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Abstract

Use of path expressions is a common feature in most
XML query languages, and many evaluation methods for
path expression queries have been proposed recently. How-
ever, there are few researches on the issue of optimizing
regular path expression queries. In this paper, two kinds
of path expression optimization principles are proposed,
namedpath shorteningand path complementing, respec-
tively. Thepath shorteningprinciple reduces the querying
cost by shortening the path expressions with the knowledge
of XML schema. While thepath complementingprinciple
substitutes the user queries with the equivalent lower-cost
path expressions. The experimental results show that these
two techniques can largely improve the performance of path
expression query processing.

1 Introduction

Although XML is usually used as an information ex-
change standard, storing, indexing and querying XML data
are still important issues and recently have become research
hotspots in the database community. To retrieve XML data
from databases, many query languages have been proposed,
such asXQuery[4], XPath[2], XML-QL [3], XML-RL [7],
and Lorel [1]. Because the use of regular path expres-
sions (RPE) is a common feature of these languages, query
rewriting and optimization for RPE is becoming a research
hotspot and a few research results have been published re-
cently [9, 12].

Most implemented XML systems are based on relational
DBs. In the relational way [5, 12], XML data is mapped into
tables of a relational/object-relational database system and
queries on XML data are translated into SQL statements.

One of the ways to evaluate RPE in relational XML man-
agement systems is rewriting an RPE to some SPEs (Simple
Path Expression) according to the schema information and
statistic information on XML documents, and then com-
puting the SPEs respectively by translating the SPEs into
SQL statements and executing them. TakeVXMLR[12] for
example, RPE queries containing ’//’ and ’*’ are rewritten
to SPEs, which will be translated into SQL statements for
a later processing in accordance with relational database
schema. In theLore system[1], there are three strategies
to compute SPE queries:top-down, bottom-upandhybrid.
In the top-downway, an XML document tree (DOM tree)
is navigated from its root to get proper results; and in the
bottom-upway, an XML document tree is traversed from
its leaves to the root with the help of value indices; finally,
in thehybrid way, a long path is divided into several short
paths, each of which can be evaluated in either thetop-down
way or thebottom-upway, and then the results of these short
paths are joined together to get proper results.

As an improvement of thehybrid way, theextent join
algorithm [9] has been paid a lot of attention recently.
This paper introduces two optimization strategies based on
the extent joinalgorithm: path shorteningStrategy and
path complementingStrategy. These strategies can also be
used for other path evaluation algorithms besides theex-
tent joinalgorithm. Thepath shorteningStrategy shortens
the path to reduce the number of join operations so that the
query performance can be improved. Thepath complement-
ing Strategy computes the original path expression query
through some other low-cost path expressions.

2 Background

An XML document can be represented as a rooted tree,
Td = (Vd, Ed, Ld), called an XML data tree, whereVd



is a set of nodes, each of which represents either anele-
mentor anattribute; Ld is a set of node labels representing
tags of the nodes, each of which is associated with a la-
bel; Ed is a set of edges, each of which represents either a
parent-child relationship between two element nodes or an
element-attribute relationship between an element and an
attribute. In the following, we userd to represent the root
of an XML data tree.

Figure 1 shows an XML data tree for an XML document
in the XML benchmark project,XMark. Here, anellipse
represents an element node, whereas atriangle represents
an attribute node. The numbers with prefix ”&” marked on
the nodes are the node identifiers. Note,&1 is the root node
of the XML data tree whose label issite .

Figure 1. An XML Data Tree

An XML data tree is a set ofpaths. Given a node, a
data pathis a sequence of node identifiers from the root
to the node, and alabel pathis a sequence of labels from
the root to the node. For example,&1.&2.&3.&4.&6
and &1.&21.&22.&24.&25 are two data paths from
the root to the nodes&6 and &25. The corre-
sponding label paths are/site/regions/namerica/
item/name and /site/close_auctions/close_
auction/annotation/description , respectively.
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Figure 2. An XML Schema Graph

An XML schema graph is a rooted directed graph,Gt =
(Vt, Et), whereVt is a set of labelled nodes andEt is a set
of edges. We usert to denote the root of the XML schema
graph. It is important to note that an XML schema graph
specifies the possible structures of XML data trees. The la-

bel structure of an XML data tree shall be a subgraph of
the corresponding XML schema graph. In other words, the
label paths imposed by the XML schema graph put restric-
tions on the possible label paths in the corresponding XML
data trees. Figure 2 shows the XML schema graph for the
XML data tree in Figure 1. In Figure 2, the root node is the
node with a labelsite . The node labels with underline,
such asincome are for attributes.

Given an XML schema graph and an XML database
consisting of XML data trees that conform to the XML
schema graph, letp be a label path of an XML schema
graphp = /l1/l2/ · · · /lk, wherel1 is the label of the root
node of the XML schema graph, andlk the ending label
of the label path. An extent of the label pathp, denoted
ext(p), is a set of nodes (or node identifiers) of any data
path/&n1/&n2/ · · · /&nk in an XML data tree such that
their corresponding label path matchesp. In addition, an
extent of a label,lj , denotedext(lj), is a set of nodes (or
node identifiers) that have labell.

Consider a label path of the XML schema graph
in Figure 2p = /site/regions/namerica/item/
name. The extent ofp, ext(p), includes &6 in the
XML data tree in Figure 1, because there is a data path
&1.&2.&3.&4.&6 such that the corresponding label path of
the data path matchesp. On the other hand,ext(name) =
{&6, &9,&13}.

PathExpression ::= CONNECTOR PathSteps
| PathSteps CONNECTOR PathSteps

PathSteps ::= Label
| Label ′|′ PathSteps
| (PathSteps)
| ′∗′

CONNECTOR ::= ′/′ | ′//′

Figure 3. BNF Definition of Path Expression

Figure 3 shows the BNF definition of path expressions,
as a simplified version of XPath. In Figure 3,Label rep-
resents node labels. A symbol ’*’ is introduced as a wild-
card for an arbitrary node label in the XML schema graph.
The CONNECTORrepresents the connector of paths. We
mainly discuss two widely used connectors: ’/’ and ’//’,
where the former represents a parent-child relationship, and
the latter represents an ancestor-descendant. Given an XML
schema graph,Gt, and an XML database consisting of
XML data trees that conform to the XML schema. A path
expression query,Q, is a path expression (Figure 3). A
path expression query,Q, is valid if it at least match a la-
bel path,p = l1/l2/ · · · /lk, in Gt. A directed query graph
Gq = (Vq, Eq) is defined as a rooted subgraph ofGt such
thatGq only includes the label paths ofGt that the queryQ
matches. The root ofGq is the root ofGt and the no-child
nodes are the nodes with labellk. The result of the query,
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Q, denotedext(Q), is ∪i ext(pi) wherepi is a label path
from the root to the no-child node with labellk in Gq.

3 Simple but Effective Optimization Tech-
niques: Path Shortening and Path Comple-
menting

The path shortening technique is based on the following
observation.

Observation 1. Given an XML schema graphGt, and let
Qi = //lk be a valid path expression query, wherelk is a
label in the XML schema graph. Then,ext(Qi) = ext(lk).

As shown in Figure 1, given a path expression query,
//closed_auction , ext(//closed_auction )
is equal to ext(closed_auction ) which includes
{&22, &27}. It is because that all appearances of the
labelclosed_auction , that appear in the XML schema
graph (Figure 2), are all included in the corresponding
query graph for the query//closed_auction . Ob-
servation 1 leads to the utilization of an XML indexing
mechanism, called XML extent index [9], which indexes
all nodes that have the same label,l, e.g.,ext(l).

Technique 1. (Simple Path Shortening)Given an XML
schema graphGt and a path expression queryQ = · · · /lk,
a corresponding query graphGq can be constructed (Gq ⊆
Gt). All no-child nodes inGq are labeled withlk. This
queryQ can be processed usingext(lk), if and only if lk
does not appear inGt −Gq, that is,lk only appears in the
intersection of two graphs,Gt andGq.

As shown in Figure 1, given a path expression query
Q1=/site/closed_auctions/closed_auction ,
ext(Q1) is equal to ext(closed_auction ) which
includes{&22,&27}. Technique 1 utilizes the XML extent
index. As another example, consider the path expression
query Q2 = /site/closed_auctions/closed_
auction/annotation/description , to access
the XML data tree in Figure 1 that conforms to the XML
schema graph in Figure 2. The result ofQ2 shall include all
nodes that havedescription as theirs label along the
label path as specified inQ2, ext(Q2) = {&25,&30}. As
noted, in this case,ext(Q2) 6= ext(description ) be-
causeext(description ) = {&25, &30, &36}. The rea-
son is that the labeldescription does not only appear
in the corresponding query graph. There exists a label path
in the XML schema graph,/site/open_auctions/
open_auction/annotation/description ,
which leads to the labeldescription and is not in-
cluded in the corresponding query graph. In order to fully
utilize the XML extent index, we propose an effective path
shortening technique.

Technique 2. (Effective Path Shortening)Let Gt be an
XML schema graph andQ = · · · /lk be an arbitrary valid
path expression query. A corresponding query graphGq

can be constructed (Gq ⊆ Gt) as follows. LetQu be a
set of labels,lu, that such that, (i)lu only appears inGq

and does not appear inGt − Gq, (ii) all data paths, that
satsify the queryQ, must traverse at least one node with
labellu, and (iii) the label pathl1/ · · · /lu is unique. We call
those labels unique labels. The effective path shortening
technique logically divides a given query,Q, into two parts,
Q1/Q2, where the end label inQ1 is a unique label, say
lu. Therefore,Q1 can be processed using the XML extent
index, forext(lu), followed by extent join to process the
second part of pathQ2. If multiple unique labels appear in
Q, then the last unique label shall be used as the end label
of Q1.

Reconsider Q2 = /site/closed_auctions/
closed_auction/annotation/description ,
which cannot be processed using the simple
path shortening technique. In this case, we
find that there exist three unique labels:site ,
closed auctions and closed auction . The
closed auction is the last in the path. Here,Q2

can be rewritten as two partsQ2a/Q2b
where Q2a =

/site/closed_auctions/closed_auction and
Q2b

= annotation/description . The path ofQ2a

can be processed using the XML extent index, because
ext(Q2a) = ext(closed auction ).

The effective path shortening technique is a generaliza-
tion of the simple path shortening technique. The effective
path shortening technique improves the query performance
by optimizing the path expression. Next, we introduce the
path complementingtechnique, which rewrites a complex
and high cost path expression, and produces an equivalent
simple and low cost path expression. The technique is based
on the following observation.

Observation 2. Given the XML schema graph,Gt, (Fig-
ure 2), and a valid path expression query,Q3 = /site/
regions/*/item/name . This query cannot be pro-
cessed using simple path shortening technique, because
there exits a label path inGt, /site/people/person/
name. The query can be processed asext(name) -
ext(/site/people/person/name ).

Technique 3. (Path Complementing)Let Gt be an XML
schema graph andQ = · · · /lk be an arbitrary valid path
expression query. A corresponding query graphGq can
be constructed (Gq ⊆ Gt) as follows. LetG′q be a query
graph including paths/ld/ · · · /lk that are not included in
Gq, where ld is the label of the root node ofGt. Then,
ext(Q) = ext(lk)−ext(Q′), whereQ′ represents the query
that corresponds toG′q.
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For a given path expression query,Q, there are many
choices to processQ using either the effective path
shortening technique, or the path complementing tech-
nique, or both. For instance, reconsiderQ3 = /site/
regions/*/item/name using the XML schema graph
(Figure 2). Using the path complement technique,
Q can be processed usingext(name) - ext(/site/
people/person/name ). Furthermore, the path ex-
pression/site/people/person/name can be further
processed using the effective path shortening technique, be-
causeperson is a unique label. That is, we can process
/site/people/person using the XML extent index
followed by an extent join.

Now we show how to use these two RPE optimization
techniques in query processing procedure. The selectivity
of path expression and cost estimation are not the focuses
of this paper, so the details of these issues are ignored. The
general steps of querying and optimizing path expression
queries are shown as follows.

(1) Rewriting path step ‘*’. With the XML schema
graph, label paths containing path step ‘*’ are rewritten to
the unions of all possible label paths only containing con-
nectors ‘/’ and ‘//’. (2) Rewriting connector ‘//’. With
the XML schema graph, label paths containing connector
‘//’ are rewritten to the unions of all possible label paths
only containing connects ‘/’. (3) Complementary path se-
lection. With the XML schema graph, the complementary
paths of each label path are found and their costs are esti-
mated. Check if the cost of complementary paths is lower
than that of the original path. If does, the complementary
approach is chosen. Otherwise, the original path is chosen.
(4) Path shortening. With the given XML schema infor-
mation, every label path is shorten by techniques 1 and 2
described before. (5) Index selection and query execution
plan generation. Select correct indexes and transform the
path expressions into query execution plans. (6) Query plan
execution. Executing the query plan including indexes and
joins.

4 Performance Evaluation

The hardware platform of the benchmark is a PC with a
993MHz CPU and 386MB memory, and the software plat-
form is XBase system [8]. The entire benchmark program
is written in C++ and Inada 2.0 (an object oriented persis-
tent programming language), and it is compiled using MS
VC++ 6.0. All the benchmarks are based on four data sets:
two benchmark data sets (XMark and XMach-1) and two
real dataset (Shakes and DBLP).

The partial schema of XMark [11] is shown in Figure 2.
It has 20 queries that cover a lot of operations such as exact
match, ordered access, casting, regular path expressions etc.
The data scale factor used in our experiments is 1.0, and the

size of the document is about 100M bytes. XMach-1 [10] is
used to simulate applications on the web. The data set con-
tains many documents having different DTDs. A special
document is designed in the benchmark used as a directory
to record the information of the documents. There are 8
query operations and 3 update operations in XMach-1. This
paper does not analyze the performance of update opera-
tions. DBLP is a real data set, the XML document set of
DBLP web site. The feature of this data set is that the num-
ber of the documents is very large, while the size of each of
them is very small. The data set can be gotten on Inter-
net at ftp://ftp.informatic.uni-trier.de/
pub/users/Ley/bib/records.tar.gz . 8 queries
are defined on theDBLPdata set [6]. Shakes is another real
data set, s a set of XML documents of operas of Shakespear
marked by Bosak. There are 8 queries [6]. This data set can
be gotten on Internet athttp://metalab.unc.edu/
bosak/xml/eg/shakes200.zip .

Figures 4, 5, 6 and 7 show the performance improve-
ment of thepath shorteningstrategy on benchmark data sets
XMark, XMach-1, DBLP and Shakes, respectively, com-
paring to theextent joinalgorithm. Obviously,path short-
eninghas better performance thanextent joinin all queries.
It seems that the performance improvement on XMark is not
very much. This is because the queries in XMark is XQuery
queries other than path expression queries, there thus are
time-consuming post-processing operations to do after path
expression computing. Even through,path shorteningdo
a much better job thanextent join. Unlike real data sets,
simulation data sets specially designed for XML database
benchmarks have more complete types of queries, so the
query performances on XMark and XMach-1 are studied
first. Because of different query features, the performance
improvement ofpath shorteningis different.
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Figure 4. Path Shortening Query Performance
(XMark)

(1) Performance of some queries is greatly improved,
such as Q5, Q6, Q7, Q18 and Q20 in XMark and Q2, Q3,
Q4, Q5, Q6 and Q7 in XMach-1. Path expressions of these
queries can be shortened to very short paths, even to one
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Figure 5. Path Shortening Query Performance
(XMach-1)
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Figure 6. Path Shortening Query Performance
(DBLP)

step paths. Another feature of these queries is that they
have no predicates or only have predicates at the end of their
paths. In these queries,path shorteningis 10 to 200 times
faster thanextent join.

(2) Performance of some other queries is slightly im-
proved, such as Q13, Q14, Q15 and Q16 in XMark and Q1
in XMach-1. In these queries, the performance improve-
ment ofpath shorteningis 0.3% to 8%. There are various
reasons. Some queries consume much time to compute spe-
cial operations other than compute the path expressions. For
example, in XMark, Q13 has a complicated reconstruction
operation and Q14 has a full-text search operation. Some
path expressions are very long themselves but parts that can
be cut off are very limited. For example, Q15 and Q16
can only be cut off 3 steps respectively while their origi-
nal lengths are 12 and 14. Some other path expressions can
hardly be shortened any more, such as Q1 in XMach-1.

(3) Performance improvement of the remainder queries
is between the above two cases. For example, Q1, Q2, Q3,
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Figure 7. Path Shortening Query Performance
(Shakes)

Q4, Q8, Q9, Q10, Q11, Q12 and Q17 in XMark and Q8 in
XMach-1. Their path expressions can be slightly shortened
or also have some high-cost operations such joins on values,
ordered access, dereference etc, the performance improve-
ment is not clearly seen. Most queries belongs to this type,
and their performance that can be promoted bypath short-
eningranges from 10% to 400%.

The performance of queries on DBLP and Shakes are
shown in Figures 6 and 7, respectively, in which Q7 and Q8
of DBLP usingextent joincost too much time and cannot
get the results. Except for a few queries such as Q1, Q5 and
Q6 in Shakes, most queries can benefit frompath shorten-
ing, some of which are improved greatly. These queries can
also be divided into the types above. Unlike the simulation
data sets, the real data sets are not very complicated, so they
are more suitable to use thepath shorteningstrategy.

Another valuable conclusion is that the data sets contain-
ing large quantity of small documents such as XMach-1,
DBLP and Shakes benefit more from thepath shortening
strategy than one large document data set XMark. This is
because, in the data set with numerous small documents, the
set of joins is very large and even one step path may contain
a lot of joins, the performance would be greatly improved
when the paths are shortened even by only one step. Since
the queries of the benchmark are all path expression queries,
according to Observation 1, all the queries can be shortened
at least by one step using thepath shorteningstrategy.

Because cost evaluation is necessary for thepath com-
plementingstrategy, whether or not this strategy can be used
for a query depends not only on path expressions and XML
schemas but also on the statistic information of XML doc-
uments. Thus, only some queries can be computed use
their equivalent complementary paths. We use three queries
based on XMark shown in Table 1. Figure 8 gives the av-
erage performance of thepath complementingstrategy. In
some queries, thepath complementingstrategy can improve
the performance by more than 20% to 200% on the basis of
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Table 1. Path Complementing Queries
Query Original Path Expression Complementary Expression

Q1 /site/regions/(asia|africa|europe /site/regions/namerica/item
|australia|samerica)/item

Q2 /site/regions/(asia|africa|europe /site/people/profile/name
|australia|samerica|namerica)/item/name

Q3 /site/(closed_auctions/closed_auctions|open_auctions /site/category/description
/open_auction)/annotation/description

thepath shorteningstrategy.
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Figure 8. Path Complementing Query Perfor-
mance

5 Conclusion

This paper proposed two optimizing strategies to im-
prove the performance of path expressions: thepath short-
ening strategy and thepath complementingstrategy. The
path shorteningstrategy shortens path expression to reduce
the cost of the query, while thepath complementingstrat-
egy uses equivalent path expression with the least cost to
compute the original path expression. The experimental re-
sults of simulation data and real data show that these two
strategies are efficient and effective, and they can greatly
improve the performance of path expression queries. The
performance of 80 percent of the queries in the four bench-
marks can be improved by 20% to 400%.
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