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Virtual Integration of Temporal and Conflicting Information 

Panagiotis Chountas 
Department of Computation, 

UMIST 
PO Box 88, Manchester M60 1 QD, UK 
E-mail: chountap@sna.co.umist.ac.uk 

Abstract 

This paper is presenting a way of integrating 
conflicting temporal information from multiple 
information providers considering a property-based 
resolution. The properties considered in this paper are 
the time and uncertainty because of conflicting 
information providers. The property based resolution 
requires a flexible query mechanism, where answers are 
considered as bounds, taking into account the tendency of 
things to occur and also the might happen ability of 
things. Finally some attention is paid to a database 
environment with non-static members. 

1. Introduction 

The integration of information from multiple 
information providers has been a lasting problem of 
research. One may distinguish very roughly between two 
approaches, [I]  the lazy and on demand approach. The 
lazy approach to this problem has been to integrate the 
independent providers by means of a global conceptual 
schema that models the information, contained in the 
entire population of information providers. This global 
conceptual schema is qualified with a mapping that 
defines the elements of the global schema, in terms of 
elements of the schemes of the information providers 
under conceptual integration. Queries are translated to 
queries on the population of information providers; the 
individual answers are then combined to answer the 
global query. The global schema and the schema mapping 
constitute the virtual database [2]. A virtual database is 
that a virtual database points to other databases that 
contain the data; it does not hold data itself. The basic 
assumption is that virtual databases should be able to 
incorporate a large number of information providers, such 
providers might be used for short time. 

Previous work in the area of heterogeneous databases 
focused on reconciling among different database designs 
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and eventually among different semantics [3], [4]. 
Information providers may supply contradicting fact 
instances, which are either time-stamped or not. In the 
case of time-stamped data, different time dimensions may 
be considered, such as valid and transaction time. 
Furthermore if different types of certain temporal 
information are considered, as defined in [5] ,  [6], 
conflicts may arise because information providers provide 
conflicting descriptions in terms of the valid time 
dimension about the exact duration of a time-stamped fact 
instance (definite temporal information), the constrained 
duration of a time-stamped fact instance (indefinite 
temporal information), the possible known-unknown pair 
(K ,  D) ,  where K is the frequency of repetition and D the 
duration of a periodical or infinite time-stamped fact 
instance. 

The rest of the paper is organised as follows. Section 2 
describes the features of a system that supports the 
integration conflicting information. Section 3 presents the 
problems in finding the most authoritative answer. 
Section 4 presents a time model for temporal information. 
Section 5 defines an extended relational environment 
where conflicting information is captured. Section 6 
presents an extended relational algebra for extraction of 
flexible answers. Section 7 concludes and investigates the 
inclusion of contributions coming from new information 
providers. 

2. Conflict Resolution 

The most important characteristics of a system that 
supports the integration of conflicting information either 
temporal or snapshot are described below. 

Resolution of Intentional and Extensional 
Inconsistencies. Intentional inconsistency resolution 
requires a common format, for all information providers. 
At this point it is possible that two or more information 
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providers could provide conflicting answers to the same 
query (extensional inconsistency). 

Simplicity. There is no restriction on the underlying 
data model; the only requirement is that results from 
different providers are concluded in a tabular form. 

Minimality. Mappings may neither be total or single 
valued. In addition to this, ad-hoc queries must be feasible 
for the capturing of information that is relevant to a given 
application. 

Flexible answers. There is no assumption of mutual 
consistency between a set of information providers. An 
authoritative-certain answer may not be possible. 

Time property. In terms of the valid time dimension 
information may be definite, indefinite, and infinite. 

Cost Property. The most recently recorded answer is 
considered to-be the most authoritative. 

Quality Property, This characteristic may indicate-the 
level of completeness of an answer towards a query. 

Uncertainty Property. Conflicting information may 
generate two types of uncertainty. One is introduced 
because of queries that refer to level concepts that are at a 
lower level than those that exist in the instance level of 
the database. The other arises because of the use of an 
element in the query that is a member of more than one 
high level concepts. 

-- 

3. Problems in-Estimating Flexible Answers 

Let us consider the following description about 
travellers. 'Ann' and 'Liz' "Table 1". Consider the 
following conflicting queries and whether these could be 
answered with authority or not: 

" Table 1 : Relation R representing the schedules of 
Ann and Liz " _ -  - 

Q1: When does Liz visit Brazil? 
Q2: When does Ann visit Brazil? 
Q3: Which are all the people who visited the Southern 
Hemisphere? 
Q4: Which are all the people who visited the Northern 
Hemisphere? 

The above queries are not easy to be answered because 
of the following inconsistencies: If we consider a lattice- 
structured domain, then Brazil has two parents (Northern 
Hemisphere and Southern Hemisphere, as shown in 
"Figure 1". Therefore Q3 and Q4 are not easy to be 
answered. We cannot estimate with precision the exact 
date of arrival and stay in Brazil for both travellers (Liz, 
Ann). Therefore Q, and Q2 are not easy to be answered 
either. The above inconsistencies are presented in Table I 
through relation R An analytical observation of Table I 
gives rise to the following requirementshsues in terms of 
data representation: 

A time model and representation that presents temporal 
information in terms of the following physical 
measurements duration D (e.g. tuples (XI,  X5, X,}) and 
frequency K of reappearance, if information is periodical, 
where D, K may not be known, (e.g. tuples [ Xq, X,}). 
In our effort to classify tuples in Table I based on a virtual 
decision attribute which simply declares the fact that a 
person has visited Brazil, it can be seen that tuples {X2, 
X3, X,} cannot be classified with an exclusive Boolean 
Yes or No. 

Therefore, there is a need for algebraic operations that 
will support approximate answers, based on 
approximation spaces. A similar problem would arise if a 
user requested through an algebraic operation all the 
countries that Ann or Liz have visited in the Northern and 
Southern Hemispheres. 

USA CANADA . MEXCO - BRADL c n u  

" Figure 1 : Lattice Structured Domain " 

4. The Time Model 

In this section the basic elements for a temporal . 
representation are defined in accordance to [ 5 ] .  The 
central concepts are a timeline and a time point where the 
former is comprised of the latter. The term duration is 
defined as an absolute distance between two time points. 
However, the term duration may also imply the existence 
of two bounds an upper bound and a lower bound 
(indefinite temporal Information). A- time interval is 
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defined as a temporal constraint over a linear hierarchy of 
time units denoted H, H, is a finite collection of distinct 
time units, with linear order among those units. For 
instance, H1=daycmonthcyear, are all linear hierarchies 
of time units defined over the Gregorian calendar. A time 
interval is presented in the form of [C+KxX, C’+KXX] 
where C‘=C+D, D E N * ,  thus an interval is described as a 
set of two linear equations defined in a linear time 
hierarchy (e.g. H2 = daycmonthcyear). 

The lower time point tlower is described by the equation 
tlower = C+K*X. The upper point tupper is described by the 
equation tupper = C’+K*X. C is the time point related to an 
instantaneous event that triggered a fact, K is the 
repetition factor, K E N *  or the lexical ‘every’ (infinite- 
periodical information).X is a random variable, XE N, 
including zero, corresponding to the first occurrence of a 
fact instance restricted by a constraint. The Sum-Product 
K*X+D is defined according to a linear hierarchy. D may 
be in the range between a lower and upper bound GI I D 
I G2 where (GI I G2 A D 2 Y). Yi...Yj are general or 
restricted constraints on the time points tlower, tuppep 
Constraints are built from arbitrary linear equalities or 
inequalities (e.g. tlower =C+7X and 05x5 5). Limiting the 
random variable X results in specifying the lower and 
upper bound of a time window.The above interval 
representation permits the expression of the following 
types of information: 

I )  Definite Temporal Information: The duration ( D )  of 
an event is constant ( D  = t). All times associated with 
facts are known precisely in the desired level of 
granularity. Let tlower, tup,, be the lower and upper linear 
points, of a time interval, that determines when a fact 
instance is defined, in the real world. 
tlower= C+K*X ( l ) ,  tupper= C’+K*X (2), C’= C+D (3), 
(K*X) = 0 (4) 

11) Indefinite Temporal Information: is defined when 
the time associated with a fact has not been fully specified 
[6]. Therefore the duration of a fact is indeterminate or 
bounded. This may occur for two reasons: either the 
duration of a fact is bounded or the duration is known and 
the start and end point of the time interval are not exactly 
known. This is defined as following: 

Let tlower, tupper be the lower and upper linear points, of a 
time interval, that determines when a fact instance is 
defined, in the real world. 
Adding (2), (1): CL + DLS C I CR +DR CL + DLI C I 
CR +DR which is the new expression for equation (3) 
whereas (CL + DL)S C’S CR +DR)E H,. Therefore the time 
interval (3) ,  that a sample fact instance is defined over, is 
indeterminate. 

1II)Infnite Temporal Information: is defined when an 
infinite number of times are associated with a fact [7]. 

, 

C L I C I C R  (l), D L S D S D R  (2)  

Infinite temporal information includes the following types 
of information. 
a) Periodic: A fact instance is repeated over a time 
hierarchy with the following characteristics: a constant 
frequency of repetition K,  it has an absolute and constant 
duration D, and X a random variable that denotes the 
number of reappearances for an event. Therefore the 
duration of every fact instance constituting a fact type and 
consequently the duration of a fact type is well known. 
b)Unknown Recurring Information: Generally is 
described in the following intervalic form, t = [I, I ] .  The 
intuition is that the duration D of an event is assumed to 
be known or constrained and the frequency of 
reoccurrence (K=?)  is not known. However by definition 
it is known that if an event is recurring, then its next 
reappearance cannot occur before the previous one is 
ended. Considering Ann’s staying to Brazil according to 
provider &, she is staying for a period of (D=90 days) in 
Brazil. Using the best case scenario, it can be assumed 
that Ann is visiting Brazil every (K=90)  days, since 
nothing else is known about Ann’s trip to Brazil. It is also 
known that K 2 1. Therefore the following conclusion 
can be made D S K .  

It can be also assumed that the time point C related to 
an instantaneous event that triggered a fact is not known 
with precision in the time hierarchy H,. C it may be 
constrained by an application, like as CLS C I CR or be 
left unspecified; constraints are part of an answer to a 
query. In this sense tlower, tuPper are expressed as following: 
tlower = K * X + C  (1) D S K A K & K E N * ( ~ )  
tupper = K*X + C’ ( 2 )  CLIC I C ,  (6) 
C = C + D ( 3 )  DLIDSDR (7) 
a l I X I a v ,  a,=O denotes first occurrence of an event (4) 
Adding (6), (7) and using (3) it can be deduced that CL + 
D L I C ’ I C R  + DR (8). ( 5 )  is defined through (7) when D L I  
K S  DR or KLI K I  KR where DL= K b  DR = KR (9). The 
product KxX through (9) and (4) is defined as follows 

KL* (a1 ... a,)IK*X SKR* (a l...a,)(lO) 
Considering t(8), (6)l and [(8), (1011, tlowert tupper can be 
redefined, respectively as follows 

tlower: KL* (a / . . .av) + CL S K * X  + C IKR* (a /...av) + CR 
tupper: KL* (a1 ... a,) + CL + DLIK*X + C ’ I K L *  (a1 ... a,) + 

CR DR 
The interpretation is that the time space determined by 

a recurring event is bounded and consisting of time 
intervals defined by the lines {KL* (a1 ... a,)+CL ... KR* 
(a /...a,)+ C R } ,  for tlower, the earliest and latest times for a 
recurring event to start and { KL* (a,.. .a,)+ CL + DL. .  . KL* 
(a /...a,)+ CR + DR} for tupper, the earliest and latest times 
for a recurring event to be ended, respectively. 

However each time line alone, an (h<vv), is expressing a 
separate-monadic periodic event. Proving this argument 
will enable us to use the above intervalic representation, 
for expressing periodical facts. In this case the parameters 
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(K, C, D, X )  are well known. Let us consider for inductive 
purposes a pair of the above lines named as tL and t ~ ,  
where tL= KL* (a ]... a,,) + CL t R =  KL* (a ]...a,,)+ CL + DL. 

For v=l, tL = KL* (a l . . .a l )  + CL= CL , tR = KL *( al...al)+ 
CL + DL= CL + DL , al=O denotes the first occurrence of 
an event. t =[ tL, tR] denotes a time interval that points to 
the first occurrence of a periodic event. 
Let us assume that tL, tR are expressing a periodic event 
(a) and stand for A, occurrences, ;ZEN,  tu^)= KL* (a1 ... an) 
+CL.  tR(A)=KL*(al ... an)+CL+DL(l )  
If the above argument is correct then, tL, tR must stand for 
R+l occurrences, AEN 
tUA+I)= KL* (al...aa+l) + CL d2, ) tR(A+I)= KL *(al...aa+l)+ 
CL + DL (31, a(A+l) = a/I+l(4) 
(2) is rewritten through ( 1 )  and (4) as following: 

Proof 

tuA+I j=  KL* (a l...aA+I) + C, = KL" (al ... sail) + CL= 
tUAj + KL 

(3) is rewritten through (1) and (4) as following: 
tR(A+])= KL* (al...aA+l) + CL + DL = KL* (al ... aAz+l) + CL 

DL = tR(A) -+ KL 
The new expressions for (2) and (3) are proving that 

the R+I occurrences of a periodic event (a) arising from 
the R ones by adding the characteristic frequency of 
repetition, which in fact is the definition of a periodic 
event. "Table 2" shows the restructuring of Table I 
according to the proposed model. Next, extended 
relational algebraic operators are defined for extraction of 
data, considering matching criteria, that may not be 
attribute names, or attribute values that may belong to 
more than one higher conceptual attributes. 

5. Encoding of Conflicting and Uncertain 
Information 

Defin$ion: Let T be a set of time intervals T={ [ t ~ ,  tR] 
where tL=C+K*X, tFCiK*X A alSXlh, , )  and D a set of 
non temporal values. A generalised tuple of temporal arity 
x and data arity 1 is an element of /x d together with 
constraints on the temporal elements. In that sense a tuple 
can be viewed as defining a potentially infinite set of 
tuples. Each extended relation consists of generalised 
tuples as defined above. Each extended relation has a 
virtual tuple membership attribute formed by a selection 
predicate either value or temporal that models the 
necessary (Bel) and possible degrees (Pls) to which a 
tuple belongs to the relation. 

The domain of tuple membership attribute is the 
Boolean set R = (true, false}. The possible subsets to that 
are {true}, {false} and R. The support set for tuple 
membership can be denoted by a pair of numbers (Bel, 
Pls) where: 

Bel = m (Itruel) 
Pls = m( Itruel} + m( a )  with property OlBellPlsll 

A tuple with (Bel, Pls) = [1,1] corresponds to a tuple that 
qualifies with full certainty. A tuple with (Bel, Pls) = [0,0] 
corresponds to a tuple that is believed not to qualify with 
full certainty. A tuple with (Bel, Pls) = (0,l) corresponds 
to complete ignorance about the tuple's membership. At 
this point two issues arise: the generalisation of the closed 
world assumption (CWA) and the estimation of the (Bel, 
Pls) measures. 

The CWA is assuming that facts not found in the 
database are considered to be false. Since tuples 
memberships in our model vary between 01 BellPls1l 
CWA needs to be extended. In generalising the CWA it is 
assumed that if a fact is not represented in the extended 
relation, then it must have Bel=O, and Pls 51. In this sense 
a database will keep information only if there is some 
positive evidence about the occurrence of a fact. 
Therefore, the integrated-virtual database will not contain 
information of no interest. Using Table I it can be 
appreciated that using the generalised CWA, the concepts 
{Southern Hemisphere, Northern Hemisphere} will not be 
replaced by their children as defined in "Figure 1" since 
there is no support for them. There is only one vote and 
this can only be capitalised by the high level concepts 
(Southern Hemisphere, Northern Hemisphere). However, 
the query 'Which are all the people who visited Brazil" is 
still expecting an answer. In answering this query, all 
tuples in "Table 2" have to be classified according to the 
selection predicate location = "Brazil" which forms a 
virtual attribute (it exists as long as the execution of the 
query), it is not stored as part of "Table 2". In this sense 
tuples {XI, &, X5, X,) are believed to satisfy the virtual 
attribute location = "Brazil" with certainty (Bel, Pls) = 
[1 ,1] .  However, it cannot be said with full certainty (Bel, 
Pls) = [l,lJ whether {Xz, X3, X,} satisfies the virtual 
attribute or not. In order to estimate the (Bel, Pls) 
measures, the ability to identify higher and lower level 
concepts for elements defined from a structured domain 
(either lattice, or tree) as specified by a particular 
application is needed. 

Let 1 be an element defined by a structured domain L. 
V ( e )  is the set of higher level concepts, i.e. U(e)  = { nln E 

L A n is an ancestor of l ) ,  and L(e) is the set of lower 
concepts L(e)  = [nln E L A n is a descendent of 1 ) .  If 1 is a 
base concept then L(e) = 0 and if 1 is a top level concept, 
then V ( e )  = 0. If L is an unstructured domain then L(e) = 
V(e) = 0. Considering tuple {Xz, X3, X,} and the 
selection predicate location = "Brazil " then L(e), U(e)are 
defined as follows: 
U(Brazi1) = (Southern Hemisphere, Northern 
Hemisphere), L(Brazi1) = 0 

Rule 1: If (IU(e)l > 1 A L(e) = 0), e.g. IU(Brazil)l=2, 
L(Brazi1) = 0, then it is simply declared that a child or 
base concept has many parents (lattice structure). 
Therefore a child or base concept acting as a selection 
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predicate can claim any tuple (parent) containing 
elements found in U(e) ,  as its ancestor, but not with full 
certainty (Bel > 0, Pls I I ) .  This is presented by the 
following interval (Bel, Pls) = (0,1]. Now consider the 
case where the selection predicate is defined as follows 
location = ”Southern Hemisphere ”. 
Tuple { X,) fully satisfies the selection predicate and thus 
(Bel, Pls) = [1,1]. Tuples (X3, X6) do not qualify as an 
answer and thus (Bel, Pls) = [O,O]. However it cannot be 
said with full certainty ((Bel, Pls) = [l , l])  whether {XI, 
&, X5, X,} satisfy the selection predicate or not, since 
Brazil belongs to both concepts {Southern Hemisphere, 
Northern Hemisphere}. Using the functions L(e), U(e)  
this can be deduced as follows 

U(Southern Hemisphere) = { 0 }  
L(Southern Hemisphere) = {Brazil, Chile) 

B= U(L(Southern Hemisphere)A(R.concept)) = U(Brazi1) 
= (Southern Hemisphere, Northern Hemisphere). 

Formally the function can be defined as follows: B((ll),( 
12))= U ( L ( l l ) ~ (  12)) where 11 is a high level concept, 12 is a 
base concept are elements defined in a lattice structured 
domain. If both arguments are high level concepts or low 
level concepts then B((lI),( 12))=  0. Function B((ll),( 12)) 

is defined only in a lattice structured domain. 
Rule 2: If B((l l ) , (  12))  is defined and I B((ll),( 12))1>1, 

then it is simply declared that multiple parents, high level 
concepts, are receiving a base concept as their own child. 
Therefore a parent or high level concept acting as a 
selection predicate can claim any tuple (child) ,containing 
elements found in ( L ( l l ) ~ (  12)) ,  as its descendant, but not 
with full certainty (Bel > 0, Pls I I), presented by the 
following interval (Bel, Pls) = (0,1]. Similarly a temporal 
selection predicate can use the above functions (U(e) ,  
L(e), B((ll) ,(  1,))) for imprecise temporal information, 
representing the time dimension as intervals, by labelling 
each node in the lattice with a time interval. The use of a 
lattice-structured domain by an application permits also 
the representation of temporal information at different 
levels of granularity. Next an extended relational algebra 
is defined. The operations differ from the traditional ones 
in several ways: The selectiodjoin condition of the 
operations may consist of base. concepts or high level 
concepts. Membership threshold (Bel--, Pls) may be 
specified with a selectiodjoin condition to constrain the 
number of result tuples. The results of extended relational 
operators either retain or generate the new tuple 
membership in the case where more than one selection 
criteria are specified. 

6. Algebraic Operations 

We are considering, for illustration purposes, the four 
operations (T (selection), n (projection), W (join), U (set 
union). , 

Selection: Selection is defined as follows: oP (R): ={ t I 
tE R A P(t) = true) where P denotes a selection condition. 
There are two types of a selection condition. A data 
selection condition (Pd) considers the snapshot relation R 
in Table 1. The temporal selection condition (P,) is 
specified as a function of three arguments P,: = < K, D, C> 
which is mapped to the time hierarchy H, (section 4). The 
relationships between (K, D),  depending on the type of 
temporal information (definite, indefinite, infinite), have 
been described in section 4. It has to be mentioned that 
temporal constraints are included in the result tuples. 
The combined predicate over relation VT(R) in “Table 2“ 
is defined as follows: P:= Pd I P, I PdAP,. The selection 
support function Fs(tAI..Anr P) returns a (Bel, Pls) pair 
indicating the support level of tuple t for the selection 
condition P, where AI..An is the set of attributes, excluding 
the virtual membership attribute. The selection support 
function F, utilises the (U(e) ,  L(e), B((l1),( 12)) )  functions 
in conjunction with Rule-1 and Rule-2, as defined in 
section 5, for estimating the actual support values. Recall 
that a compound predicate is formed by a conjunction of 
two or more atomic predicates. In this paper it is assumed 
that the atomic predicates are mutually independent. 
The support for the compound predicate P:= Pd I P, I PdAPt 
is computed based on the multiplicative rule. 
Fs(P) = (Fs(tAI..An, pd A Fs(tAI..Anr Pd)) =( Be12.....xBeln 

, PlSlX Pls2xPlsn) (1). 
A discussion on combining supports of dependent 
predicates can be found in [8], [9]. 

Projection: nx (R):={t(X) I t ER) ,  where R is a 
relation on scheme S ,  t is a tuple with scheme X and X is 
a subset of S (X c S). Projection retains all valid time 
values like standard projection. Projection is defined on 
top of a selection. The intuition is that, as an operator it 
does not modify F,, that is the tuple membership. 

Join: Let R, S be two extended relations, P be the join 
condition and Q the membership threshold condition. The 
extended join operator is defined as a Cartesian Product, 
followed by an extended selection: RwpQS (T pQ(RxS) 
where the tuple membership function is deviated by F, (1) 
as in the case of the extended select operation. The time 
interval that the tuple membership is defined over is the 
intersection of the time intervals that the sources 
(AI ... An) are defined. At(Fs) = AtlAIn ..,_ nAtnAn. (2) .  
Assuming two intervals with lower bounds tL = C + KX 
and tr = C’ + KIX and upper bounds tR = C,  + KX and tK 
= Cl ’ + KlX’. The time interval for the result is defined as 
tu = C ” +  K’X the common lower bound where C’ = max 
(C, C’) ,  and K ’  = min (K, Kl ) ,  and tu = C, + K’X the 
common upper bound where C,= max (C,  C,’) ,  and K’ = 
min (K, KI ) .  

Union: Union compatibility means that two extended 
relations R, S are union compatible if and only if they 
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have the same arity or degree and their corresponding 
attributes are based on the same domain. 

R I Person I Concept I VT(R) I 
’ Ann Brazil [KxX + C1, KxX + 

Cl’], X=O, K=O, C1- 
CI’=D, D=90 

Ann Southern [KxX + C2, KxX + 
Hemisphere C,’], X=O, K=O, C2- 

Ann Northern [KxX + C3, KxX + 
C,’=D, D=90 

Hemisphere C3’ J, 0 ~ 1 1 ,  K=90, C3- 
C,’=D, D=90 

Ann Brazil [KxX + C4, KxX + 
C,’], OiXiN, 901KIM, 

X5 
Cd-Ci=D, D=90 

Liz Brazil [KxX + C5, KXX + 
C,’], X=O, K=O, C5- 

I I I C5’=D,D=90 
X6 1-Liz I Northern I [KxX + C6, KxX + 

x7 

Cs’=D, D=90 
[KxX + C7, KxX + 
C,’], OIXIN, 90$KIM, 

“Table 2: The Proposed Model Representation” 

For the set operators, including union, uncertainty can be 
introduced when relations with different levels of 
refinement for the same information are combined. 
Without extra knowledge it is reasonable to choose the 
information with the finest granularity as the one to be 
classified with full certainty (Bel, Pls) = [1,1]. 
Information not in the finest granularity is classified with 
no -full certainty (Bel ,  Pls) = (0,1]. Both types of 
information are part of the result tuples, accompanied by 
different beliefs. Union is formally defined as follows 
R U S E  {tt ( 3 )  (3s) (r E R A  s E S A  t. K = r .  K =  s. K )  A 

(t (Bel, Pls) = F, (r. (Bel, Pls), s (Bel, Pls)) }. K is the arity 
of the relation, F, denotes the selection support function. 
Tuples with different valid times are not merged, 
independently of the fact that they are expressing the 
same snapshot tuple.At this point we will try to suggest 
ways of incorporating in the initial set of answers, new 
results coming from new contributions assuming that the 
number of information providers is not static. 

7. Conclusions - Open Issues 

It is considered that in a virtual integrated environment 
- the community of member databases is not stable. 

Frequent changes in this community take place with new 
information providers added or existing ones modified 

and deleted. The target is to design algorithms for 
projective and selective transformation defined as: 

Projective transformation: Discover the columns of 
the new contribution with respect to the validity and the 
semantics of the initial view. 

Selective transformation: Discover new tuples of the 
new contribution using the results of the projective 
transformation using a membership threshold, without 
destroying the validity and the semantics of our initial 
view. 

In both stages of discovery the likelihood of a 
successful discovery must be estimated and eventually all 
new tuples must be tagged with a level of confidence. The 
main focus currently is on the inclusion of information 
coming from new sources in a non static database 
environment. 
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