of control
algorithms.

The experiments to evaluate the sampling frequency took
place in station CS1 because its workload is larger than that
of station CS2. The following methodology was adopted:

1) A stopwatch object was added to the code in order
to measure the elapsed time between loop iterations.
The stopwatch object is capable of measuring time
intervals with a microsecond resolution [11].

2) The station CS1 was started assuming a nominal cycle
time of 100 ms. About 1000 samples of effective cycle
time were acquired and logged to a file.

3) Step 2 was repeated for the following nominal cycle
times: 50 ms, 200 ms and 1000 ms. Table II summa-
rizes the results of all experiments.

4) If station CS1 remains in operation for a long period
of time, the memory available in the computer grad-
ually decreases, returning to the baseline from time
to time. When this happens, the hard drive is heavily
accessed and the cycle time suffers variations of tens
of milliseconds.

The collected data can be analyzed as follows:

o Above 100 ms inclusive, the mean value of effective
cycle time is very close to the nominal value. The mean
relative error tends to decrease suggesting that larger
cycle times are more accurate, as expected.

o Above 100 ms inclusive, the percentage of centered
samples is 100%, meaning that Windows XP performs
reasonably well although it is not a real-time operating
system.

« Below 100 ms, the nominal cycle time is not satisfied.
The minimum mean value of effective cycle time is
approximately 60 ms, which corresponds to a maxi-
mum sampling frequency of 16 Hz. Given the inertia
of the physical process, a sampling frequency of 2 Hz
was chosen to control it.

e The strong variations observed occasionally in the
cycle time are caused by the garbage collector of
the .NET Framework. When it starts working, all
applications are blocked waiting for it to clean up the

memory.
Nominal value (ms) Effective value (ms) | Mean relative Centered
Mean | Min | Max | error (%) (a) |samples (%) (b)
50 60,19 | 57 65 20,38 0
100 100,48 | 100 | 101 0,480 100
200 200,52 | 200 | 201 0,260 100
1000 1000,46 | 1000| 1001 0,046 100

Notes:
a) Defined as 100x|*nominal value-“mean effective error’|/“nominal value”.
b) Percentage of samples inside the interval “nominal value™t1 ms.

Table II. CYCLE TIME OF STATION CS1.

B. Behavior of Control Loops

All control loops were tested over their dynamic ranges.
For each controller, the setpoint, the process variable and
the output were remotely monitored from station ES.

1) Pressure and Level Loops: The experiments to eval-
uate the behavior of pressure and level loops took place in
station CS1. The following methodology was adopted:

1) The sampling frequency of station CS1 was adjusted

to 2 Hz.

2) The PI controllers were tuned in advance using the
Ziegler-Nichols method based on the open loop step
response [13]. The pressure controller was configured
with proportional gain (Kp) = 200 and integral time
(Ti) = 6 s, while the level controller was configured
with Kp =8 and Ti =4 s.

3) The system was started with pressure and level set-
points of 2 bar and 50%, respectively. Time was given
for all variables to stabilize after which they started
to be logged to a file.

4) At t = 60 s, the pressure setpoint was changed to 3
bar.

5) Att = 180 s, the pressure setpoint was changed to 1
bar.

6) At t =300 s, the pressure setpoint returned to 2 bar.

7) Att =420 s, the level setpoint was changed to 75%.

8) At t =540 s, the level setpoint was changed to 20%.

9) Att =660 s, the level setpoint returned to 50%.

10) At t =780 s, the logging process was stopped.

The collected data can be analyzed as follows:



o With respect to the pressure loop (see figure 6):

— At t = 60 and 300 s, the controller opens PCV1
(and closes PCV?2) to increase the pressure inside
C2. The process response has no overshoot and
stabilizes after 20 s.

— At t = 180 s, the controller closes PCV1 (and
opens PCV2) to decrease the pressure. The process
response has no overshoot and stabilizes after 30
S.

— At t = 420 and 660 s, the pressure has a sudden
increase (caused by a level rise) that is quickly
canceled by the controller.

— At t = 540 s, the pressure has a sudden decrease
(caused by a level fall) that is quickly canceled by
the controller.

— The pressure controller is characterized by good
tracking capability, no overshoot, short settling
time and high immunity to external disturbances
(in particular those related with level variations).

« With respect to the level loop (see figure 7):

— At t = 60 and 300 s, the water level inside C2 has
a sudden decrease (caused by a pressure rise) that
is quickly canceled by the controller.

— At t = 180 s, the level has a sudden increase
(caused by a pressure fall) that is quickly canceled
by the controller.

— At t =420 and 660 s, the controller opens FCV2
(and closes FCV1) to increase the level. The pro-
cess response has small overshoot and stabilizes
after 20 s.

— At t = 540 s, the controller closes FCV2 (and
opens FCV1) to decrease the level. The process
response has small overshoot and stabilizes after
30 s.

— The level controller is characterized by good track-
ing capability, small overshoot, short settling time
and high immunity to external disturbances (in
particular those related with pressure variations).

2) Temperature Loop: The experiments to evaluate the
behavior of the temperature loop took place in station CS2.
The following methodology was adopted:

)

2)

3)

The sampling frequency of station CS2 was adjusted
to 2 Hz.

The PID controller was tuned in advance using the
method described before. The temperature controller
was configured with Kp = 6, Ti = 10 s and derivative
time (Td) = 6 s.

The system was started with a temperature setpoint
of 35 °C. Time was given for all variables to stabilize

Amplitude (bar)

3.5

—— process variable
--- pressure setpoint

500

700

0.5

I I
400 600
Time (s)

I I I
0 100 200 300 800

Figure. 6. Pressure loop response.
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Figure. 7. Level loop response.
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after which they started to be logged to a file.

At t = 60 s, the temperature setpoint was changed to
38 °C.

At t = 360 s, the temperature setpoint was changed
to 32 °C.

At t = 660 s, the temperature setpoint returned to 35
°C.

At t = 960 s, the logging process was stopped.

The collected data can be analyzed as follows (see figure
8):

L]

At t = 60 and 660 s, the controller closes TCV to
increase the temperature of the water entering in C1.
As the temperature increases, the derivative component
gradually allows the entry of cold water to avoid



an excessive overshoot later (anticipation capability).
Nevertheless, the process response has an overshoot of
33% and a settling time of 80 s.

e At t = 360 s, the controller opens TCV to decrease
the temperature. The process response has a smaller
overshoot and a shorter settling time.

o The temperature controller is able to track the setpoint
but tends to oscillate due to the long dead time of the
process. The anticipation capability introduced by the
derivative component is crucial to limit the amplitude
of the oscillations.
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Figure. 8. Temperature loop response.

V. CONCLUSIONS

The paper aims to clarify the performance issues of the SXI
platform, a service-oriented middleware solution targeted
for instrumentation. For that purpose, we built a pilot
DMCS and saw how it worked on a real plant. The results
obtained from the experiments made led us to the following
conclusions:

o The SXI platform is a viable solution to implement
DMCS. The system as a whole, and the control loops in
particular, behaved well. All functionalities of control
and engineering stations worked as expected.

o The SXI platform supports sampling frequencies in the
range of 10 Hz.

o The SXI platform is not ready for real-time applica-
tions. First, because the Windows XP operating system
and the .NET Framework do not meet real-time con-
straints [14, 15]. And second, because communications
across Ethernet are not deterministic by nature.

In our opinion, the lack of support for real time is the major
limitation of the SXI platform at the present. To overcome
this problem, we will have to do the following:

1) Quit the .NET Framework and migrate the SXI plat-
form to a real-time environment (such as C++ together
with the Windows CE operating system [16], or a real-
time Java virtual machine [17]).

2) Use industrial Ethernet switches [18] to make com-
munications deterministic.
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