Yet Another Query Algebra For XML Data*

Carlo Sartiani

Antonio Albano

Dipartimento di Informatica - Universita di Pisa
Corso lItalia 40, Pisa, Italy
{sartiani,albano}@di.unipi.it

Abstract

XML has reached a widespread diffusion as a language
for representing nearly any kind of data source, from rela-
tional databases to digital movies. Due to the growing in-
terest toward XML, many tools for storing, processing, and
querying XML data have appeared in the last two years.

Three main problems affect XML query processing: path
expression evaluation, nested query resolution, and preser-
vation of document order. These issues, which are related
to the hierarchical structure of XML and to the features of
current XML query languages, require compile-time as well
as run-time solutions.

This paper describes a query algebra for XML data. The
main purpose of this algebra, which forms the basis for the
Xtasy database management system, is to combine good op-
timization properties with a good expressive power that al-
lows it to model significant fragments of current XML query
languages; in particular, explicit support is given to effi-
cient path expression evaluation, nested query resolution,
and order preservation.

1. Introduction

XML has reached a widespread diffusion as a language
for representing nearly any kind of data source, from rela-
tional databases to digital movies. While the usual applica-
tion for XML is data exchange, there exist many application
fields where direct manipulation of XML is needed, e.g.,
the management of medical data. Therefore, many tools
for storing, processing, and querying XML data have ap-
peared in the last two years: some of these tools are based
on existing database management systems [18] extended
with the ability to store XML data into relational tables
and to process XML queries, while others [17, 1] are de-
signed from scratch for XML data. Systems in the first class

*Research partially supported by the MURST DataX Project and by
Microsoft Research

are designed and implemented by middleware layers that
store XML documents into relational tables or collections
of objects, and that directly map XPath [8] and XQuery
[5] queries into special-purpose SQL queries, endowed
with some code needed to fill the expressive gap between
XQuery and SQL (even SQL3). Systems in the second
class, instead, represent an attempt to build XML-tailored
database systems, i.e., systems designed to manage ordered
tree-structured data; nevertheless, most of these systems are
just based on existing relational, object-oriented, or even
hierarchical database engines on top of which XML func-
tionalities are built.

Whatever class of systems you are considering, three key
problems affect query processing over XML data: evalua-
tion of path expressions; evaluation and resolution of nested
queries; order preservation. These problems are related
both to the tree structure of XML and to the features offered
by current XML query languages.

Path expressions Path expression evaluation requires to
traverse a tree according to a given path specification. This
specification usually gives only a partial description of the
path, by using wildcards and recursive operators (e.g., * in
GPE [21] and // in XPath). There exist many approaches
to path expression optimization. The most popular (and
maybe the most effective) ones are based on path indexes or
full-text indexes [14, 6], and on path expression minimiza-
tion [11]. The former approach is based on the massive use
of path indexes or full-text indexes, hence trying to solve
this optimization problem at the physical level only; the lat-
ter approach, instead, is based on the fusion of the path ex-
pression automaton with schema information. Both kinds of
approaches exploit structural information about XML data
(usually DTD-like schemas).

Another interesting approach tries to expand path ex-
pressions at compile-time [19], by replacing recursive oper-
ators with real paths being present in the data; substitution
information is taken from a DataGuide [15], a graph con-
taining each path being present in the database. As a matter
of fact, this technique can be considered as a special case of

path expression minimization.

Nested queries Current XML query languages impose no
restriction on query nesting: indeed, they generalize the
“free nesting philosophy” of OQL, and allow one to put a
query or a complex expression returning a well-formed doc-
ument wherever a well-formed XML document is expected.
This feature allows one to easily formulate complex queries,
e.g., queries containing esoteric joins, or queries changing
the structure of data (see [5] and [12] for a discussion on
how to use nested queries for grouping and reshaping XML
elements). As a consequence, nested query resolution has
become more and more important, at least to transform an-
noying d-joins into more tractable ordinary joins.

Ordering Unlike relational data models, XML is an or-
dered data format, i.e., a total order is defined among ele-
ments of the same document, as well as a total order among
the children of a given node. A common requirement in
XML applications, such as the managing of digital movies,
is the preservation of document order among elements ex-
tracted from the database; still, there are many application
fields (e.g., database publishing and semistructured data-
base management) that do not require to retain document
order. Most XML query languages support these require-
ments, and also allow the user to specify an arbitrary order
among elements in query results (the way document order
and user-defined order combine together is unclear).

The order preservation problem also has another face.
Some query languages, such as XQuery, express tree nav-
igation by means of d-joins, which are inherently ordered,
e.g., A < B > # B < A >. Unfortunately, d-joins are also
used for connecting independent path expressions. XQuery
formal semantics imposes that d-joins are evaluated in the
query order, until an explicit statement by the user is given.
As a result, order preservation in XML queries requires
one to deal with these three issues: document order, user-
defined order, and join order preservation.

Our contribution This paper shows a query algebra for
XML data. This algebra, which forms the basis for the
Xtasy database management system [10], has been defined
as an extension of object-oriented and semistructured query
algebras [9, 7, 4]; it retains common relational and OO op-
timization properties (e.g., join commutativity and associa-
tivity), and gives explicit support to efficient path expres-
sion evaluation, nested query resolution, and order preser-
vation. In particular, the algebra provides general rewriting
rules for transforming d-joins into ordinary joins, as well as
a general approach for preserving order in XQuery queries.

The paper is structured as follows. Section 2 describes
the Xtasy data model; next, Section 3 describes the alge-

title

Database Serge Peter 2000 Data on the
Abiteboul Buneman Web: ...

Figure 1. A data model instance

bra operators. Then, Sections 4 introduces some algebraic
equivalences. Next, Section 5 contains a review of related
works. Finally, in Section 6 we draw our conclusions.

2. Data model and term language

The Xtasy query algebra employs a data model similar
to the W3C XML Query Data Model [13]. A data model
instance is a well-formed XML document represented as an
unordered forest of node-labeled trees, the global ordering
being preserved by a special-purpose function pos; internal
nodes are labeled with constants (tags and attribute names),
and leaves with atomic values. Each internal node has a
unique object identifier (oid) that can be accessed by the
special-purpose function oid; an algebraic support opera-
tor v is used to generate new oids and to refresh existing
ones, hence allowing the algebra to support copy semantics
as well as reference semantics operations.

Example 2.1 Consider the XML fragment shown below:

<book cl ass = "Dat abase">
<aut hor > Serge Abiteboul </author>
<aut hor > Pet er Buneman </ author>
<aut hor > Dan Suci u </ aut hor >
<title> Data on the web: from...
<year > 2000 </year>
<publisher> ... </publisher>

</ book>

</[title>

This fragment can be represented by the tree depicted in
Figure 1.
]

3. Algebra operators

Xtasy algebra is an extension of common object-oriented
and semistructured query algebras to XML. The starting
point of the algebra is the object-oriented algebra described
in [9]; from that the Xtasy algebra borrows the idea of
relational-like intermediate structures, hence extending to
XML common relational and OO optimization strategies,
as well as the presence of border operators, which insulate

other algebraic operators from the technicalities of XML.
The algebra provides two border operators, namely path
and return, which respectively build up intermediate struc-
tures from XML documents and publish these structures
into XML.

In addition to path and return, the Xtasy alge-
bra provides quite common operators such as Selection,
Projection, TupJoin, Join, DJoin, Map, Sort,
TupSort, and GroupBy.

There exist both set-based and list-based versions of the
algebraic operators: list-based operators should ease the
management of the forthcoming XPath 2.0 path language
[20]. For the sake of brevity, in the following sections only
set-based algebraic operators will be presented.

3.1. Env structures

As already stated, algebraic operators manipulate
relational-like structures. These structures, called Env, are
very similar to YAT T'ab structures [7], and contain the vari-
able bindings collected during query evaluation. As in [9]
and YAT, Env structures allow one to define algebraic oper-
ators that manipulate sets of tuples, instead of trees; hence,
common optimization and execution strategies (which are
based on tuples rather than trees) can be easily adapted to
XML without the need to redefine all that stuff.

An Enw structure is a collection of flat tuples, each tuple
describing a set of variable bindings. With the only excep-
tion of sorting operators, each algebraic operator manipu-
lates unordered Enwv structures, e.g., tuples order is irrele-
vant.

The following example shows a sample Enuv structure.

Example 3.1 Consider the Enwv structure shown below:

$b:01 | $a: o3
$b:01 | $a:o04
$b:01 | $a: o5

This structure is a set of tuples, where each tuple consists
of two fields. The first field ($b : ...) contains the oid of a
book element, while the second contains the oid of a related
author element. Since the book o; has three authors, the
Enw structure contains three tuples referring to o;.]

In order to ensure the closure of the algebra, intermediate
structures are themselves represented as node-labeled trees
conforming to the algebra data model; this kind of repre-
sentation also allows one to apply useful optimization prop-
erties to border operators. Hence, Env structures can be
represented as terms like this:

env| tuple[labeli[t11], ..., label,[t1n]],

tuple[labely[ty1], . . ., label,[trn]]]

Each tuple element describes a binding tuple, where label;
are variable names and ¢;; the corresponding values.

3.2. path and return

path The main task of the path operator is to extract in-
formation from the database, and to build variable bindings.
The way information is extracted is described by an input
filter; a filter is a tree, describing the paths to follow into the
database (and the way to traverse these paths), the variables
to bind and the binding style, as well as the way to com-
bine results coming from different paths. Input filters are
described by the following grammar:

F =F,. ... F, conjunctive filters

| FAV...VF, disjunctive filters
| (op,var,binder)label|F) simple input filter
| 0 empty filter

where op € {/,//,-}
var € String U {_}
binder € {_,in,=}

A simple filter (op, var, binder)label[F] tells the path
operator a) to traverse the current context by using the navi-
gational operator op, b) to select those elements or attributes
having label label, c) to perform the binding expressed by
var and binder, and d) to continue the evaluation by using
the nested filter F'.

The path operator takes as input a single data model in-
stance and an input filter, and it returns an Enwv structure
containing the variable bindings described in the filter. The
following example shows a simple input filter and its appli-
cation to a sample document.

Example 3.2 Consider the following fragment of XQuery
query:

FOR $b i n book,
$a in $b//author,

This clause traverses the path book//author into the
sample document, binding each book and author element
to $b and $a, respectively. This clause can be translated into
the following path operation:

PAth(_sb in)book|(//.$a,in)author(0]] (db1)
which returns the following Enwv structure:

$b:01 | $a: o3
$b:01 | $a: o4
$b:01 | $a: o5

Input filters provide a simple but rich path language,
containing common path operators, such as / and // (/!

takes as input a collection of nodes, and returns the chil-
dren of these nodes labeled by I, while //I returns the de-
scendants of these nodes labeled by). No direct support,
instead, is given to the resolution of ID/IDREF attributes,
e.g., a/ b/ @=>/d is represented by using joins. More-
over, input filters provide two binding styles (in and =),
which directly correspond to XQuery binders.
The following example shows the grouping binder =.

Example 3.3 Consider the following XQuery clause:

FOR $b i n book,
LET $a_list := $b//author,

This clause traverses the path book//author; each book
element is bound to $b, and, for each book element, the
whole set of author sub-elements is bound to $a_list. This
clause can be expressed by using the following path opera-
tion:

PaAth(_sp.inybook|(//.$alist,=)author(s)] (db1)
which returns the following Env structure:

| $b: 0y | $a : {03,04,05} |

As shown by the filter grammar, multiple input filters
can be combined to form more complex filters. Xtasy alge-
bra allows filters to be combined in a conjunctive way, or
in a disjunctive way. In the first case, the Env structures
built by simple filters are joined together, hence imposing
a product semantics; in the second case, partial results are
combined by using an outer union operation. Therefore,
disjunctive filters can be used to map XPath union paths
into input filters (e.g., book/(author|publisher)), as well as
more sophisticated queries; the use of outer union ensures
that the resulting Env has a uniform structure, i.e., all bind-
ing tuples have the same fields.

The following examples show the use of disjunctive fil-
ters.

Example 3.4 Consider the following XQuery clause:

FOR $b in book,
$p in $b/ (author| publisher),

This clause binds the $p variable to publishers and au-
thors of each book. It can be expressed by using the follow-
ing path operation:

path(_,$b,in)book[(/,$p,in)author[®]V(/,$p,in)publisher[@]] (dbl)
]

Due to the presence of disjunction, a precedence order
among combinators has to be established: we chose to give
precedence to disjunction, i.e., f1 V fa, f3 V f4 is evaluated

as (f1V f2), (f3V fa).

return While the path operator extracts information
from existing XML documents, the return operator uses
the variable bindings of an Env to produce new XML doc-
uments. return takes as input an Enwv structure and an
output filter, i.e., a skeleton of the XML document being
produced, and returns a data model instance (i.e., a well-
formed XML document) conforming to the filter. This in-
stance is built up by filling the XML skeleton with variable
values taken from the Enwv structure: this substitution is
performed once per each tuple contained in the Env, hence
producing one skeleton instance per tuple.
Output filters satisfy the following grammar:

OF :=O0Fy,...,0OF,
| label|OF]
| Qlabellval]
| wval
val ==wvg | war | wvvar

An output filter may be an element constructor
(label[OFY]), which produces an element tagged label
and whose content is given by OF, an attribute con-
structor (@label[val]), which builds an attribute contain-
ing the value wal, or a combination of output filters
(OFy,...,OF,). The second production needs further
comments. The algebra offers two way to publish infor-
mation contained in an Env structure: by copy (vvar) and
by reference (var). Referenced elements are published as
they are in query results; in particular, their object ids are
not changed, thus allowing support for the definition and
management of views over the database. Copied elements,
instead, are published with fresh oids, hence losing the ties
with their originating databases.

The following example shows the use of the return op-
erator.

Example 3.5 Consider the following XQuery query:

FOR $b in book
$t in $b/title,
$a in $b/aut hor
RETURN
<entry> $t, $a </entry>

This query returns the title and the authors of each book.
This query can be represented by the following algebraic
expression:

TetUTMentry[v$t,v8a] (
Path(_sp,in)book((/.Sa,in)author(],(/,8t,in)title[e]] (AD1))

The following example shows the use of the return op-
erator to define a view over the database.

Example 3.6 Assume that you want to define a database
view restricting the access to only those books published
before 2001. By using a reference output filter this task can
be accomplished by the following algebraic expression:

TetUT M yiew($b] (T$y <2001 (
path(_,$b,in)book[(/,$y,in)yea7’[@]] (dbl)))

3.3. Basic operators

Xtasy algebra basic operators manipulate Env struc-
tures only, and perform quite common operations. They
resemble very closely their relational or object-oriented
counterparts, thus allowing the query optimizer to employ
usual algebraic optimization strategies. This class contains
Map, TupJoin, Join, DJoin, Selection, Projection,
GroupBy, Sort, as well as Union, Intersection,
Dif ference, OuterUnion, and their list-based counter-
parts. In the following the most important operators will be
presented.

Selection Selection o takes as input an Env and a
boolean predicate P, and returns a new enw structure where
binding tuples not satisfying P are missing. The predicate
language of the Xtasy algebra is quite rich, offering existen-
tial as well as universal quantification over variables. These
quantifications are required for easily translating universally
quantified XQuery queries, and can be optimized by using
quite standard rewriting techniques.

TupJoin TupJoin Xp is the Xtasy counterpart of stan-
dard join operators. So, it takes as input two Enwv structures
e1 and eq as well as a boolean predicate P; it evaluates the
predicate P over each pair of tuples (¢1,t2) € e1 X ea, re-
turning only the pairs satisfying P. The primary use of the
TupJoin operator is to combine path operations over inde-
pendent data sources, and it is also introduced during query
unnesting. The following example shows the typical use of
TupJoin.

Example 3.7 Consider the following query fragment:

FOR $b in book,
$a in $b/author,
$bl in docurent ("amazoncat al og. xm ")/ book,
$t in $bl/title

This query accesses two data sources, an internal one
(db1) and an external one (cat al og. xn). This fragment
can be represented by the algebraic expression shown be-
low.

(Path_sp,inybook((/,$a,in)author(0]) (A01)) Mirye
(Path(_sp1,in)book|(/,8t,in)titic[0]) (extdD))

The previous example requires further comments. Un-
like XQuery joins, Xtasy algebra joins are unordered, e.g.,
e1 Mp es = es XMp eg. This is a significant divergence
from XQuery Formal Semantics, since XQuery Formal Se-
mantics joins are (unless otherwise stated by the user) non-
commutative, even on independent operands, i.e., e; Xp es
ey Mp ep. This divergence imposes the use of a Sort
operation before the return operation, as it will be shown
in the next paragraphs; we chose this approach since we be-
lieve that the join efficiency improvement might overcom-
pensate for the cost of the additional Sort operation.

DJoin Unlike the TupJoin operator, which joins to-
gether two independent Env structures, the DJoin < - >
performs a join between two Env e; and e,, where the eval-
uation of e; may depend on e;. This operator comes from
object-oriented query algebras, and it is used to translate for
and let clauses of XQuery and, in particular, to combine an
inner nested block with the outer one.

The only way to evaluate a DJoin is to perform a
nested loop among operands, hence one major goal of the
optimization process is to transform, whenever possible,
DJoins into more tractable T'upJoin operations.

Sort The Sort operator is used for dealing with the three
sorting issues described in the Introduction: translating the
sortby clause of XQuery (and similar clauses of other lan-
guages), preserving document order, and retaining join or-
der. Sort takes as input an Env structure e and an ordering
predicate P, and returns e sorted according to P. Ordering
predicates are binary predicates defined on binding tuples,
and used to impose the desired order; they have signature:
tuple x tuple — boolean. The following example shows
the use of Sort for translating sortby clauses.

Example 3.8 Consider the following query:

UNORDERED(
FOR $b in book
RETURN $b
SORTBY (title))

This query just returns the list of all books sorted by ti-
tle. To translate this query, we need to define an appropri-
ate predicate, as the following: Pred(u,v) = u.$t < v.$t,
where « and v ranges over Env tuples, and $¢ is bound to
book titles. Thus, this query can be represented by the fol-
lowing algebraic expression:

return,gp(

Sortu.$t<7j.$t (
PAth(_ b in)book(/,$t,in)title[0]) (AD1)))

For preserving join order and order among elements
a specialized version of Sort is used (called TupSort).
TupSort takes as input an ordered list of variables
($z1,...,$x,), and an Env ¢; it returns a new Env e’ ob-
tained by sorting e according to the position of values of
the variables $x1, ..., $z,. Hence, the algebra can mimic
the behavior of XQuery joins, whose semantics requires
to retain the order in which variables are bound, unless
the programmer qualifies the query with the keyword UN-
ORDERED. The following example shows how T'upSort
can be used to preserve order among variables and XML
elements.

Example 3.9 Consider the following query:

FOR $b i n book,
$t in $b/title,
$a in $b/aut hor
RETURN <entry> $t, $a </entry>

XQuery semantics [12] prescribes that joins should be
executed in an ordered fashion. Hence, a correct transla-
tion of this query should contain the T'upSort operation
TupSort sy st,3q)(- - -), which sorts tuples in the Env struc-
ture according to the order specified in the query.]

n-ary sortby clauses can be translated by using a n-ary
ordering predicate, or by a combination of unary Sort op-
erations. The following example shows the translation of
such sortby clauses.

Example 3.10 Consider the query of Example 3.8 and as-
sume that we want to return books ordered by title and by
author.

UNORDERED(
FOR $b in book
RETURN $b
SORTBY (title, author))

Unlike [12], the Xtasy algebra offers two ways to trans-
late this query. The first augments the ordering predicate
of the Sort operation: (u.$t < v.8t) V (u.$t = v.$t
A u.$a = v.$a) where $a is bound to each book author;
the second one breaks the sortby clause into two smaller
clauses, as shown below:

returny% (Sortu.$t<v.$t (Sortu.$a<v.$a (
PAth(_ b in)book(/,$t,in)title[0],(/,$a,in)author(0]] (AD1))))

GroupBy The GroupBy operator I' of Xtasy takes as in-
put an Enw structure e, and partitions it according to the
following definition: I'g, 4. ¢,.r:0(e) = {y.Ae[g: G] | y €
e,G=f({zx | z<e, fr(x)0fi(y)})} where A C Ati(e)
and y ¢ Att(e).

As shown by the definition (very close to that of [9]),
Xtasy GroupBy projects e tuples over A, and augments
them with the corresponding groups G, obtained by apply-
ing the function f to the set of related tuples.

4. Optimization properties

Three classes of algebraic equivalences can be applied
to the Xtasy query algebra. The first class contains classi-
cal equivalences inherited from relational and OO algebras
(e.g., push-down of Selection operations and commutativ-
ity of joins); the second class consists of path decomposi-
tion rules, which allows the query optimizer to break com-
plex input filters into simpler ones; the third class, finally,
contains equivalences used for unnesting nested queries.
In the next sections, the following notation will be used:
(i) Att(e) is the set of labels of an Env structure e; (ii)
FV (exp) is the set of free variables occurring in an alge-
braic expression exp; (iii) symbols(of) is the set of node
labels used in the output filter of.

4.1. Classical equivalences

Given the close resemblance of Xtasy algebraic opera-
tors to relational and OO operators, the Xtasy algebra sup-
ports a wide range of classical equivalences. In particular,
Selection, Projection, Map, TupJoin, and even return
are linear, so common reordinability laws can be easily ap-
plied to these operators.

Here follows a brief (and quite incomplete) list of sup-
ported algebraic equivalences.

4.2. path decompositions

As already stated, path is the most important operator in
the algebra, since it performs the basic tasks of evaluating
path expressions and binding variables (both in an iterative
fashion and in a grouping fashion). As a result, its efficiency
affects the efficiency of the whole query processing. An
efficient evaluation of path relies on the ability of the query
compiler to simplify path expressions and to exploit existing
access support structures, indexes in particular, which can
dramatically speed up the evaluation. To this purpose the
ability to decompose a complex filter into smaller ones is
crucial, since it allows to match existing access structures
as well as to replace expensive filters (i.e., filters involving
//) with less expensive ones. By using decomposition laws,

optimization techniques based on path indexes and full-text
indexes can be safely applied.

The Xtasy algebra provides three decomposition laws for
path operations: the first works on the nested structure of
a filter, while the remaining ones work on the horizontal
structure of a filter.

Proposition 4.1 Vertical decomposition of path operations

path(op,var,binder)label[F] (t)
path(_,_,in)env[(/,_,in)tuple[(/,_,in)var[(/,var,binder)_[F]]]] (
path(op,var,binder)label[@] (t))

The following example shows how this decomposition
law can be exploited during query optimization.

Example 4.2 Consider the following XQuery clause:

FOR $b in library/book,
$a in $b/author,
$y in $b/year,

This clause retrieves the sub-elements of each book ele-
ment, binding them to a corresponding variable. This clause
can be mapped into the following path operation.

PAth(__in)library|(/,$b,in)book|F]) (d2)
where

F = (/,8a,in)author[0], (/,$y, in)year[l]

Assume now that a path index on library/book is avail-
able. To exploit the presence of this index, the previous
path operation should be decomposed into a path oper-
ation with filter (_, _, in)library((/, $b,in)book[(]] and a
new path operation, which further explores the subtrees
bound to $b. This decomposition is shown below.

pathF1 (path(_,_,in)library[(/,$b,in)book[@]] (db2))
where

Fy
F>

(—7 - in)env[(/7 - in)tuple[(/, - Zn)b[FQ]H
(/,8b,in)_[(/,$a,in)author[0], (/, $y, in)year[D]]

Proposition 4.3 Horizontal decomposition of conjunctive
input filters

(pathy, ..t 1 (t) Wirue (pathy, ., (t))

Proposition 4.4 Horizontal decomposition of disjunctive
input filters

path’flv~~~vf7n (t)

(pathy,v.. v, (t))OuterUnion(pathy,v.. v§,, (1))

The Xtasy query algebra supports also decompositions
of path via d-joins; those decompositions allow the com-
piler to translate XQuery for and let clause by using arbi-
trarily complex filters, or simple filters only (as in XQuery
Formal Semantics).

Proposition 4.5 Dependent decomposition of input filters

path(op,var,binder)label[F] (t)

path(op,var,binder)label[@] (ﬁ) < pathF(UaT) >
4.3. Nested queries equivalences

This Section presents some equivalence rules that can
be used to transform d-joins induced by nested queries into
T'upJoin operations. These rules are not intended to be ex-
haustive, nor to be the most efficient transformations; they
just rewrite DJoins induced by nested queries into more
tractable joins, and do not exploit special-purpose algebraic
operators such as binary grouping. Before presenting our
rewriting rules a brief introduction to the problem of query
unnesting is necessary. In the reference paper about nested
queries in object databases [9], authors extend Kim’s taxon-
omy of relational nested queries by defining three classifica-
tion criteria: the kind of nesting, i.e., queries of type A, N, J,
JA; the nesting location, i.e., the presence of nested queries
into the select, from, orwhere clause of OQL queries; the
kind of dependency, i.e., the location of references to exter-
nal variables. Referring to such classification, our rewriting
rules apply to queries of type J (nested dependent queries re-
turning sets of elements/attributes/values), and deal with the
three kinds of dependencies (pr oj ection dependency, range
dependency, and predicate dependency). In the next para-
graphs these three kinds of dependencies will be discussed
in more detail.

A typical query has the following structure:

returngr(Sortp, (op, (pathy(db))))

The output filter of, the selection predicate P, as well
as the input filter f can define dependencies with an outer
query by referring to external variables. Depending on
where these references are located into the nested query,
proj ection dependencies (of), range dependencies (db), or
predicate dependencies (P») may occur.

Predicate dependency Predicate dependencies occur
when an external variable is referenced into the where
clause of the inner query, i.e., into the predicate P,. Con-
sider, for example, the following query returning authors
and the list of their papers.

FOR $a in library//author
RETURN $a, <publist> FOR $p in library/*,

$aa in $p/ aut hor
VWHERE $aa = $a

RETURN $p
</ publi st >
This query contains a nested block
(FOR $p ... RETURN $p) that scans the papers and

returns only those papers written by a given author
(WHERE $aa = $a). This query can be represented by the
following algebraic expression.

TeturnV$a,publist[l/$_var} (
path(_,_,in)library[(//,$a,in)autho'f‘[@]] (db) <q >)

where

q = path(_s var,=) (0] (returng, (0saa=sa(
PAth(__in)tibrary|(/,$p,in)-[(/,$aa,in)author(0])](dD))))

In this kind of dependency the predicate P, has the form
Pred($X,$7,8Y), where $X are external variables, and
$Y and $Z local variables. In order to remove this de-
pendency (and the related D.Join operation), we need to
decompose Pred($X,$Z,8Y) into Predgion($X,$2) A
Pred(3Y,$7), i.e., to separate local variables from global
ones, and to transform the return filter.

Proposition 4.6 Predicate Dependency

e1 < (path(_svar,—) (returnqg(
O pred(sx,$z,3y)(Pathy, (db))))) >

F$var;Att(el);)\:c.(x.$Z);id;: (61 MP7"edc,~lob($X,$Z
(path g (return, (O predp,. (sv,sz) (pathy, (db))

)
)))

where

e of = _nested[_result[of], env[z1[$z1], ..., zc[$2x]]]

o ' = (L$m,in)_nested[(/, $_res,=)-result[l],
/a ,zn) -€n (/7 -1) [(/a $21)—W)]v

iyl Sz =)0

if FV (of) N Att(e1) =0, FV(f1) N Att(e1) =0,$X C
Att(el), $Zl, ceey $Zk ¢ Att(el), SY ¢ Att(el), Zlyees Rk
¢ symbols(of)

By applying this transformation the predicate depen-
dency is brought out of the inner query, hence the previous

algebraic expression can be rewritten as follows.

Teturnu$a,publist[l/$_var] (
F$_Ua7';$a;/\a;.(a:.$aa);id;:(,
path(-,-,in)librtm‘y[(//,$a,in)auth0r[@]] (db) Ng4=$aa 4))
where
ql = path(-,&n,in)_nested[Fl ,Fg](
return_nestad_[result[$p],_env[aa[$aa]]] (

Path(__in)iibrary((/,$p,in){(/,$aa,in)author0]]] (dD)))
and

Fy = (/,8$.es,=)_result]d
Fy = (/,-,in)_env|(/, -, in)aal(/, $Saa, =) [0]]
Range dependency In this form of dependency, the input

filter of the inner query is applied to variables coming from
the outer query. Consider, for example, the following query
associating each paper with the list of its Italian authors.

FOR $p in library/*
RETURN <italianrd>
$p,
FOR $a in $p/ aut hor

WHERE $a/country/data() = "ltaly"
RETURN $a
</italianrd>
This query contains an inner block
(FOR $a ... RETURN $a) retrieving, for each given

paper $p, the list of Italian authors (if any). This query can
be translated as follows.

Teturnitalianrd[$p,$_var] (
path(_,_,in)library[(/,$p,in)_[@]] (db) <
Path(_s_var,=) 0] (Teturng,(Osc=>rtaty (

path(/,&l,in)author[(/,$c,:)country[@]]($p)))) >)

Obiject-oriented rewriting rules for range dependencies
are based on the use of type extents; in particular, if the do-
mains of the external variables referenced by the inner block
are covered by type extents, their references are replaced
by scans over these extents, and results are then combined
through object equality predicates. Such transformations
cannot be applied to data without extents, therefore we rely
on a different rewriting technique, whose main idea is to
copy the left part of the D Join into the nested query, hence
transforming it into a constant block, and then to combine
results by using an equality predicate.

Proposition 4.7 Range dependency

e1 < (path(_svar,—) o) (returngs(
Up(pathfla---7fk ($CL‘1, RN $xk))))) >

F$va7’;Att(e1);/\y.(y.$X);id§: (61 Msx=$x
(path (return,q (op(path g (e1))))))

where

o 1= (., S tuple,in)tuple[(/, -, in)z:|

(/a $$17 :)-[fl]a) (/7 - Zn)mk[(/a Smkv :)—[fkm]
e of = _nested[_resultfof], -env[z1[$z1], ..., xi[$z1]]]
o /' = (L $m,in)nested|(/,$-res,in)result[d)],
(/a - in)—env[(/v - Zn)xl[(/v $LE1, :)—W)]]a (R
(/; - in)a[(/, Sk, =)-[0]]]
if FV(of) N Att(er) = 0, FV(f1,..., fx) N Att(er) =
0, FV(P) N Att(er) = 0, FV(db) = $X C Att(er),

Z1,...xK & symbols(of)

By applying Proposition 4.7, the previous query can be
rewritten as follows.

returnitalianrd[up,u_var] (F$var;$p;)\y. (y.$p);id;:(
path(_,_,in)library[(/,$p,in)_[®]] (db) I><]$;D:$p Q1))
where
q1 = path(_,$_n,in)_nest6d[F1,FQ](
return_nestad[_result[$a] ,-env[p[$p]]] (U$c:”ltaly” (
Path(/ s tuple,inytuplel(/ - in)pl(/ $p,=) Fs 1)
T$p (pa’th(_,_,in)library[(/,$p,in)_[®]] (db))))))

(/,$-res,in)_result|[(]

(/- in)-env](/, - in)p[(/, $p,=){0]]]
(/,8a,in)author[(/, $c, =)country[d]]

S35
o

Projection dependency In this form of dependency the
output filter of the inner block refers to external variables.
As these variables may be deeply nested into complex XML
skeleton and mixed with local variables (user abruptness has
no limits), the output filter cannot be decomposed into a lo-
cal part and a global one. A rule to unnest such dependen-
cies is based on the copy&join technique used for range de-
pendencies, as well as on the introduction of cross products.
Therefore, the unnested expression may be (much) more ex-
pensive than the nested one, hence making this transforma-
tion not convenient. For the sake of brevity, this (almost
useless) unnesting rule is omitted.

5. Related work

Several algebras for semistructured data and XML have
been proposed in the past years. Here we briefly review the
most important ones.

YAT YAT [7] is an integration system based on a semi-
structured tree data model. Its query algebra, largely based
on [9], manipulates relational-like intermediate structures.
The novelty of this approach is represented by two frontier
operators, bind and tree, which are similar to Xtasy path

and return: bind expresses binding, vertical navigation,
horizontal navigation, as well as grouping operations; tree,
instead, is used to create new trees, and can perform group-
ing and sorting operations.

As already stated, the Xtasy query algebra derives from
[9], so it is not surprising that they share many common
features. However, differences are still present, in particu-
lar in the frontier operators and in the sorting policy; while
Xtasy path and return are simpler than YAT bind and tree
(even though the notation is awkward), YAT bind cannot
directly evaluate recursive XPath pattern. Moreover, YAT
does not deal with the order preservation problem emerged
in the XML context, being mainly intended for virtual data
integration.

SAL SAL [4]isaquery algebrafor XML data based on an
ordered data model. SAL is quite similar to the YAT query
algebra, even though it requires M ap operations to perform
variable bindings. One key feature of SAL is the p operator,
which is used to evaluate general path expressions.

TAX TAX [16] is a query algebra developed in the con-
text of the TIMBER project [2]. TAX data model is based
on unordered collections of ordered data trees, and each
TAX operator takes as input collections of data trees, and
produces as output collections of data trees. Unlike YAT
and SAL, TAX directly manipulates trees without the need
for an explicit intermediate structure. Data extraction and
binding are performed by using pattern trees: pattern trees,
which resemble Xtasy input filters, describe the structure of
the desired data, and impose conditions on them.

Even though TAX is very promising, its optimization
properties and sorting policy remain unclear; in particular,
the way document and join order is preserved is not well de-
fined, and exposes the algebra to possible clashes between
unordered collections and ordered trees. Moreover, the way
existing optimization properties may be extended to TAX
operators is far from being self-evident.

XQuery Formal Semantics (former XML Query Alge-
bra) XML Query Algebra [12] comes from the activity
of the W3C XML Query Working Group, being one of the
building blocks of the W3C XML Query suite. That al-
gebra is mainly intended for the formal definition of query
languages semantics, and its main contribution is an inter-
esting and powerful type system used for statically inferring
query result type. The algebra itself is an abstract version
of XQuery, where high-level operators (e.g., n-ary for and
sortby clauses) are mapped into low-level algebraic oper-
ators. Rewriting rules are provided resembling functional
programming languages rules and nested relational rules.
While the XML Query algebra would be very useful in
defining query language formal semantics and in studying

typing problems on XML queries, it appears unlikely that it
will form the basis for effective implementations of XML
query languages.

Other algebras In [3] authors present a query algebra for
ordered XML data, which are modeled as rooted graphs.
The distinctive feature of this algebra, very influential in the
XML community, is the use of ordered algebraic operators;
in particular, joins are ordered, i.e., AX B # B X A, even
when A and B are independent.

6. Conclusions and future work

This paper describes a query algebra for XML data, as
well as some basic optimization properties; this algebra is
used in the Xtasy database management system, which is
currently under development.

Our future work moves along three lines. First, we are
currently implementing a persistent version of Xtasy, and
we are exploring the dark world of run-time query process-
ing. Second, we need to investigate further the problem of
query unnesting: we believe that a classification of nested
queries over XML data could be very useful. Finally, we
plan to explore further the problem of order preservation
and its effects on query execution costs.

7. Acknowledgments

Authors would like to thank Dario Colazzo for his pre-
cious suggestions and his continuous support during the
writing of the paper.

References

[1] http://ww t ami no. com

[2] http://ww. eecs. uni ch. edu/ db/ti mber/.

[3] D. Beech, A. Malhotra, and M. Rys. A formal data model
and algebra for xml. Note to the W3C XML Query Working
Group, 1999.

[4] C. Beeri and Y. Tzaban. Sal: An algebra for semistruc-
tured data and xml. In Proceedings of the ACM SGMOD
Workshop on The Web and Databases (WebDB'99), June 3-
4, 1999, Philadelphia, Pennsylvania, USA, June 1999.

[5] D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Siméon,
and M. Stefanescu. XQuery 1.0: An XML Query Language.
Technical report, World Wide Web Consortium, June 2001.
W3C Working Draft.

[6] V. Christophides, S. Cluet, G. Moerkotte, and J. Siméon.
Optimizing generalized path expressions using full text
indexes. Networking and Information Systems Journal,
1(2):177-194, 1998.

[7] V. Christophides, S. Cluet, and J. Siméon. Semistructured
and Structured Integration Reconciled: YAT += Efficient
Query Processing. Technical report, INRIA, Verso database
group, November 1998.

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Clark and S. DeRose. XML Path Language (XPath) Ver-
sion 1.0. Technical report, World Wide Web Consortium,
Nov. 1999. W3C Recommendation.

S. Cluet and G. Moerkotte. Classification and optimization
of nested queries in object bases. Technical report, Univer-
sity of Karlsruhe, 1994.

D. Colazzo, P. Manghi, and C. Sartiani. Xtasy: A
typed xml database management system. Available at
http://wwv. di.unipi.it/~sartiani/papers/
menent onor i . pdf, 2001.

A. Deutsch and V. Tannen. Optimization Properties for
Classes of Conjunctive Regular Path Queries. In Proceed-
ings of the 8th Biennial Workshop on Data Bases and Pro-
gramming Languages (DBPL’01), Frascati, Rome, Septem-
ber 8-10, 2001, 2001.

P. Fankhauser, M. Fernandez, A. Malhotra, M. Rys,
J. Simeon, and P. Wadler. XQuery 1.0 Formal Semantics.
Technical report, World Wide Web Consortium, June 2001.
W3C Working Draft.

M. Fernandez and J. Robie. XML Query Data Model. Tech-
nical report, World Wide Web Consortium, May 2000. W3C
Working Draft.

T. Fiebig and G. Moerkotte. Evaluating Queries on Structure
with eXtended Access Support Relations. In Proceedings of
the third International Workshop WebDB 2000, pages 125—
136, 2000.

R. Goldman and J. Widom. DataGuides: Enabling query
formulation and optimization in semistructured databases.
In VLDB' 97, Proceedings of 23rd International Conference
on Very Large Data Bases, August 25-29, 1997, Athens,
Greece, pages 436-445. Morgan Kaufmann, 1997.

H. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and
K. Thompson. Tax: A tree algebra for xml. In Proceedings
of the 8th Biennial Workshop on Data Bases and Program-
ming Languages (DBPL’01), Frascati, Rome, September 8-
10, 2001, 2001.

C.-C. Kanne and G. Moerkotte. Efficient storage of xml
data. In Proceedings of the 16th International Conference
on Data Engineering, 28 February - 3 March, 2000, San
Diego, California, USA, 2000.

|. Manolescu, D. Florescu, D. Kossmann, F. Xhumari, and
D. Olteanu. Agora: Living with xml and relational. In A. E.
Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel,
G. Schlageter, and K.-Y. Whang, editors, VLDB 2000, Pro-
ceedings of 26th International Conference on Very Large
Data Bases, September 10-14, 2000, Cairo, Egypt, pages
623-626. Morgan Kaufmann, 2000.

J. McHugh and J. Widom. Compile-time path expansion in
Lore. Technical report, Stanford University Database Group,
November 1998.

S. Muench, M. Scardina, and M. Fernandez. XPath Require-
ments Version 2.0. Technical report, World Wide Web Con-
sortium, Feb. 2001. W3C Working Draft.

D. Quass, A. Rajaraman, Y. Sagiv, and J. Ullman. Query-
ing semistructured heterogeneous information. In Deductive
and Object-Oriented Databases, Fourth International Con-
ference, DOOD’ 95, Sngapore, December 4-7, 1995, pages
319-344, 1995.

