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Abstract—The spot price prediction for the electric 
energy markets is a widely approached problem, used by 
many participants in the market. The ever-shifting rules and 
regulations, rising percentage of the electricity on the market 
being produced by solar and wind plants and many stochastic 
factors influencing it make the market price of electricity 
very volatile and hard to forecast. Many methods are used to 
tackle this problem, and their efficiency varies from dataset 
to dataset. In this work, we use the dataset of hourly day-
ahead spot prices from the Hungarian HUPX market, and 
couple it with weather data for Hungary. We test various 
types of Dense, Recurrent and Convolutional neural network 
architectures and report on the results.  
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I. INTRODUCTION 

From the mid-2000s, there is a noticeable change in the 
way electricity is produced in Europe. Feed-in tariffs, 
subsidies for the producers of renewable energy, and the 
introduction of tariffs for CO2 emissions have led to the 
rise of installed capacity of solar and wind power sources 
and increased the share of the renewable sources in the 
complete energy traded on the market. 

As these sources depend on natural factors (time of 
year, insolation, wind speed) more than the facilities that 
use the accumulated material and turn it into electricity 
when needed, their production is more stochastic [1], which 
may increase price volatility.  

There are many models used to predict electricity spot 
price today. Weron and Ziel [2] had compared 58 different 
models and methods on many datasets and concluded that 
no single method is giving consistently best results, and that 
the performance depends on many factors, including the 
dataset itself. 

Artificial neural networks (ANN) have been efficiently 
used in various fields, including time-series prediction. The 
rise of LSTM (Long Short-Term Memory) RNN (recurrent 
neural network) architectures in 2009 [3] made them a go-
to choice for this task. Lately, temporal convolutional 

neural networks (CNNs) have proven to be even more 
precise on a subset of tasks.  

This work tests various neural network architectures on 
the task of forecasting hourly day-ahead electricity prices 
on the HUPX market and reports on the results, hopefully 
giving an overview for those starting to work on prediction 
models on more complex datasets.  

II. DATASET

A dataset of hourly prices (in EUR) for the HUPX day-
ahead market was used. In the interest of better data 
windowing, two non-24 hours for every year (due to 
daylight savings time the last Sunday of October lasts 25, 
and the last Sunday of March lasts 23 hours) were reported 
as 24 hours by the HUPX: the price for the missing hour 
was reported as zero, and the price for the doubled hour was 
removed from the dataset. It consisted of a total of 82823 
hourly values, representing 3451 days between July 10, 
2010, and December 31, 2019. 

A land area averaged dataset of hourly weather data for 
the Hungary was provided by the NinjaWeather service and 
coupled with the market data. As HUPX does not cover 
only Hungarian market and the weather factors were not the 
only one influencing the price, this brief dataset was far 
from complete (and should be expanded for use in final 
products) but provided a field for comparison of 
architectures. 

TABLE I. HUPX DATASET DESCRIPTIVE STATISTICS 

Mean STD Min 50% Max 
Price (EUR) 46.408 20.453 -113.67 44.59 300.1 
Precipitation (mm) 0.0726 0.1792 0 0.006 4.03 
Temperature (C) 11.528 10.0697 -16.777 11.426 39.128 
Snowfall (cm) 0.0065 0.0388 0 0 1.5869 
Snow mass (cm) 0.9443 2.6921 0 0 25.074 
Cloud cover % 0.5228 0.3223 0 0.541 0.9988 
Air density (kg/m3) 1.2176 0.045 1.1108 1.2137 1.3662 

The dataset was expanded with derived data – month, 
day of month, and weekday values were separately added. 
As the aim was to compare the general efficiency, and not 
to maximize the precision by further expert input, no data 
on holidays or similar expectation markers (such as This research is supported in part by the EuroCC project, grant 

agreement grant agreement 951732 EuroCC-H2020-JTI-EuroHPC-
2019-2.  



negative price or power facility maintenance expectation) 
were added. 

Furthermore, a separate test was conducted on a dataset 
expanded with naive seasonal data calculation – every 
hourly row was expanded with a column showing the 
difference between the same hour on the same date, and the 
same hour a day after one year ago. This dataset was 
somewhat shorter, containing values from January 1st, 
2011, with EPEX data being used for calculations between 
January 1, and July 10, 2010 – as the German market was 
used in place of HUPX prior to its formation. These values 
have introduced serious overfitting issues to the training 
process, and their usefulness was defined by how well the 
model can be optimized to avoid overfitting. 

To prepare the dataset for ANN prediction, data frame 
had been divided into three sets – training, validation, and 
testing, chronologically (from oldest to most recent) in 
proportion of 70, 20, and 10, respectively. Training set 
contained the data used for creating the model, validation 
set was used for evaluation during training, and test set had 
been set aside, to test and evaluate models once they were 
created. As training and validation datasets were used in the 
training process, we report results only on test dataset. 

In addition, the categorical information (day, week and 
month columns) was turned into one-hot arrays. The rest of 
the columns were standardized (normalized) into Z-values 
(standard score). This way of data preprocessing helps the 
prediction[4] and optimizes training[5]. 

III. SOFTWARE AND DATA WINDOWING 
The code was written in Python, with Keras and 

TensorFlow libraries used to build machine learning 
models, Pandas for data manipulation and Numpy for array 
and matrices support. 

ANN models and data windows were built following 
the methods described in J. Brownlee’s book “Deep 
Learning for Time Series Forecasting” [6], adapted and 
expanded for the task at hand. However, the language used 
to describe some concepts such as “multi-layer 
perceptrons” differs, in accordance to the advice given by 
M. Nielsen in the book “Neural Networks and Deep 
Learning” [7]. 

The task given to the ANN models can be described as 
follows: 

Given the total of 336 hourly day-ahead prices on the 
HUPX market for 14 consecutive days, forecast the 24 day-
ahead hourly prices for the next day. 

 

 
Figure 1.  Example data windows 

IV. ANN ARCHITECTURES TESTED 
Several ANN architectures described below were tested 

multiple times, with changes and adaptations in-between, 
to prevent overfitting and increase precision. Three types of 
layers were the primary focus: densely connected layers (as 
a tratitional neural network architecture), recurrent LSTM 
layer (as a go-to standard for time-series prediction), and a 
temporal CNN (as an emerging approach to time-series). 

A. Densely Connected Layers (Dense) 
This is a traditional neural network with a hidden layer 

consisting of one or more columns of fully connected 
“neurons”, with weights and biases determining the 
configuration. Rectified Linear Unit (ReLU) was used as an 
activation function, as it has shown to give a fast 
convergence, and no visible improvement for this dataset 
could be found by switching to tanh or leaky ReLU. 

 
Figure 2.  Neural network consisting of densely connected layers 

A shallow, single hidden layer network with many 
neurons (512-1024) has shown to work the best for the 
initial dataset.  The dataset with additional seasoned 
calculations had overfitting issues that had to be mitigated 
and has shown some gain from decreasing the number of 
neurons and adding additional hidden layers. For that 
dataset, a structure of three 64-neuron layers with two 20% 
dropout layers in between has given the best results. 

B. Convolutional Neural Network (CNN) 
Even though their usage is widely connected to image 

processing, the use of CNNs for time-series related tasks 
has surged lately [8]. 1D CNNs, sometimes referred to as 
“Temporal CNNs” or TCNs [9] have shown to efficiently 
use the feature-extracting ability of CNNs and apply it to 
time series.  

It is worth noting that, due to the electricity demand 
being driven by societal habits such as work hours and 
production schedules, the exact hour of prediction is very 
important. This makes the usual stacking of convolutional 
and max-pooling layers used in CNNs less efficient. 
Instead, 24-hour convolutional filters with 24-hour strides 
have given the best results while testing on this dataset, 
both as a standalone CNN and as a part of combined 
networks, where CNN is used for feature extraction in 
combination with other layers. 128-256 filters and a single 
CNN layer provided the best results in this testing. 



C. Long Short-Term Memory (LSTM) 
Instead of feed-forward models, RNNs such as Elman 

and Jordan were often chosen for time-series prediction, 
including electricity price forecasting [10]. LSTM cell 
architecture was introduced to RNNs in order to mitigate 
the “vanishing gradient” and “exploding gradient” 
problems, giving recurrent networks more useful 
forgetting [11] capabilities.  

 

 
Figure 3.  An LSTM cell 

A differing number of LSTM cells (8-32) has 
performed the best for various tasks in these tests, with less 
cells performing better on the expanded dataset, due to 
larger LSTMs overfitting more quickly [6]. 

Gated recurrent units (GRU), another popular RNN 
gating mechanism similar to the LSTM was not tested in 
this process but might be of interest to those wishing to 
further explore the subject, as they have proven to give 
better results on some datasets [12]. 

D. Combined Layers and Autoregressive Approach 
A few combined-layer structures were used in this test, 

with two showing promising results: an LSTM stacked 
between two dense layers (reported as 
dense_LSTM_dense), and a CNN layer followed by a dense 
layer (reported as Conv_dense). 

In addition, an autoregressive LSTM (reported as AR 
LSTM) was tested, using a sequence of 24 next-hour 
predictions while feeding the prediction as a value in next 
steps.  

 
Figure 4.  Diagram of an Autoregressive LSTM shown on the problem 
of predicting 24 hours of labels based upon one week (168 hours) of 
hourly values. 

V. OBJECTIVE FUNCTION, EVALUATION AND 
COMPARISON 

Objective function (loss) used in neural network 
training defines how the neural network treats the errors 
and estimates their severity. Due to the differences in 
datasets, and even between time periods within the same 
dataset, a common way of reporting the accuracy is mean 
absolute percentage error (MAPE) [13][14]– the mean 
value, in percent, of an absolute value of forecast error 
divided by the actual value. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤, 𝑏𝑏) = 100
𝑛𝑛

 ∑ �𝑦𝑦(𝑥𝑥𝑖𝑖)− 𝑎𝑎𝑖𝑖
𝑦𝑦(𝑥𝑥𝑖𝑖)

�𝑛𝑛
𝑖𝑖=1 % (1) 

MAPE, however, shows weaknesses with datasets like 
the one at hand, where labels with zero or close-to-zero 
values are present [15]. Even with measures put in place to 
minimize exploding loss when predicting close to zero, 
when used as an objective (loss) function, MAPE, by its 
nature encourages the model to underestimate when 
predicting. The loss is also proportionately reduced when 
estimating large values – meaning that the punishment for 
large errors is the smallest when the electricity is the most 
expensive. 

Instead, mean squared error (MSE) was used as the 
objective function during the training of these models. It is 
the most used regression loss function [16], with a smooth 
gradient fit for machine learning, eliminating the need for 
learning rate scheduling. 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤, 𝑏𝑏) = 1
𝑛𝑛

 ∑ (𝑦𝑦(𝑥𝑥𝑖𝑖) − 𝑎𝑎𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  (2) 

In addition to MSE and to better understand and 
compare the models, we measure and report the following 
metrics: 
• MAPE measured in EUR, described as above, with 

denominators between -1 and 1 being replaced by 1, to 
increase numerical stability. 

• MAE (mean average error) measured in standard 
deviations and EUR. 

• MAE represented as a percentage of the mean value 
(MAE%) – to give another description of the model 
precision. 

A. Baseline Naive Predictions 
To set the baseline for comparison, two naive models 

were taken into consideration: one that repeats the value of 
the last (336th) hour 24 times as a prediction (reported as 
“last”), and one that repeats the last day (24 values) as a 
prediction (reported as “repeat”). 



 
Figure 5.  Naive prediction models  

B. Trained Linear Regressor 
As a third comparison point, a linear regression model 

has been trained, to provide a near-optimal linear 
combination of the 336 values.  

 
Figure 6.  Linear prediction model 

VI. RESULTS AND DISCUSSION 
Two tables below list the performance of all the models, 

with relevant metrics (as described earlier) in each of the 
columns. Shaded values mark the smallest error in every 
metric column. 

TABLE II.  MODEL PERFORMANCE ON BASE TEST DATASET 

Dataset : Base 
STD Mean 

20.45392 46.40822 

Model MSE 
(std) MAE (EUR) MAE 

(std) MAPE MAE% 

Last 1.9603 20.39052 0.9969 72.4896 43.93729 

Repeat 1.6676 18.03013 0.8815 50.0480 38.85116 

Linear 0.2688 7.74385 0.3786 21.2923 16.68639 

Dense 0.2199 6.96251 0.3404 20.1414 15.00276 

CNN 0.2186 7.10978 0.3476 20.6052 15.32010 

Conv_dense 0.2115 6.83161 0.3340 19.450 14.72069 

LSTM 0.2390 7.06683 0.3455 19.9769 15.22754 

Den. LSTM_ den. 0.2177 6.70070 0.3276 19.5300 14.43862 

AR LSTM 0.2423 7.21818 0.3529 21.2600 15.55369 

TABLE III.  MODEL PERFORMANCE ON EXPANDED TEST DATASET 

Dataset : Expanded with last year's label difference STD Mean 
20.69935 46.35115 

Model MSE 
(std) MAE (EUR) MAE 

(std) MAPE MAE% 

Last 2.0287 21.32033 1.0300 72.1765 45.45203 

Repeat 1.5803 17.70208 0.8552 51.9993 37.73842 

Linear 0.2711 7.83677 0.3786 21.6264 16.70693 

Dense 0.2257 7.12264 0.3441 20.1768 15.18450 

CNN 0.2252 7.26133 0.3508 21.9086 15.48016 

Conv_dense 0.1894 6.53685 0.3158 19.5733 13.93568 

LSTM 0.2127 7.01707 0.3390 19.9300 14.95945 

Den. LSTM  den. 0.2273 7.25512 0.3505 20.6781 15.46692 

AR LSTM 0.2484 7.65668 0.3699 22.4493 16.32301 

 
Following charts show sample prediction of each of the 

ANN models. All the models’ predictions are show on the 
base dataset, except for Conv_dense, shown on the 
expanded dataset. 

 

 
Figure 7.  Predictions of the “Dense” model on the base dataset 

 
Figure 8.  Predictions of the “CNN” model on the base dataset 



 
Figure 9.  Predictions of the “LSTM” model on the base dataset 

 

 
Figure 10.  Predictions of the “Dense_LSTM_dense” model on the base 
dataset 

 

 
Figure 11.  Predictions of the “Autoregressive LSTM” model on the base 
dataset 

 

 
Figure 12.  Predictions of the “Conv_dense” model on the expanded 
dataset 

When comparing the results, one should have in mind 
that the expanded and base datasets are not the same, and 
have their own means and standard deviations, which 
influences MAE(std) and MSE(std) metrics.  

The results show the temporal convolutional networks 
performing exceptionally well, especially when 
convolutional layers’ feature extraction is combined with a 
dense layer. Recurrent neural networks with LSTM layers 
are matching the performance closely.  

The models took 8-24 epochs to train. Expanding the 
dataset with derived data introduced overfitting issues, 
driving the training processes to sub-optimal local 
equilibria in the early epochs. This had to be combatted by 
changing the network structure, simplifying it, dropping 
dataset columns where possible, or adding drop layers. 
CNNs were more resistant to overfitting, ultimately 
extracting most value from the added data, with the 
Conv_dense on the expanded dataset being the best 
performing model overall. The 24-hour filters with 24-hour 
strides make the CNNs somewhat reminiscent of a “similar 
day” method popular among non-ANN prediction [17]. 

Autoregressive LSTMs have performed very well on 
most predictions, especially in the later hours of the 
prediction window, but their overall score was hindered by 
the tendency to create bigger errors in outlying cases where 
all models performed poorly, but not as bad. On the 
expanded dataset that would give context to the outliers 
(e.g., holiday data, maintenance schedule...) AR RNN 
models might perform significantly better. 

 
Figure 13.  Failed predictions of the “Autoregressive LSTM” model  

Traditional ANNs with fully connected layers of 
neurons (Dense) have given competitive results. With ease 
of their implementation, relatively fast training on today’s 
hardware and a variety of ways to easily tweak, test and 



optimize them, they remain an important tool for creating 
and training quick and robust prediction models.  

These tests were conducted as a comparative 
benchmark of various neural network models on the 
dataset and should be considered as starting points for 
developing practically usable models. Even with that in 
mind, the results are promising, and comparable to the 
tools in use on the nearby markets [10]. 

Expanding the dataset with more variables should be 
the next step toward achieving increased accuracy. A more 
inclusive weather data should be provided, to better cover 
the entirety of HUPX exchange geographics, preferably 
expanded with the wind data. In addition, but not limited 
to, the following factors used by prediction models and 
experts should be considered: 

• Production and consumption figures [17]
• Holiday one-hot dummy or holiday type [17] [12]
• Near-holiday markers [17]
• Separately estimated supply and demand [18]
• Weather forecast data [12]
• Gas price [15][13]
• Oil, uranium, and coal price [13]
• Dew point, wet bulb, and dry bulb temperature [19]

Gated recurrent units (GRU) should be tested against 
LSTM cells as they have shown to be more efficient for the 
Turkish day-ahead market dataset [12]. 

Testing the effect of choosing Huber loss [14] for the 
objective function instead of MSE, as well as introducing 
Nesterov momentum [20] to gradient descent might 
provide interesting outcomes. 

Re-training the entire model on the full dataset (training 
plus validation plus test) might lead to more efficient 
forecasting, as the most recent period usually contains the 
most useful information to predict the future. This is 
contrary to the machine learning best practices, but might 
be essential for some time-series, especially ones where the 
market rules change often. Alternatively, a roll-forward 
partitioning model might be considered [21]. 

VII. CONCLUSIONS

This paper describes Forecasting of Day-Ahead spot 
electricity price on the HUPX market, and compares 
various ANN architectures on the same dataset and task. 
Various layer architectures, combined architectures and 
objective functions were tested, with LSTM and temporal 
CNN showing the most promising results. The 24-hour 
filters with 24-hour approach in the CNN-dense combined 
architecture delivers good performance and might prove 
interesting for other time-series prediction models where 
“similar day” approach shows traditionally good results. 

Future work includes testing the architectures on more 
advanced datasets, testing the performance of GRU cells 
and testing similar models on the problem of load 
prediction. 
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