

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-787700

Jens Albrecht, Wolfgang Lehner

On-line Analytical Processing in Distributed Data Warehouses

Erstveröffentlichung in / First published in:

International Symposium on Database Engineering and Applications (IDEAS'98). Cardiff,
08.-10.07.1998. IEEE, S. 78–85. ISBN 0-8186-8307-4

DOI: https://doi.org/10.1109/IDEAS.1998.694361

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-787700
https://doi.org/10.1109/IDEAS.1998.694361

Introduction1

Abstract

The concepts of ‘Data Warehousing’ and ‘On-line
Analytical Processing’ have seen a growing interest in the
research and commercial product community. Today, the
trend moves away from complex centralized data ware-
houses to distributed data marts integrated in a common
conceptual schema. However, as the first part of this paper
demonstrates, there are many problems and little solutions
for large distributed decision support systems in worldwide
operating corporations. After showing the benefits and
problems of the distributed approach, this paper outlines
possibilities for achieving performance in distributed on-
line analytical processing. Finally, the architectural frame-
work of the prototypical distributed OLAP system
CUBESTAR is outlined.

1 Introduction

Today’s global economy has placed a premium on
information, because in a dynamic market environment
with many competitors it is crucial for an enterprise to have
on-line information about its general business figures as
well as detailed information on specific topics to be able to
make the right decisions at the right time. That’s why today
almost all big companies are trying to build data ware-
houses. In contrast to former management information sys-
tems based mostly on operational data, data warehouses
contain integrated and non-volatile data and provide there-
fore a consistent basis for organizational decision making.
In addition to classical reporting, the main application of
data warehouses is On-line Analytical Processing (OLAP,
[CoCS93]), i.e. the interactive exploration of the data. The
data warehouse promise is getting accurate business infor-
mation fast.

But the ultimate goal of data warehousing and OLAP
goes even further, the vision is to “put a crystal ball on
every desktop”. Today that ideal is far from being reality.
Because first, to build a single centralized data warehouse
serving many different user groups takes a long time. Setup
and maintenance are very expensive. All this contributes to
a relatively inflexible architecture. Second, local access
behavior is considered in the data warehouse design neither
on the conceptual nor on the internal but only on the exter-
nal layer.

Therefore, many companies today decide to start with
smaller, flexible data marts dedicated to specific business
areas. In order to get the possibilities for cross-functional
analysis, there are two possibilities. The first one is to cre-
ate again a centralized data warehouse for only cross-func-
tional summary data. The other one is to integrate the data
marts into a common conceptual schema and therefore cre-
ate a distributed data warehouse.

We will concentrate on the second alternative which
allows more flexible querying. To the user a distributed
data warehouse should behave exactly like a centralized
data warehouse. For transparent and efficient OLAP on a
distributed data warehouse several problems need to be
solved. The intention of this article is not to present final
solutions but to show the potential of the distributed
approach and the challenges for researchers and software
vendors as well.

In the following section we will characterize different
data warehouse architectures and their inherent drawbacks.
After showing the benefits of a distributed approach to data
warehousing we show the problems resulting for distrib-
uted OLAP systems. Performance as the main problem is
the issue of section 3. Finally, in section 4 we give an over-
view over the prototypical distributed OLAP system
CUBESTAR.

2 Data Warehouse Architectures

According to [Inmo92], a data warehouse is a “sub-
ject-oriented, integrated, time-varying, non-volatile collec-
tion of corporate data”. Since that definition is very
generic, we will now give an overview of three types of
data warehouse architectures, partly based on [WeCa96].

2.1 Enterprise Data Warehouses

What most people think of when they use the term
data warehouse is the enterprise or corporate data ware-
house, where all business data is stored in a single database
with a single corporate data model (figure 1). Enterprise
data warehouses are created to provide knowledge workers
with consistent and integrated data from all major business
areas. They offer the possibility to correlate information
across the enterprise.

ON-LINE ANALYTICAL PROCESSING IN DISTRIBUTED DATA WAREHOUSES

Jens Albrecht, Wolfgang Lehner
University of Erlangen-Nuremberg, Germany

{jalbrecht, lehner}@informatik.uni-erlangen.de

Final edited form was published in "International Symposium on Database Engineering and Applications (IDEAS'98). Cardiff, 1998". ISBN 0-8186-8307-4.
https://doi.org/10.1109/IDEAS.1998.694361

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Data Warehouse Architectures 2.2
But, because of the huge sub-

ject area (the corporation) and the
vast amount of different opera-
tional sources that need to be inte-
grated, enterprise data warehouses
are very difficult and time-con-
suming to implement. Too many
different data sources and too
many different user requirements
are likely reasons for the failure of
the whole data warehouse project.

Since the data warehousing
setup strategy from the analysts
point of view is, as Inmon puts it,
“give me what I want and I will tell
you what I really want” [Inmo92], an incremental approach
has proven to be the right choice.

2.2 Data Marts

The term data mart stands for
the idea of a highly-focused ver-
sion of a data warehouse (figure
2). There is a need to distinguish
data marts which are local
extracts from an enterprise data
warehouse and data marts which
are serving as the data warehouse
for a small business group with
well defined needs. In the latter
case, which is the definition we
will use in this paper, the limita-
tion in size and scope of the data
warehouse, e.g. only sales or mar-
keting, dramatically reduces setup
costs. Data marts can be deployed in weeks or months. That
is why most of the current data warehousing projects
include data marts.

2.3 Distributed Enterprise Data Warehouses

Although the data mart idea is very attractive and
potentially offers the opportunity to build a corporate wide
data warehouse from the bottom up, the benefits of data
marts can easily be outweighed if there is no corporate-
wide data warehouse strategy. If data mart design is not
done carefully, independent islands of information are cre-
ated and cross-functional analysis, as in the enterprise data
warehouse, is not possible.

Therefore, the pragmatic approach to combine the vir-
tues of the former is to integrate the departmental data
marts into a common schema. The result is a distributed
enterprise data warehouse (figure 3), also called federated
data warehouse [WeCa96] or enterprise data mart [Info97].

The benefits of this divide-and-conquer approach are clear.
In the distributed enterprise data warehouse the individual
data marts can be created and managed flexibly.

The flexibility for the individual data marts is traded
for additional complexity in the management of the global
schema and query processing across several data marts.
Table 2.1 compares some characteristics to the centralized
data warehouse.

There are basically two scenarios for a distributed
enterprise data warehouse. The local area scenario (e.g. the
data marts of only the Asian division) characterizes what
first comes into mind. The extension of this approach to a
wide area scenario (the global setting depicted in figure 3)
is possible, but the high degree of data distribution results
in much more complexity for query processing since com-
munication costs become a major factor. The more global
the distributed data warehouse is, the more important is
increasing local access by replication. On the contrary, the
more local the scenario is, the more likely techniques for
load balancing in a shared-nothing server cluster can be
applied.

Europe

OLAP
Server

Centralized
DW

Fig. 1: Enterprise
Data Warehouse

Fig. 2: Data Marts

Asia

Sales

LogisticsService

OLAP
Server

OLAP
Server

Fig. 3: Distributed Enterprise Data
Warehouse

AsiaAmerica

Asian
Service

Distributed OLAP Middleware

Amer. All SalesLogisticsSales Service

Global
Schema

Tab. 2.1 Characteristics of Centralized and
Distributed Data Warehouses

Characteristics Centralized
DW

Distributed DW

Local Area Wide Area

Conceptual Flexibility low low moderate

Data Distribution none moderate high

Query Processing easy moderate complex

Communication Costs low moderate high

Security Requirements. none low low

Local Maintenance hard easy easy

Global Maintenance n/a easy moderate

Final edited form was published in "International Symposium on Database Engineering and Applications (IDEAS'98). Cardiff, 1998". ISBN 0-8186-8307-4.
https://doi.org/10.1109/IDEAS.1998.694361

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Discussion2.4
2.4 Discussion

The current trend in the creation of data warehouses
follows the bottom up approach where many data marts are
created with a later integration into a distributed enterprise
data warehouse in mind. The Ovum report [WeCa96] pre-
dicts that centralized data warehouses will become increas-
ingly unpopular due to their inherent drawbacks and thus
be replaced by a set of interoperating data marts.

The commercial product community seems to confirm
the prediction. A first step towards easy integration was
recently done by the Informatica Corp. with the release of
its tools for enterprise data mart support. These tools are
proposed to easily allow the creation and maintenance of
distributed data marts and a seamless integration into a
common schema. Moreover, query tools can directly
access the metadata by providing a metadata exchange
API. OLAP tool vendors like Microstrategy Inc. already
announced to support this feature. For querying, “it means
that all data marts are working off the same sets of data def-
initions and business rules allowing users to query aggre-
gate data that may be distributed across multiple disparate
data marts” [Ecke97]. Companies like Cognos [Cogn97]
and Hewlett Packard [HP97] also offer already rudimental
support for distributed data warehouses.

But to our knowledge, no query tool today is able to
transparently and performantlygenerate and execute que-
ries in distributed setting. An intelligent middleware layer
as the basis for traffic routing, aggregate caching and load
balancing is needed. This is the problem we will focus on
in the remaining sections.

3 Achieving Performance in Distributed
OLAP Systems

In order to deserve the attribute on-line, queries
should never run much longer than a minute. In this section
we will outline some specific methods and necessary pre-
requisites to achieve performance in large distributed
OLAP environments. Note, that some of these also apply in
the non-distributed case but become essential in the distrib-
uted case.

3.1 The Selection and Use of Aggregates

Researches and vendors agree that the main approach
to speed up OLAP queries is the use of aggregates or mate-
rialized views [LeRT96]. In the last two years many articles
on the selection of views to materialize in a data warehouse
were published. A good overview over techniques on the
selection of aggregates can be found in [ThSe97].

Dynamic Management of Aggregates. None of the recent
articles considers the dynamics of an on-line environment
with dozens of completely different queries to execute in

every minute. If user behavior is considered at all, only a fix
number of queries is taken as the basis for the aggregation
algorithms ([GHRU97], [Gupt97], [BaPT97]). On the
commercial product side there are OLAP tools like Micros-
trategy’s DSS Tools or Informix’ Metacube which are able
to give the DBA hints for the creation of aggregates based
on monitored user behavior. However, if the DBA decides
to create aggregates, these are static and a change in the
user behavior is not reflected.

Today, aggregates are more or less seen as another
multidimensional access method, similar to an index, that
must be managed by the DBA. But only a self-maintaining,
dynamic aggregate management working like a (distrib-
uted) system buffer or cache for aggregates offers the
needed flexibility and the potential for high query response
times and low human maintenance efforts. The selection
and the usage of aggregates should be completely transpar-
ent to the user. The DBA should only be able to setup
parameters for the creation of but not the content of aggre-
gates.

Partial Aggregates. The algorithms for the selection of
aggregates explicitly supporting the multidimensional
model compute preaggregates that are based on the full
scope of the data cube. The query result in figure 4, if mate-
rialized, would be such acomplete aggregate. Relationally
spoken, only different attribute combinations in the group-
by clause are considered. The where-clause in the materi-
alized view definition is always empty. The benefit of this
approach is that query processing is relatively simple.
Therefore, this is the only kind of aggregates commercial
products support today.

However, materialized views created in that manner
may contain much data that is never needed and therefore
storage space is wasted. Even more important, in a distrib-
uted setting with inherent data fragmentation the handling
of partial aggregates (the candidates in figure 4) becomes
a necessary prerequisite. A data mart server has only parts
of the whole data cube stored locally. In fact, that is the fun-

Fig. 4: Patchworking algorithm

Query Result

Other possible candidates

Complete data cube

Selected canditate aggregates

Site A Site C

Site B

Final edited form was published in "International Symposium on Database Engineering and Applications (IDEAS'98). Cardiff, 1998". ISBN 0-8186-8307-4.
https://doi.org/10.1109/IDEAS.1998.694361

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Achieving Performance in Distributed OLAP Systems 3.2
damental idea of having data marts in a distributed enter-
prise data warehouse. Thus, at least at the lower aggrega-
tion levels it does not even make sense to create aggregates
with full, enterprise-wide scope.

The big drawback is clearly that query optimization in
the presence of partial aggregates becomes more complex.
A patchworking algorithm finding the least expensive
aggregate partitions must be invoked (figure 4).

Data Allocation and Load Balancing.Directly related to
the question of selecting aggregates in a distributed envi-
ronment is the allocation problem. The system should not
only manage the dynamic creation of partial aggregates,
but also decide where to place them on a tactical basis.
Moreover, the traditional method to increase local access
performance in distributed environments by the use of rep-
licas can and should also be applied in distributed OLAP.

Hence, redundancy in the distributed data warehouse
can be distinguished into vertical redundancy involving the
creation of summary data with a coarser granularity than
the detailed raw data, and horizontal redundancy being
introduced by the replication of aggregates (figure 5).

In order to allow the system to adapt to changing user
requirements, there should be no fixed locations for any
kind of redundant data fragments. Aggregate data should
be close to sites where they are needed in order to minimize
the communication costs. In order to increase parallel
query execution, data fragments should be distributed on
several data mart servers, especially if communication cost
is low. Redundant fragments must dynamically be created
and dropped according to the changing user behavior.

Thus, a flexible adapting migration and replication
policy is essential for a data based load balancing at the
data mart servers. Involved in the process of choosing and
allocating aggregates are not only access characteristics but
also communication cost, maintenance cost for redundant
data and additional storage cost.

Differences to traditional distributed DBMS. Although
the fragmentation and allocation problematic is well
known from traditional distributed database systems, there
are several specifics for distributed data warehouses.

The fragmentation of the raw data is already fix due to
the definition of the data mart. Usually, there is not much of
a choice here. The problems as well as the performance
potential of distributed data warehouses arise from the
mentioned techniques of dynamic aggregate management
and dynamic data allocation. These techniques were not
previously applicable because redundancy in transaction-
oriented systems always requires expensive synchroniza-
tion mechanisms.

The query optimizer of a distributed OLAP system
first needs to be aware of the aggregations which would be
helpful in order to speed up query processing. If this infor-
mation is known it must invoke a patchworking algorithm
finding the least expensive aggregate partitions (figure 4).
The choice how to assemble the query result may vary from
query to query because the underlying redundant fragments
may be dropped for the selection of new ones by the
resource management and the system and network load
may change.

An important point is that the determination of candi-
dates as well as the patchworking itself, which includes the
comparison of selection predicates, is only feasible in the
context of a multidimensional data model. In contrast to the
simple relational data model, selections (slices) can be
defined by classification nodes (see section 4.2). Predicates
defined in that manner contain much more semantics as a
simple relational selection predicate. If one would allow
arbitrary predicates for the definition of fragments, patch-
working would not be possible.

3.2 Quality of Service Specification

Another point greatly distinguishes the distributed
OLAP scenario from traditional distributed databases. In
the analytical context general figures are of interest and not
individual entities. It is often the case that approximate
numbers are sufficient if they can be delivered faster. Thus,
it is feasible to trade correctness for performance. Some
factors characterizing correctness are accuracy, actuality
and consistency.

Accuracy. One approach to relaxing the accuracy of the
reports is offering summary data that is either aggregated at
a higher level than requested or offering only parts of the
requested information. For example, if a query requesting
sales figures for each city in Germany would take hours, an
answer containing sales figures for each county or even
only for South Germany might be enough for the moment.
An algorithm dealing with these issues is given in
[Dyre96].

Actuality. Absolute actuality in a worldwide distributed
enterprise data warehouse is an expensive requirement. If
each data mart is updated once a day for example, it means
for the distributed data warehouse that it is updated every

Raw Data

Summary Data Summary Data

aggr op.

aggr op.

replicate

Vertical
Redundancy

Horizontal
Redundancy

Fig. 5: Horizontal and Vertical Redundancy

Final edited form was published in "International Symposium on Database Engineering and Applications (IDEAS'98). Cardiff, 1998". ISBN 0-8186-8307-4.
https://doi.org/10.1109/IDEAS.1998.694361

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

The Distributed OLAP system CubeStar4
few hours. Therefore, the maintenance cost for summary
data can increases dramatically. But getting the most actual
numbers may not be necessary for the analyst. Hence, a
certain degree of staleness can be acceptable allowing
redundant data to be updated or dropped gradually
[Lenz96].

Consistency.The consistency of the reports generated in a
session should be another adjustable factor. In general, it is
desirable that a sequence of drill-down and roll-up opera-
tions relies on the same base figures. However, this require-
ment might not be crucial, if the analyst just wants to get an
overview over some figures. Hence, this condition as well
might be relaxed according to the analysts needs. Note, that
generating consistent reports can be very expensive,
because all reports in a session must have the same actual-
ity.

Especially in a large distributed environment where
communication costs can not be neglected, these factors
are critical for reasonable overall performance. A little
inaccurate, a little stale or a little inconsistent data may be
sufficient for the analyst, if he just gets the figures in a few
seconds rather than minutes.

4 The Distributed OLAP systemCUBESTAR

This section focuses on the architecture and the prin-
ciples for query processing and resource management of
the prototypical distributed OLAP systemCUBESTAR. In
order to deal with the complexity of the issues we borrowed
many ideas from the Mariposa system ([SDK+94]) and
applied them to our special application domain.

4.1 The Architecture

The general architecture ofCUBESTAR consists of a
three tier architecture as shown in figure 6. At theclient
layer are the end user tools with reporting facilities. Que-
ries are issued in the Cube-Query-Language (CQL,
[BaLe97], figure 7), specifically supporting the multidi-
mensional data model.

The heart of the architecture is themiddleware layer
hiding the details of data distribution. Its main task is to
translate a user query and generate an optimized distributed
query execution plan. For distributed query processing and
aggregate management we apply a microeconomic para-
digm. A site tries to maximize revenues earned for taking
part in query processing. In order to compete, the site has
to maintain a set of redundant data according to the current
market needs. The middleware layer also implements a glo-
bal classification information service providing a globally
consistent view of the multidimensional data model.

The third layer (server layer) consists of a federation
of data mart servers. Each data mart server controls the
locally available set of data partitions and the parallel query
execution at its machine.

4.2 The Data Model

CUBESTAR consequently applies the multidimen-
sional data model at all levels of query processing and
aggregate management. Only issues of physical data access
are managed by the underlying relational database engines.

Since the main operation in OLAP is the application
of aggregation operations, classification hierarchies can be
used to define groups for the application of aggregation
operations (figure 7). For example, the typical OLAP-
query of figure 7 specified in CQL asks for the sales figures
at the granularity of product families subsumed by video
equipment (= camcorders and recorders).

Multidimensional Objects. In analogy to the ‘cubette’-
approach of [Dyre96], a query may be seen as a multidi-
mensional subcube, calledMultidimensional Object(MO),
basically described by three components [Lehn98]:

• A specification of the original cell and the applied
aggregation operator (SUM(Sales))

• A multidimensional scope specification consisting of
a tuple of classification nodes (<P.Group = ‘Video’,
G.Country = ‘Germany’, T.Year = ‘1997’>)

• A data granularity specification consisting of a tuple
of categories (<P.Family, G.Top, T.Top>)

Parser

Semantic Check

Syntax Check Query

Broker

Restructurer
Generator

Partition
Selector

Middleware

Resource
Manager

Distributed Global
Classification
Information

Query

Result

Data Mart
Server

AERM AERM

Clients

Distributed
Server

Control Flow
Data Flow

Federation

Fig. 6: Architecture ofCUBESTAR

Partition
Directory

Cache
Delivery
Server

Aggregation
Engine

AE
AE

BBBidder

Final edited form was published in "International Symposium on Database Engineering and Applications (IDEAS'98). Cardiff, 1998". ISBN 0-8186-8307-4.
https://doi.org/10.1109/IDEAS.1998.694361

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

The Distributed OLAP system CubeStar 4.3

Within the distributed multidimensional OLAP envi-
ronment, multidimensional objects reflect the basic units
for distributed storage management and query processing.
Therefore, different types of MOs with regard to their gen-
eration in the distributed environment are considered.

The raw or base data partitions at each data mart are
called Base Multidimensional Objects (BMO). Thus,
BMOs represent data of the finest granularity. BMOs are
not allowed to migrate but are assigned a unique home site,
where they are uploaded by the data mart loading tools.
Consequently, they are per definition up-to-date.

From the BMOs any number of MOs can be derived.
In a relational sense these derived MOs are materialized
views. However, because of the definition of MOs, the
questions whether one MO is contained in, intersected by
or can be derived from another MO is easily decidable.
According to the requirements of the system MOs are
allowed to migrate or be replicated freely.

4.3 Microeconomics

An elegant solution to cope with the complexity of
dynamic aggregate management and load balancing is to
put all issues related to shared resources into a microecono-
mic framework ([SDK+94]). In an economy where every
site tries to selfishly maximize its utility there is no need for
a central coordinator; the decision process is inherently
decentralized. Moreover, the competition for orders and
profits allows the system to dynamically adapt to market
demands, i.e. query behavior and system load as well.

In contrast to Mariposa where demand and supply regulate
the prices, for the sake of simplicity auniform billing
scheme is applied to each executed query having fixed rates

for the aggregation efforts. The value of a query result is
computed by a weighted combination of the following fac-
tors:

• Actual size of the raw data MOs required for the com-
putation (number of tuples).
Taking the size of the raw data is reasonable, since
requests for aggregates of huge fact tables should be
more expensive than those of smaller ones. Moreover,
this decision favors the storage of higher aggregates,
since they need little space and yield high profits.

• Actual size of the query result (number of tuples).
This term simply values the additional overhead for
storing large aggregates.

• Aggregation time.
This is the time spent from issuing the query to deliver-
ing the result, i.e. the local query processing time.
Higher aggregation time results in a lower price, thus
favoring fast data mart servers.

• Transfer time.
The computation may require the shipping of interme-
diate MOs from one data mart server to another.

4.4 Query Processing

A query in CUBESTAR is basically a multidimensional
object specified by a CQL query like the one in figure 7.
Affiliated with each query is a user defined quality of ser-
vice specification consisting of a limitation to the query
processing time and an indicator for the requested accuracy
of the data. Thus, the user has the choice to trade speed for
actuality.

The query is issued to a broker which tries to perform the
query in the best way possible on behalf of the user. Since
all users are treated equally and prices are regulated, a
query is not assigned a budget. The brokers objective is
simply to get the best service available for the users
request, i.e. to minimize query execution time under the
quality of service constraints. After query processing, the
broker pays the price according to the billing scheme to the
participating data mart servers. Note, that in order to sup-
port user priorities it would make sense to limit the users
budget resulting in a second objective, price, to query opti-
mization.

Query processing basically proceeds in the three steps
query preparation, query optimization, and query execu-
tion.

In the query preparation phase, the query string is handed
over to the parser, where it is checked for syntactical and
semantic correctness. The result of this step is a tree-like
representation of the query with the queried MO at the top,
intermediate results at the inner nodes, and raw data at the
leaves.

Video

Recorder

Audio

Camcorder

TS-78

Consumer

A200 V-201 ClassicITR-75

Area

Group

Family

article#

ALLTOP

Electronics

SELECT SUM(SALES)
FROM Product P, Geography G, Time T
WHERE P.Group = ‘Video’,

G.Country = ‘Germany’,
T.Year = ‘1997’

UPTO P.Family

Fig. 7: A Sample Classification Hierarchy and
a Sample Query in CQL

Final edited form was published in "International Symposium on Database Engineering and Applications (IDEAS'98). Cardiff, 1998". ISBN 0-8186-8307-4.
https://doi.org/10.1109/IDEAS.1998.694361

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Storage Management4.5
For the generation of a distributed query execution plan the
current distribution of the aggregates must be taken into
account. Note, that due to the dynamic aggregation man-
agement the existence and location of aggregates and rep-
licates changes frequently. Therefore, the broker may issue
a broadcast request to the data servers in order to obtain the
necessary information. This kind of meta data is cached in
the partition directory cache in order to avoid too many
broadcasts. Using this method, it is possible that invalid
meta data are used. In this case, there are two possibilities,
either force a data mart server to the recomputation of
dropped aggregates or submit a new broadcast.

At the data mart server side, the bidder component receiv-
ing the request checks for those locally available MOs
which can contribute to the query. Each bid from a data
mart server includes the following data

• the identifier of the data mart server,

• a set of tuples { (Mi, Ti) } each of which contains the
description of an offered MO in the repository and the
time the site expects to aggregate that MO to the gran-
ularity of the query M,

• an indicator for the available processing power the site
is willing to reserve for the query depending on the sys-
tem load,

• the free space the site is willing to reserve for interme-
diate results possibly from other data mart servers.

The query optimizer’s task is now to select from the set of
multidimensional objects offered by the bidding sites
those, which require the least aggregation and transporta-
tion efforts using a patchworking algorithm. To estimate
communication costs, average network throughputs
between the sites are used.

The result of this step is a distributed query execution plan,
which is basically a tree with physically existing MOs at
the leaves, the target MO at the top, and intermediate
results at the inner nodes. Attached to each node is an oper-
ation, an estimated processing time for the operation, and
the location for the execution of the operation denoting the
bidders that won the competition.

In the query execution step, the bidders are informed
whether their offer was accepted or not. The notification
includes the complete query execution plan allowing the
sites to understand the decision of the broker and draw con-
clusions for their future resource management.

If all MOs necessary for processing have arrived at the site,
the local query execution is initiated by an aggregation
engine. If subqueries can locally be executed in parallel,
the aggregation engine may spawn new aggregation
engines running in parallel threads. After the aggregation
engine completed its task, in the last step the resulting MO
is sent to the target location.

4.5 Storage Management

So far, the existence of many redundant multidimensional
objects was assumed. This subsection focuses on when,
how, and where these MOs are generated. In order to deal
with the complexity of the issues of section 3.1, this prob-
lem is handled by the application of microeconomics.

The resource manager at a data server aims towards maxi-
mal usage of its local resources in terms of revenues.
Therefore, a site always tries to expand its market share by
cleverly creating and dropping aggregates and replicas. In
order to estimate current demands the resource manager
maintains a query history list containing those requests the
site was rejected to answer, either because it did not have
any suitable MOs or other bidders were preferred. The list
entries include for each query the actually selected MOs
with their locations and revenues. Based on this informa-
tion the resource manager can decide to obtain new MOs in
order to underbid its competitors in the future. If the new
MO is to be acquired from a remote location, the resource
manager acts as a client itself, and therefore also has to pay
for the MO from its own account. In this case, it is doing an
investment.

The other way to use the storage space is to offer it for
query processing. If MOs from different locations must be
coalesced, one site will receive the other parts. Note, that it
is very lucrative to receive other pieces of MOs fitting to
locally stored ones, because next time a larger MO can be
offered.

In fact, using the intermediate results of the query process-
ing is the most convenient way to get new MOs also in the
local case. Each of these MOs is checked by the resource
manager for usefulness. Basically, storing MOs that were
already needed is working like a cache, with a microecono-
mic heuristics for replacement.

5 Summary and Future Work

In the first part of this paper we made clear the draw-
backs of the centralized data warehouse and the non-inte-
grated data mart approach. In order to circumvent these
drawbacks and combine the benefits, integrated distributed
enterprise data warehouses were presented as a possible
solution. The on-line exploration of distributed data ware-
houses or distributed OLAP is related to many complex
issues like distributed query optimization, meta data man-
agement and security policy handling, each of which
demanding innovative solutions. We characterized some
possibilities for achieving query performance by dynamic
and partial aggregation, data based load balancing and the
specification of the quality of service. Finally, we discussed
the architectural framework of the prototypical distributed
OLAP systemCUBESTAR.

Final edited form was published in "International Symposium on Database Engineering and Applications (IDEAS'98). Cardiff, 1998". ISBN 0-8186-8307-4.
https://doi.org/10.1109/IDEAS.1998.694361

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Summary and Future Work 5
We consider sophisticated aggregation management a

major research issue. This covers algorithms for using dis-
tributed partial aggregations and deciding which aggregate
combinations yield the highest benefit and are the best to be
materialized. A reasonable solution offering the needed
flexibility is the application of a microeconomic framework
as in the Mariposa system ([SDK+94]). We admit, that this
last statement needs to be proven by the implementation.

References
BaLe97 Bauer, A.; Lehner, W.: The Cube-Query-Language

for Multidimensional Statistical and Scientific
Database Systems, in:5th International Conference
on Database Systems For Advanced Applications
(DASFAA’97, Melbourne, Australia, April 1-4,
1997), pp. 263-272

BaPT97 Baralis, E.; Paraboschi, S.; Teniente, E.:
Materialized View Selection in a Multidimensional
Database, in:23rd International Conference on Very
Large Data Bases (VLDB’97, Athens, Greece,
1997)

CoCS93 Codd, E.F.; Codd, S.B.; Salley, C.T.:Providing
OLAP (On-line Analytical Processing) to User
Analysts: An IT Mandate, White Paper, Arbor
Software Corporation, 1993

Cogn97 Cognos Corporation: Distributed OLAP, White
Paper, http://www.cognos.com, 1997

Cube97 The CUBESTAR Project: http://
www6.informatik.uni-erlangen.de/research/
cubestar.html

Dyre96 Dyreson, C.: Information Retrieval from an
Incomplete Data Cube, in:22th International
Conference on Very Large Data Bases, (VLDB’96,
Mumbai, India, 1996)

Ecke97 Eckerson, W.: Building and Managing Data Marts,
Patricia Seybold Group Report for Informatica,
http://www.informatica.com, 1997

GHRU97 Gupta, H.; Harinarayan, V.; Rajaraman, A.; Ullman,
J.D.: Index Selection for OLAP, in:13th
International Conference on Data Engineering,
(ICDE’97, Birmingham, UK, April 7-11, 1997)

Gupt97 Gupta, H.: Selection of Views to Materialize in a
Data Warehouse, in:6th International Conference
on Database Theory (ICDT‘97, Delphi, Greece,
Jan 8-10, 1997), pp. 98-112

HaRU96 Harinarayan, V.; Rajaraman, A.; Ullman, J.D.:
Implementing Data Cubes Efficiently, in:25th
International Conference on Management of Data,
(SIGMOD96, Montreal, Quebec, Canada, June 4-6,
1996), pp. 205-216

HP97 N.N.: HP Intelligent Warehouse, White Paper,
Hewlett Packard,http://www.hp.com, 1997

Inmo92 Inmon, W.H.:Building the Data Warehouse, John
Wiley, 1992

Info97 N.N.: Enterprise-Scalable Data Marts: A New
Strategy for Building and Deploying Fast, Scalable
Data Warehousing Systems, White Paper,
Informatica,http://www.informatica.com, 1997

Lehn98 Lehner, W.: Modeling Large Scale OLAP
Scenarios, in:6th International Conference on
Extending Database Technology,(EDBT’98,
Valencia, Spain, March 23-27, 1998)

Lenz96 Lenz, R.: Adaptive Distributed Data Management
with Weak Consistent Replicated Data. In:
Proceedings of the 11th annual Symposium on
Applied Computing (SAC’96), Philadelphia, 1996

LeRT96 Lehner, W.; Ruf, T.; Teschke, M.: Improving Query
Response Time in Scientific Databases Using Data
Aggregation, in:7th International Conference and
Workshop on Database and Expert Systems
Applications (DEXA’96, Zurich, Switzerland,
Sept. 9-10, 1996)

SDK+94 Stonebraker, M.; Devine, R.; Kornacker, M.; Litwin,
W.; Pfeffer, A.; Sah, A.; Staelin, C.: An Economic
Paradigm for Query Processing and Data Migration
in Mariposa, in:Proceedings of 3rd International
Conference on Parallel and Distributed Information
Systems (PDIS’94, Austin, TX., Sept. 28-30), 1994,
pp. 58-67

ThSe97 Theodoratos, D.; Sellis, T.: Data Warehouse
Configuration, in:23th International Conference on
Very Large Data Bases, (VLDB’97, Athens,
Greece, 1997)

WeCa96 Wells, D.; Carnelley, P.: Ovum evaluates: The Data
Warehouse, Ovum Ltd., London, 1996

Final edited form was published in "International Symposium on Database Engineering and Applications (IDEAS'98). Cardiff, 1998". ISBN 0-8186-8307-4.
https://doi.org/10.1109/IDEAS.1998.694361

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	Albrecht_On-line_analytical_processing_in_distributed_data_warehouses-Vorsatzblattmei
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Jens Albrecht, Wolfgang Lehner
	On-line Analytical Processing in Distributed Data Warehouses

	Albrecht_On-line_analytical_processing_in_distributed_data_warehouses_PPmei.pdf

