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Abstract - The development of a deep (stacked) 
convolutional auto-encoder in the Caffe deep learning 
framework is presented in this paper. We describe 
simple principles which we used to create this model in 
Caffe. The proposed model of convolutional auto-
encoder does not have pooling/unpooling layers yet. The 
results of our experimental research show comparable 
accuracy of dimensionality reduction in comparison with 
a classic auto-encoder on the example of MNIST dataset. 
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1. Introduction

The convolutional auto-encoder (CAE) is one of the 
most wanted architectures in deep learning research. As 
an auto-encoder, it is based on the encoder-decoder 
paradigm, where an input is first transformed into a 
typically lower-dimensional space (encoder part) and 
then expanded to reproduce the initial data (decoder 
part). It is trained in unsupervised fashion allowing it to 
extract generally useful features from unlabeled data, to 
detect and remove input redundancies and to present 
essential aspects of analyzing data in robust and 
discriminative representations [1]. Auto-encoders and 
unsupervised learning methods have been widely used in 
many scientific and industrial applications, solving 
mainly dimensionality reduction and unsupervised pre-
training tasks. Compared to the architecture of a classic 
stacked auto-encoder [2], CAE may be better suited to 
image processing tasks because it fully utilizes the 
properties of convolutional neural networks, which have 
been proven to provide better results on noisy, shifted 
and corrupted image data [3]. Theoretical issues of CAE 
developments are well described in many research 
papers [1, 4-6]. 

Modern deep learning frameworks, i.e. ConvNet2 
[7], Theano+Lasagne [8-9], Torch7 [10], Caffe [11] and 
others, have become very popular tools in the deep 
learning research community since they provide fast 
deployment of state-of-the-art deep learning models 
along with appropriate training strategies (Stochastic 
Gradient Descent, AdaDelta, etc.) allowing rapid 
research progress and emerging commercial 
applications. Our interest is to apply deep learning 
technologies, namely a CAE, for image processing in the 
neuroscience field. We have chosen Caffe deep learning 
framework mainly for two reasons: (i) a description of a 
deep neural network is pretty straightforward, it is just a 

text file with the description of layers and (ii) Caffe has a 
Matlab wrapper, which is very convenient and allows 
getting Caffe results directly into Matlab workspace for 
their further processing (visualization, etc) [12].  

There are several existing solutions/attempts to 
develop and research a CAE model on different 
platforms, but to the best knowledge of the authors there 
is no current CAE implementation in Caffe yet. The 
issue of CAE implementation is permanently active in 
the Caffe user group [13-16]. There are two 
implementations of one-layer (not-stacked) CAE [17] 
and convolutional Restricted Boltzmann Machine [18] in 
Matlab. Mike Swarbrick Jones presented the 
implementation of CAE in Theano/Lasagne [19-20]. The 
Deep Sea team [21], who won a 100,000 US dollar prize 
(1st place) in the National Data Science Bowl, a data 
science competition where the goal was to classify 
images of plankton, has reported the use of CAE to pre-
train only convolutional layers of their network (also 
implemented in Theano/Lasagne [9]). But they did not 
use this approach in their final winning architecture since 
they did not receive any substantial improvement with 
CAE pre-training. There are also CAE implementations: 
(i) in the examples of the Torch7 deep learning 
framework [22], (ii) recently implemented based on 
Torch7 [23], (iii) recently implemented on Theano/Keras 
[24] and (iv) in the examples of the Neon deep learning 
framework [25]. 

The goal of this paper is to present our first results of 
the practical implementation of a CAE model in Caffe 
deep learning framework as well as the experimental 
research of the proposed model on the example of 
MNIST dataset and a simple visualization technique 
which helped us to receive these results. 

2. Creation CAE model in Caffe

In the examples of Caffe there are two models which 
solve the task of dimensionality reduction. The first is a 
classic stacked auto-encoder, proposed by Hinton et al 
[2], and the second is a Siamese network, proposed by 
LeCun et al [26]. The classic auto-encoder model is well 
researched and it trains in a purely unsupervised fashion. 
The Siamese network consists of two LeNet [3] 
architectures coupled in a Siamese way and ended by a 
contrastive loss function. Siamese network trains in a 
“semi-supervised” fashion, since for forming the training 
set we have to label a couple of input images (chosen 
randomly), which we are saving into two channels (left 
and right), by 1, if the images belong to the same class 
and by 0 otherwise. The visualizations how the example 



Caffe implementations of the classic auto-encoder and 
the Siamese network solve the dimensionality reduction 
task encoding the test set (10000 examples) of MNIST in 
a 2-dimensional (2D) space are depicted in Fig. 1 and 
Fig. 2 respectively.  

 

 
Fig. 1. Visualization of MNIST test set in a 2D space 

by classic 2-dimensional auto-encoder 
 

 
Fig. 2. Visualization of MNIST test set in a 2D space 

by Siamese network 
 
Following the success of the LeNet [3] architecture 

and the paper [1] which showed experimentally that 
convolutional+pooling layers provide a better 
representation of convolutional filters and, furthermore, 
classification results, we started to construct CAE by the 
scheme conv1-pool1-conv2-pool2 in the encoder part 
and deconv2-unpool2-deconv1-unpool1 in the decoder 
part. We also have been inspired by the work of 
Hyeonwoo Noh et al [27] and we have used their non-
official Caffe distribution [28], where they have 
implemented an unpooling layer, which is still absent in 
the official Caffe distribution. This CAE model did not 
train in our previous experiments (which are the topic of 
a separate paper), and, therefore, we have eliminated 
pooling-unpooling layers from our consideration. Masci 
et al [1] showed that convolutional architectures without 
max-pooling layers give worse results, but architectures 
without pooling and appropriate unpooling layers are 
definitely working architectures, and it is a good point to 
start first with some simpler working architecture and 
then to increase the complexity of the model.  

After we have eliminated pooling-unpooling layers 
and added a non-linear activation function, <Sigmoid> in 
our case, after each convolutional and deconvolution 
layer [4], we have noticed, that the developed model is 
very similar to the classic auto-encoder model [2]. The 
difference is, the first two fully-connected layers of the 
encoder part have been replaced by two convolutional 
layers, and the last two fully-connected layers of the 
decoder part have been replaced by two deconvolution 
layers. The architecture of the developed CAE model in 
Caffe is depicted in Fig. 3. Taking into account some 
similarity between the classic auto-encoder and the 
developed model of CAE, we have used the following 
principles during our research: 
1. The model should be symmetric in terms of the total 

size of feature maps and the number of neurons in 
all hidden layers in both the encoder and decoder 
parts. These sizes and numbers should decrease 
from layer to layer in the encoder part and increase 
in the same way in the decoder part similarly to a 
classic auto-encoder. These sizes and numbers 
should not be less than some minimal values 
allowing handling the size of the input data from the 
informational point of view; 

2. Similarly to the example of the classic auto-encoder 
in Caffe, for the CAE model we have used two loss 
functions, <Sigmoid_Cross_Entropy_Loss> and 
<Euclidean_Loss>. Preliminary experimental 
research has shown that the use of only one of these 
loss functions separately does not provide good 
convergence results; 

3. Visualization of the values (along with its numerical 
representation) of trainable filters, feature maps and 
hidden units from layer to layer allows better 
understanding of how data are converted/processed 
from layer to layer [29]; 

4. The main purpose of the activation function after 
each convolutional/deconvolution layer is non-linear 
data processing [4]. Since the nature of 
convolutional/deconvolution operations is a 
multiplication, our visualization showed the huge 
rise of a resulting value of 
convolutional/deconvolution operations (the values 
of feature maps) in encoder/decoder parts from layer 
to layer which prevents the CAE model from a 
desirable convergence during learning. So the use of 
activation functions, which drops the resulting value 
of feature maps to the interval [0...1] kept the values 
of feature maps at the end of the decoder part 
smaller in order to provide good convergence of the 
whole model. 

5. The well-known fact is that good generalization 
properties of neural networks depend on the ratio of 
trainable parameters to the size and dimension of the 
input data. Therefore it is necessary to perform a set 
of experiments on the existing model of classic 
auto-encoder in order to find better architecture, (i.e. 
the size of trainable parameters and appropriate 
number of neurons in all hidden layers) which 
provides better generalization properties. Then, a 
CAE with similar size in terms of the total size of 
feature maps and the number of neurons in all 
hidden layers could be used to create the CAE 



model with good generalization properties. We 
cannot compare the classic auto-encoder and the 
CAE on the basis of the number of trainable 
parameters, because a convolutional network of the 
same size has much fewer trainable parameters [3]; 
 

 
Fig. 3. CAE model in Caffe 

 

6. The created architecture should be stable. Since 
different runs of a neural network may show 
different learning convergences (values of loss 
function) depending on random initialization of 
weights/biases, under stable architecture we mean 
the same convergence results within several (at least 
three) runs of the same model;  
The practical implementation of these principles and 

some experimental results are presented in the next 
section. 
 

3. Experimental results 
 

All experimental researches were fulfilled on a 
workstation operated under Ubuntu 14.04.2 operation 
system. The workstation is equipped with 4-core (8 
threads visible in Linux) Inter(R) Xeon(R) E5620@2.40 
GHz processor, 51 Gb of RAM and GeForce GTS 450 
GPU. The GPU has Fermi architecture, 192 CUDA 
cores, 1 Gb of RAM and computing capability 2.1. The 
version of Caffe distributed by Noh et al. [28] was used 
in the experiments. The training of all presented models 
was performed in GPU mode (solver_mode: GPU), thus 
one CPU core + GPU device were utilized by Caffe 
during the training. 

The results of experimental tests of different sizes 
(further - architectures) of classic auto-encoder from 
Caffe examples are presented in Table 1. We were sure 
that Hinton et al. presented the best architecture (third 
row in Table 1) in their Science paper [2], but, as 
mentioned above, we wanted to research the 
generalization properties of smaller and bigger 
architectures in order to use this experience to create our 
CAE model. The number of trainable parameters for 
each architecture is specified in the first column. Here in 
Table 1 and in all next Tables, all calculations are 
provided for the case N = 2 dimensions. The size of the 
MNIST training dataset we calculated as 60000 
examples x 784 elements = 47040 K elements. The ratio 
of MNIST size to the number of the training parameters 
(w+b) is specified in the second column. We trained 
each architecture in three fashions, with 2, 10 and 30 (30 
is exactly as in Caffe examples) neurons in the last 
hidden layer of the encoder part, which corresponds to 2, 
10-, 30-dimensional space of encoding respectively. 
According to Hinton et al [2] these architectures are 
called 2-, 10- and 30-dimensional auto-encoders. We did 
three runs for each architecture, the values of both loss 
functions, separated by “;” are presented in red for the 
training set and in black for the test set. In the last 
column we specified the number of classes we evaluated 
visually (see Fig. 1) from three runs of each architecture. 
For example, the number ‘25’ means that 25 classes 
from 30 in total (10 classes per three runs) were correctly 
classified. Under ‘correctly classified’ we mean that the 
color of one class is not mixed with the color of another 
class(es), but this is, of course, a subjective sentiment. 

We have used t-SNE technique [30] to visualize 10- 
and 30- dimensional data, produced by auto-encoder. For 
that visualization (it is showed later on the example of 
CAE in Fig. 5-6) we have integrated both calls, Caffe 
and t-SNE, into one Matlab routine. 
 



Table 1. Results of experimental research of classic auto-encoder from Caffe examples 
Architecture, 

Number of trainable 
parameters (w+b), 
Auto-encoder size, 

elements 

Data 
/(w+b) 

LOSS values, (SIGMOID_CROSS_ENTROPY_LOSS; 
EUCLIDEAN_LOSS), train / test 

Visuali-
zation, 
classes N, Dims Run 01 Run 02 Run 03 

784-300-150-75-N- 
75-150-300-784, 
584254, 
1052 

81/1 2 150.67; 17.40 
156.15; 18.12 

150.45; 17.40 
159.97; 18.85 

148.21; 17.02 
157.87; 18.15 

14 

10 110.50; 10.14 
113.60; 10.56 

108.04; 9.75 
112.22; 10.15 

113.24; 10.64 
116.13; 11.00 

22 

30 107.03; 9.56 
110.76; 10.03 

106.44; 9.38 
110.25; 9.92 

104.26; 9.09 
107.64; 9.51 

26 

       
784-500-250-125-N- 
125-250-500-784, 
1098754, 
1752 

43/1 2 147.55; 16.75 
152.79; 17.44 

146.48; 16.70 
155.13; 17.97 

144.91; 16.43 
153.05; 17.56 

17 

10 105.97; 9.39 
109.39 ; 9.85 

103.69; 8.99 
106.32; 9.35 

103.59; 9.05 
106.45; 9.36 

23 

30 93.55; 7.34 
95.66; 7.51 

94.38; 7.45 
97.18; 7.76 

90.60; 6.82 
93.06; 7.08 

25 

       
784-1000-500-250-N- 
250-500-1000-784, 
2822504 
3502 

17/1 2 142.99; 16.08 
152.02; 17.40 

143.33; 16.15 
152.68; 17.53 

147.90; 16.85 
151.33; 17.20 

21 

10 105.68; 9.36 
109.05; 9.80 

102.25; 8.85 
105.16; 9.15 

107.80; 9.74 
111.04; 10.16 

25 

30 89.51; 6.64 
91.75; 6.87 

92.91; 7.23 
95.75; 7.53 

97.33; 7.94 
99.82; 8.20 

27 

       
784-2000-1000-500-N- 
500-1000-2000-784, 
8145004 
7002 

6/1 2 152.25; 17.54 
161.82; 18.98 

202.58; 26.01 
205.81; 26.44 

202.58; 26.01 
205.80; 26.44 

5 

10  130.65; 13.62 
136.55; 14.44 

139.03; 15.33 
148.95; 16.85 

201.60; 25.83 
204.91; 26.28 

12 

30  129.13; 13.39 
134.96; 14.17 

157.92; 18.44 
166.55; 19.80 

129.75; 13.54 
135.23; 14.25 

16 

       
784-3000-1500-750-N- 
750-1500-3000-784, 
15967504 
10502 

3/1 2  202.64; 26.03 
205.80; 26.44 

202.64; 26.03 
205.80; 26.44 

202.64; 26.03 
205.80; 26.44 

3 

10  202.64; 26.03 
205.81; 26.44 

202.58; 26.03 
205.75; 26.43 

202.66; 26.03 
205.82; 26.44 

7 

30  200.96; 25.70 
204.28; 26.16 

202.64; 26.03 
205.80; 26.44 

202.64; 26.03 
205.80; 26.44 

15 

 
The learning parameters of the solver of the classic 

auto-encoder (in file solver.prototxt) we left as it is 
specified in Caffe examples. These parameters were: 
solver_type: SGD (by default), base_lr: 0.01, lr_policy: 
"step", gamma: 0.1, stepsize: 1000, momentum: 0.9 and 
weight_decay: 0.0005. The results in Table 1 are 
specified for 5000 training iterations. The training time 
for the architecture 784-1000-500-250-N-250-500-1000-
784 from the third row of Table 1 was 2 minutes. As we 
can see from Table 1, the architectures with bigger ratio 
Data/(w+b), namely 81/1, 43/1 and 17/1 have better 
generalization properties because they provide lower 
(better) values of loss functions during the training and 
testing and better visualization results.  

It is necessary to note, that in the case of the classic 
fully-connected auto-encoder researched above, the 
number of trainable parameters (except biases) is equal 
to the number of connections. But this is not a case of a 
CAE since convolutional/deconvolution layers have 

much fewer trainable parameters, because the sizes of 
convolutional and deconvolution kernels are the 
trainable parameters in case of CAE. Therefore, in order 
to build a CAE, we have operated with the term “CAE 
size” which is the total number of elements in feature 
maps and the number of neurons in all hidden layers in 
the encoder and decoder parts. In this paper we present 
two architectures: (i) Model 1, where we more-or-less 
adjusted the CAE size to the best architecture of the 
classic auto-encoder (third row in Table 1) and (ii) 
Model 2, where we increased the CAE size after the 
series of experimental tests of Model 1.  

Table 2 contains the architecture parameters for both 
developed CAE models. In both models we did 
convolution with kernels conv1 9x9 and conv2 9x9 in the 
encoder part and we came back with deconvolution 
kernels deconv2 12x12 and deconv1 17x17 in the 
decoder part (Fig. 1). We have chosen this size of 
deconvolution kernels in order to restore the same size of 



MNIST image 28x28. The only difference between the 
two models is the number of feature maps in 
conv/deconv layers and the number of neurons in fully-
connected layers in the encoder and decoder parts. In the 
third column of Table 2 we can see (bold font) that both 
proposed models are practically symmetric in terms of 
the total number of elements in feature maps and the 
number of neurons in all hidden layers of the encoder 
and decoder parts.  

The number of trainable parameters for both models 
and the details of their calculation are specified in the 
last column of Table 2 and in Table 3 respectively. Since 
the deconvolution operation has the same nature as 
convolution [31], we have used the same approach to 
calculate the number of trainable parameters both in the 
encoder and decoder parts. These calculations can be 
easily checked by calling Caffe from Matlab using the 
command <caffe(‘weights’);>. In decoder part, the 

purpose of the deconvolution layer deconv1neur, which 
corresponds to the term (1*1w+1b) in the third column 
of Table 3, is to transform all feature maps of the last 
deconvolution layer deconv1 into one restored image 
with the same size as the original: 28x28 pixels in case 
of MNIST. There was an explanation in the Caffe user 
group how to do that [32]. As we can see from Tables 2 
and 3, the proposed CAE models are practically 
symmetric not only in terms of the total number of 
elements in feature maps and the number of neurons in 
the hidden layers, but also in terms of the number of 
trainable parameters in both the encoder and decoder 
parts. The comparison with a similarly-sized classic 
auto-encoder (3502, third row of Table 1) and Model 1 
of the developed CAE (3996, Table 2) shows that the 
CAE has (2822504/74893 =) 38 times fewer trainable 
parameters. 

 
 

Table 2. Architecture parameters of two CAE models 
CAE Architecture Size of feature maps and 

number of hidden nodes 
CAE size, 
elements 

Number of trainable 
parameters (w+b) 

Model 1 784-(9x9x4)-(9x9x2)-125-N- 
125-(12x12x2)-(17x17x2)-784 

(20x20x4)-(12x12x2)-125-N- 
125-(12x12x2)-(28x28x2) 

3996 74893 

1600-288-125-N-125-288-1568 
Model 2 784-(9x9x8)-(9x9x4)-250-N- 

250-(12x12x4)-(17x17x4)-784 
(20x20x8)-(12x12x4)-250-N- 
250-(12x12x4)-(28x28x4) 

7990 297391 

3200-576-250-N-250-576-3136 
 

Table 3. Calculation of the number of trainable parameters in both encoder and decoder parts 
CAE Number of trainable parameters, w(weights)+b(biases), i(inputs), o(outputs) 

Encoder part Decoder part Total 
Model 1 conv1->((9*9w+1b)*1i*4o)+ 

conv2->((9*9w+1b)*4i*2o)+ 
ip1encode->(288i*125o+125b)+ 
ip2encode->(125i*2o+2b) = 
(324w+4b)+(648w+2b)+(36000w+125b)
+(250w+2b) = 37355 

ip1decode->(2i*125o+125b)+ 
deconv2->((12*12w+1b)*125i*2o)+ 
deconv1->((17*17w+1b)*2i*2o)+ 
deconv1neur->((1*1w+1b)*2i*1o)+ 
(250w+125b)+(36000w+2b)+(1156w+2b)+ 
(2w+1b) = 37538 

74893 

Model 2 conv1->((9*9w+1b)*1i*8o)+ 
conv2->((9*9w+1b)*8i*4o)+ 
ip1encode->(576i*250o+250b)+ 
ip2encode->(250i*2o+2b) = 
(648w+8b)+(2592w+4b)+ 
(144000w+250b)+(500w+2b) = 148004 

ip1decode->(2i*250o+250b)+ 
deconv2->((12*12w+1b)*250i*4o)+ 
deconv1->((17*17w+1b)*4i*4o)+ 
deconv1neur->((1*1w+1b)*4i*1o)+ 
(500w+250b)+(144000w+4b)+(4624w+4b)+ 
(4w+1b) = 149387 

297391 

 
The results of experimental tests of the two 

developed CAE models are presented in Table 4, which 
is organized similarly to Table 1. We evaluate 2-, 10- 
and 30-dimensional CAEs, the number of dimensions 
corresponds to the number of neurons in the last hidden 
layer ip2encode (see Fig. 3) of the encoder part. The 
results in Table 4 are specified for 20000 training 
iterations. The comparison of both tables shows that 
Model 1 provides the same minimum values of loss 
functions as well as the same number of visualization 
classes as the best architecture of the classic auto-
encoder (3rd row) from Table 1. The experimental tests 
of Model 2 showed better (lower) values of loss 
functions reached during the training, and slightly better 
visualization results in comparison with Model 1. The 
visualizations showing how Model 2 solves the 
dimensionality reduction task encoding the test set of 
MNIST in a 2D space are depicted in Figs. 4-6. Similarly 

we have used t-SNE technique [30] to visualize 10- and 
30- dimensional data, produced by the 10- and 30-
dimensional CAEs. In both cases, i.e. for the research of 
classical auto-encoder and the developed CAE, we have 
reformatted the original MNIST dataset into HDF5 
format since this data format is perfectly supported by 
Matlab. The learning parameters of the solver of the 
developed CAE with stable architecture were: 
solver_type: SGD, base_lr: 0.006, lr_policy: "fixed", and 
weight_decay: 0.0005. We run several experiments, 
changing the architecture and learning parameters of 
CAE, but in many cases they were not stable 
architectures. For example, we tried different 
initializations of weights and biases (<weight_filler> and 
<bias_filler>). The presented results were provided with 
the following initialization: <bias_filler {type: 
"constant"}> for all layers, <weight_filler {type: 
"xavier"}> for convolutional/deconvolutional layers, 



<weight_filler {type: "gaussian" std: 1 sparse: 25}> for 
fully-connected (InnerProduct) layers. Also we have 
tried <ReLU> activation functions instead of <Sigmoid> 
and, surprisingly, we have received worse results. 

The accepted models and learning parameters are 
not unique, we are pretty sure there are a lot of other 
configurations, which could provide stable CAE 

architectures. The training times for the Model 1 and 
Model 2 running for 20000 training iterations were 68 
and 100 minutes respectively. For quick reference we 
have collected all learning parameters of the classic auto-
encoder and the developed CAE in Table 5. 
 

 
Table 4. Results of experimental research of developed CAE 

Architecture, 
Number of trainable parameters (w+b), 

CAE size 

LOSS values, (SIGMOID_CROSS_ENTROPY_LOSS; 
EUCLIDEAN_LOSS), train / test 

Visuali-
zation, 
classes N, Dims Run 01 Run 02 Run 03 

Model 1, 
784-(20x20x4)-(12x12x2)-125-N- 
125-(12x12x2)-(28x28x2)-784, 
74893, 
3996 

2 152.68; 17.95 
159.47; 18.71 

151.83; 17.61 
160.10; 18.76 

156.65; 18.46 
159.76; 18.66 

20 

10 105.14; 9.33 
109.58; 9.88 

107.86; 9.72 
111.80; 10.24 

109.37; 9.91 
113.43; 10.39 

26 

30 94.53; 7.37 
98.39; 7.78 

96.02; 7.57 
98.18; 7.76 

93.58; 7.14 
96.80; 7.53 

26 

      
Model 2, 
784-(20x20x8)-(12x12x4)-250-N- 
250-(12x12x4)-(28x28x4)-784, 
297391, 
7990 

2 142.50; 15.93 
148.74; 16.85 

143.50; 16.20 
148.33; 16.72 

143.16; 16.17 
149.68; 16.99 

22 

10 90.72; 6.93 
93.12; 7.15 

91.34; 7.04 
93.20; 7.19 

93.27; 7.35 
94.91; 7.42 

26 

30 71.38; 3.82 
72.52; 3.86 

70.54; 3.66 
71.65; 3.69 

71.82; 3.88 
73.65; 4.00 

26 

 

 
Fig. 4. Visualization of MNIST test set in a 2D space 

by 2-dimensional CAE Model 2 
 

 
Fig. 5. Visualization of MNIST test set in a 2D space 

by 10-dimensional CAE Model 2 + t-SNE 
 

 
Fig. 6. Visualization of MNIST test set in a 2D space 

by 30-dimensional CAE Model 2 + t-SNE 
 

As mentioned above, during experimental research 
we have visualized the feature maps and the outputs of 
the hidden layer neurons in order to understand how data 
are processing inside the CAE. The implementation of 
such visualization is simple and straightforward thanks 
to the Matlab wrapper in Caffe. We just created 15 
.prototxt files corresponding to the number of CAE 
layers in Fig. 3. After training, and having an appropriate 
.caffemodel file, we call Caffe in Matlab using each of 
those .prototxt files as an argument. Received values, 
produced by each layer were visualized. An example 
showing how CAE Model 2 encodes and decodes the 
digit “2” is depicted in Fig. 7. The left upper picture is 
the original image with 28x28 pixels and the right 
bottom picture with the name <Deconv1neursig> is the 
restored image with 28x28 pixels. The title of each 
picture contains the following information: the digit we 
visualized (i.e. “2” - we have such pictures for 10 



example digits from MNIST), the picture number (i.e. 
“01”, “02”, etc.), the size of the appropriate layer how it 
is internally represented in Caffe (i.e. “20x20x8”), the 
name of the appropriate layer corresponding to the 
names of the layers from Fig. 3 (i.e. “Conv1”). We also 
calculated the minimum and maximum values for each 
conv/deconv layer and specified them in square brackets 
in the titles of appropriate pictures. This allowed us to 
understand that in the failed experiments, the outputs of 
deconv2 and deconv1 layers were saturated, and 
therefore the pixels of the restored image had the value 0 
and the loss values during training were NaN (Not A 
Number).  
 
Table 5. Learning parameters of classic auto-encoder and 

developed CAE in Caffe 
 Learning 

parameters in file 
solver.prototxt 

 

Training time 

Classic 
auto-
encoder 

base_lr: 0.01, 
lr_policy: "step", 
gamma: 0.1 
stepsize: 1000, 
momentum: 0.9,  
weight_decay: 
0.0005 

Architecture 784-
1000-500-250-N-
250-500-1000-784, 
5000 training 
iterations 

2 minutes 

Deve-
loped 
CAE 

base_lr: 0.006, 
lr_policy: "fixed",  
weight_decay: 
0.0005 

Model 1, 
20000 
training 
iterations 

Model 2, 
20000 
training 
iterations 

68 
minutes 

100 
minutes 

 
All appropriate .prototxt files of the developed CAE 

along with all Matlab scripts which we have used for all 
visualizations have been published in the Caffe user 
group [33] and Dr. A. Luczak’s web-page [34]. It is 
necessary to note, that the developed CAE model is 
working on the version of Caffe used/distributed by Noh 
et al [24] (the date of the files in this version is Jun 16, 
2015). We ran the CAE model on the latest version we 
have (the date of files in this version is Apr 05, 2016). It 
seems, in the newer versions after Jun 16, 2015, the 
Caffe developers have changed: (i) the syntax of layer 
descriptions – from “layers” to “layer”, and layers’ types 
from “CONVOLUTION” to “Convolution”, etc. and (ii) 
the internal representation of fully-connected 
(InnerProduct) layers: it is a 2-dimensional array now, 
not 4-dimensional, as it was in the previous version(s). 
To deal with these issues it is necessary to change the 
syntax in the .prototxt files accordingly and to change 
the dimensionality of the last fully-connected layer 
before the first deconvolution layer in the decoder part 
using the <reshape> layer as follows: <layer {name: 
"reshape" type: "Reshape" bottom: "ip1decode" top: 
"ip1decodesh" reshape_param { shape { dim: 0 dim: 0 
dim: 1 dim: 1 }}}>. 
 
4. Conclusions 
 

The development of a deep (stacked) convolutional 
auto-encoder in Caffe deep learning framework and its 

experimental evaluation are presented in this paper. The 
paper contains the first research results of our deep 
convolutional auto-encoder. The proposed model does 
not contain pooling/unpooling layers yet. In contrast to 
the classic stacked auto-encoder proposed by Hinton et 
al [2], convolutional auto-encoders allow using the 
desirable properties of convolutional neural networks for 
image data processing tasks while working within an 
unsupervised learning paradigm. The results of our 
experimental research show comparable accuracy in a 
dimensionality reduction task compared with the classic 
auto-encoder on the example of MNIST dataset.  

During the creation of this convolutional auto-
encoder we have used well-known principles, mentioned 
in Section 2 above, which are used by many machine 
learning researchers every day. Nevertheless, we believe 
that our approach and research results, presented in this 
paper, will help other researchers in general - and the 
Caffe user group in particular - to create efficient deep 
neural network architectures in future.  

Application of the developed deep convolutional 
auto-encoder for our tasks in the neuroscience field and 
creation of more complex architectures with 
pooling/unpooling layers are the directions of our future 
research. 
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