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Abstract Clustering is an important data mining task [9] and sig-
nificant results have been reported for several data types.
Performing data mining tasks in streaming data is con- The challenge in a set of streaming time series is to update
sidered a challenging research direction, due to the continu- the clustering information as time progresses, avoiding the
ous data evolution. In this work, we focus on the problem of computationally intensive reclustering process.
clustering streaming time series, based on the sliding win-  Given a set of streaming time series, clustering can be ap-
dow paradigm. More specifically, we use the concept of plied to all available values within a specified length, known
a-clusters in each time instance separately. A subspace as thesliding window The sliding window size defines the
cluster consists of a set of streams, whose value differencelimensionality of each streaming time series. For example,
is less thana in a consecutive number of time instances a sliding window of size 256 means that each time series is
(dimensions). The clusters can be continuously and incre-a 256-dimensional vector. Each dimension corresponds to
mentally updated as the streaming time series evolve. Thea time instance. Searching for clusters in a large number of
proposed technigue is based on a careful examination ofdimensions may result to failure, because as the size of the
pair-wise stream similarities for a subset of dimensions and sliding window increases the probability that two streams
then, it is generalized for more streams per cluster. Perfor- will belong to the same cluster decreases. In many cases,
mance evaluation results show that the proposed pruningalthough two or more streams do not belong to the same
criteria are important for search space reduction, and that cluster for the whole sliding window, they do so by consid-
the cost of incremental cluster monitoring is computation- ering a subset of dimensions.

ally more efficient than reclustering. Figure 1 illustrates three streaming time series3 and
C with a sliding window of size 17. We assume that two
streams belong to the same cluster if the difference of the
. values in the corresponding dimensions is less than or equal
1 Introduction to 2. By inspecting Figure 1, it is evident that these streams
can not belong to the same cluster, since the difference of

The study of query processing and data mining tech- values in several dimensions is more than 2. For example,
nigues for data stream processing has recently attracted th¢he value difference ofi and B in the second dimension is
interest of the research community [4, 6, 10], due to the fact
that many applications manage data that change very fre-
guently with respect to time. Examples of such emerging
applications are network monitoring, financial data analy-
sis, sensor networks to name a few. The most important
property of data streams is that new values are continuously
arriving, and therefore efficient storage and processing tech-
nigues are required to cope with the high update rates.

Due to the highly dynamic nature of data streams, ran-
dom access is prohibitive. Therefore, each data stream is Y Ve Yo -
possible to be read only once (or a limited number of times). T 234 506 780 10 111213141516 17 time
This feature poses additional difficulties for query process-
ing and data mining tasks. Figure 1. Example of subspace clustering.

-
-

values

/ stream A

® <« stream B

- N W A OO N ®

: <«— stream C




7 — 4 = 3. However, by considering subsets of dimensions, determine a dense cell. The aforementioned methods apply
streamsA and B belong to the same cluster for the dimen- to static data sets, and their adaptation to the streaming case
sion intervals|ds, ds], which containsds, d4, ds, dg and is not obvious.
[do, d17], which containsdy, dig, di11, di2, di3, di4, d1s, In [1, 2] the authors have proposed top-down algorithms
dig, d17. Itis evident that the value difference of strearhs  for subspace cluster discovery. The basic drawback of these
andB in each of these dimensions is less than or equal to 2.methods is the usage of paraméiewhich is the number of
The basic requirements for the generation of subspacesubspace clusters that each method should report. In many
clusters is that each cluster should contain a sufficient num-real applications, this value is not known a priori.
ber of streams, in a sufficient number of consecutive dimen-  Several research contributions have ugedusters to
sions. The generated subspace clusters contribute to the didiscover subspace clusters [8, 12, 13, 14]. However, the
covery of useful knowledge, since they reveal a high degreeconcept of §-clusters is treated differently. In [8])-
of similarity among streams participating in the same clus- biclusters have been proposed to find subspace clusters in
ter. a set of genes and conditions of DNA microarrays. In [13],
The paper presents a methodology to attack the continuthe pScore metric has been proposed to measure the coher-
ous subspace clustering problem by proposing the subspacence of a cluster. The method determines object and at-
a-cluster. We study effective algorithms towards efficient tribute pair-wise clusters and utilizes a prefix-tree to gen-
subspacex-cluster generation for a set of streaming time erate clusters in a high-dimensional space. The same met-
series. Towards this direction, we propose a method to up-ric has been used in [12] to find pair-wise clusters, along
date the clusters when new stream values become availwith a depth-first-search algorithm to prune redundant non-
able, avoiding the process of reclustering. The generatedmaximal clusters. In [14], it has been shown that the above
a-clusters are defined only on consecutive dimensions. Inmethods do not scale well in large data sets, and therefore
summary, the contributions of this work is as follows: the authors have proposed the Counting Tree data structure,
that provides a compact summary of the dense patterns. The
(i) the study of the subspace clustering problem in stream- apove methods operate on non-evolving data sets. It is not
Ing time series, straightforward to apply these methods for the streaming
case, since they rely on algorithms that can not be easily
adapted.
Recently, the problem of data stream clustering has at-
(iii) the performance evaluation of the proposed method tracted the research interest [6, 10]. The majority of these
based on real-life and synthetic data sets. contributions apply thé-median clustering technique. The
fundamental characteristic of the proposed methods is that
The rest of the work is organized as follows. In Section they attack the problem of incremental clustering for the
2 we discuss the appropriate related work. Section 3 stud-values of only one data stream. However, this is quite re-
ies in detail the proposed method for continuous clustering strictive, taking into account that modern applications re-
of streaming time series. Section 4 presents performanceyuire the management of a large number of data streams.
evaluation results, whereas Section 5 concludes the work. Moreover, in [11], the authors show that the clustering of
the values of streaming time series is meaningless. Notice
2  Related Work that our method groups incrementally steaming time series,
that produced by different data streams, in clusters by using
their values and doesn’t group their values.
To the best of the authors’ knowledge, this is the first at-
tempt to solve the incremental subspace clustering problem
&n streaming time series.

(ii) the study of continuous subspace clustering taking into
account the time series evolution, and

Clustering is a well studied research field in diverse dis-
ciplines with significant research contributions. In [5] it has
been demonstrated that similarity search and clustering ar
meaninglesgor spaces that are embedded in a very large
number of dimensions. This observation has lead a signif- .
icant number of researchers to study alternative clustering3 ~Incremental Clustering
methodologies. One research direction that has been fol-
lowed is subspace clustering. Table 1 summarizes the basic symbols and the corre-

In [3], the authors have studied the problem of subspacesponding definitions that are used throughout the study.
clustering in a high-dimensional space and they have pro- We begin our exploration with a number of basic
posed CLIQUE, which is a grid-based bottom-up algorithm definitions that are used for the rest of the work.
to discover density-based clusters. CLIQUE determines
dense cells and merges them to create clusters in a highbefinition 1 (simplea-clustep
dimensional space. In [7], the concept of entropy is used toA simple a-cluster contains a number of streams with



Symbol

Description

s, S a streaming time series

s[4 the value ofs in the:-th dimension

N the number of streams

w the size of the sliding window

C; a maximal subspace-cluster

Ci,j the j-th simplea-cluster of thei-th dimension

c, c simplea-clusters

m number of streams in a cluster

G,G; a group of candidate-clusters

minRows minimum number of streams contained in a
subspacex-cluster

minCols minimum number of consecutive dimensions
contained in a subspaeecluster

« maximum distance between any two streams
for a given dimension

Table 1. Basic symbols used throughout the
study.

pair-wise distances at moatin a single dimension. There

is no restriction applied to the number of streams contained

in each cluster.

The j-th simplea-cluster in thei-th dimension is rep-
resented as; ;. The previous definition does not take into

consideration possible restrictions applied to the number
of streams in each cluster and the number of consecutive .

dimensions. By forcing each cluster to contain at least
minRows streams and at leastinCols dimensions we
have:

Definition 2 (subspacev-clustel)

A subspacex-clustercontains at leastin Rows streams,
for which the maximum value difference is at masin at
leastminCols consecutive dimensions. O

In the example illustrated in Figure 1, assuming that
minRows = 2, minCols = 3 anda = 2, we have two gen-
erated subspaceclusters containing streamsand B, de-
fined by the dimension§ls, dg] and [dy, d17]. However,
assuming thatninCols = 5, we have only one subspace
a-cluster defined by the dimensiofi, d;7].

A subspacea-cluster C' is represented as a pair
(S8.[ds,d;]), whereS is a set of streams and;[d;] is an in-
terval of j — ¢ + 1 consecutive dimensions (time instances),
where; < j. Evidently, the cardinality of must be at least
minRows, whereas the number of consecutive dimensions
must be at leastninCols. We assume that the streams
contained inS are represented by their corresponding IDs.
Furthermore, we assume that stream IDs are storediim
a nhon-decreasing order.

Definition 3 (maximal subspace-clustel)
A subspacex-cluster §,[d;,d;]) is maximal if a) we can
not find anothew-cluster §,[dy,d;]) such thatt < i and

[ > j and b) we can not find anothercluster (,[d;,d;])
suchthatS c 7. |

We proceed with the detailed description of the proposed
methodology, which attacks the following problef@iven
a set of streaming time series, a maximum value differ-
enceq, a sliding window sizédV and two integer numbers
minRows andminCols, determine all maximal subspace
a-clusters continuouslyyhere each cluster contains at least
minRows streams, and the value difference is less than or
equal toa, in at leastninCols consecutive dimensions.

The proposed methodology comprises the following
phases: (i) the initialization phase, which determines an
initial set of maximal subspace-clusters, and (ii) a series
of update phases which incrementally maintain the clusters
when new stream values become available.

3.1 Cluster Initialization

The purpose of the cluster initialization (CI) is to deter-
mine an initial set of maximal subspaceclusters, based
on the last? values of each streaming time series. The Cl
process comprises a series of steps. In the first step, each
time instance (dimension) is inspected separately to deter-
mine simplea-clusters (which are defined in one dimen-
sion only). Next, all clusters containing = 2 streams in
the maximum possible number of dimensions are generated.
In each subsequent step the algorithm tries to increase the
number of streams per cluster.(= m + 1), until all pos-
sible maximal subspace-clusters are generated, according
to the values oty, min Rows andminCols. Clusters that
contain less thaminCols dimensions are discarded per-
manently in each step of the algorithm, since they can not
contribute to the final answer.

dimensions
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Figure 2. Cluster initialization.

We illustrate the Cl process by means of an example,



which is depicted in Figures 2, 3 and 4. Assume that therestreams;. Some of these clusters will be rejected, whereas

are N = 5 streaming time series with a sliding window of the others will be used to form candidate 3-level clusters.

sizeW = 4. Moreover, letae = 2, minRows = 4 and

minCols = 3. Figure 2(a) shows the value of each stream Proposition 1 (cluster pruning criterioi

in every dimension, Figure 2(b) shows subsets of values thatif the number of candidaten-level clusters contained

satisfy then constraint, whereas Figure 2(c) shows the gen-in a group is less thaminRows — m + 1 then all the

erated simplex-clusters fora = 2. clusters in this group can be safely discarded from further
To determine the simple-clusters for each dimension consideratioh O

we proceed as follows. The values in each dimension are

sorted in a non-decreasing order. The produced sorted Evidently, all candidate clusters in the first group survive

sequenceS is processed by means of two pointeisy, the cluster pruning criterion. At a first glance, it seems that
and prigne. Initially, pier+ and prigne are placed on the  all four clusters qualify, since each pair of streams contain
first element of the sorted sequence. The poiptess. at least three dimensions. However, with a more careful

is continually increased until it reaches an element wherelook we can see that dimensialh must be rejected. The
|S[piefe] — Sprignt]| > cv. Ifthis happens, then all elements  following proposition explains.

Spicstls Slpiest + 1, ..., S[prigne — 1] form a cluster in

the corresponding dimension. Then, the poimigf; is in- Proposition 2 (dimension pruning criterion

creased by one, and the same process is appliedpfil If each candidate-cluster in a grouggs contains exactlyn
reaches the end of the sorted sequence. If two clusters end aitreams and the number of occurrences of a dimension in
the same element, the one containing the minimum numberG is less thannin Rows — m + 1, then this dimension can

of elements is discarded. not contribute to the generation of subspacelusters. O
o | ara Todedon If dimension pruning affects an existing cluster, either
e 2] o | ded, | gl oo, }gggp the cluster will be rejected, if the number of dimensions is
| o | & | & [a Gl e e iliIZ less thanminCols, or will shrink, if the number of dimen-
Y PO s e Il 4 - M CELTLT }grg;p sions is at leastinCols. Applying the dimension pruning
8ol o | on | on || 7] sss | drds |oudenioren criterion to our case, it is evident that dimensitirhas only
ol e | o | o e | S| | Fa |20 e g two occurrences, (see Figure 3(c) and therefore must be re-
e e I B Rl B A y %’ jected from further consideration. This means that clus-
(&) simple a-clusters (&) candidate Z-level a-clusters (m=2) ter no.3 contains streams;, s4} and dimensiongs, ds.
dimensions |occurences However, sinceninCols = 3 this cluster is rejected (Fig-
] s ure 3(b)).
d, 4
_dA 2 No| streams |dimensions | simple a-clusters ~_No | streams | di | simple a-clusters
(c) dimension occurences for group G1 1 [ onsp sy | drdy | s Jopsless 1505505 didy |0ralCailCss
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Figure 3. Cluster initialization (continued).

(a) candidate 3-level a-clusters (m=3) (b) candidate 4-level a-clusters (m=4)

Following the generation of the initial set of simple
a-clusters, the next step considers pairs of streams and Figure 4. Cluster initialization (continued).
determines if there are any simpteclusters with two
streams . = 2). Figure 3(a) depicts the generated simple  Next, the method tries to merge the clusters that survived

a—cluste_rs for each dimension, whereas Figure 3(b) showsihe previous step, towards the generation of clusters con-
all possible 2-level clusters that are generated. Each 2'|eve¥aining m + 1 streams. Therefore we try to combine the
cluster is formed by combining two streams that have com- ¢|sters no.1 with no.2, no.1 with no.4 and no.2 with no.4

mon simplea-clusters, in each one of at leastinCols (recall that no.3 has been rejected). These combinations are
consecutive dimensions. The common simplelusters  gepicted in tabular form in Figure 4(a). The clusters are cat-
are illustrated in the fourth column of Figure 3(b). The ggorized in two different groups. Each group should contain
candidate 2-level clusters are separated in four differentc|,siers that share all stream IDs, except the last. For exam-
groups, as itis indicated by the dashed lines in Figure 3(b). pje, candidate clusters no.1 and no.2 are contained in the

All candidate clust_ers i_n each group must shate— 1 _ first group since they differ in the last stream only, and they
streams and can differ in only the last one. Each group ispayve two streams in common ands,. Again, at a first
treated separately, and therefore, we begin with the first

group which is composed of candidate clusters containing 1The proofs of the propositions are omitted due to lack of space.




glance all three candidate clusters of Figure 4(a) qualify.

However, cluster no.3 can be safely rejected, as it is sug-Algorithm CI(S,a, minRows, minCols, W)

gested by the cluster pruning criterion (Proposition 1). This "PUt

is illustrated by the shaded row in Figure 4(a). Sj rsne;XOf zltriaénf?érence for a dimension in a cluster
By inspecting clusters no.1 and no.2 in the first group it :{inRqus:uminlnumber of stre;ms ;ér C|Iuster,us ’

is evident that both clusters survive both pruning criteria. ;. o15: min number of dimensions per cluster,

Therefore, these two clusters can be combined towards the  yy: sliding window size

generation of a single 4-level cluster, which is illustrated in output

Figure 4(b). Recall, thatvinRows = 4 andminCols = A: set of maximal subspace-clusters

3. Therefore, this cluster is recorded as an answer, since

it contains four streams and these streams form a subspace

a-cluster in three dimensions. 1 fori=ltoW S
Let us now check the second group of clusters depictedg' g?mpute all simple:-clusters for dimensiod;;
in Figure 3(b). The candidate cluster no.6 would never > en ‘_Or .
. . . . 4. for i=1to N — minRows + 1
be created by the algorithm, since it does not satisfy the5 setm — 2

minCols restriction. It is shown here only for demonstra- 6.

! 8 . generaten-level candidatex-clusters for strean
tion purposes. This means that there are now only two can-7.

apply cluster pruning;

didate clusters in this group. According to the cluster prun- g,
ing criterion these clusters should be discarded without anyg,
further consideration.

Up to this point, we have checked all candidate clusters

of streamss; ands,. Is it necessary to check the clusters 11.

for streamsss, s4 andss;? Since there are three remaining
streams it is impossible to generate a 4-level clusterlf’1

10.

apply dimension pruning;

while there existn-level candidateso
generaten + 1-level candidatex-clusters that
containminCols or more dimensions;
increase m;
if m > minRows and
C is maximal subspace-clusterthen

update4;

(minRows = 4), as it is illustrated by the Proposition 3.

15.

16.
Proposition 3 (stream pruning criterioh 17.
If the number of remaining streams is less thain Rows 18.

end if

apply cluster pruning;

apply dimension pruning;
end while

then all groups of candidate clusters generated by thesel9. end for
streams can be safely discarded since it is impossible t020. reportA;

give subspace-clusters. O

Algorithm CI stops at this point and reports as an answer
the cluster illustrated in Figure 4(b). Proposition 4 shows
that it is not possible to miss any cluster.

Figure 5. Outline of ClI algorithm.

Proposition 4 (correctness of Cl algorithin

most dimension should be discarded and a new one should
be included. An example is illustrated in Figure 6(a), where

By treating each group of candidate clusters separately, it iSstream values in dimensiah should be rejected, whereas

impossible to miss a maximal subspaceluster. O

Algorithm CI computes all maximal subspace-
clusters, by considering only candidateclusters which

stream values in dimensiafy should be taken into consid-
eration to update the clustering information. This requires
the deletion of all simplex-clusters of dimension; and
the determination of all simple-clusters for dimensiods.

belong to the same group. This way, it is impossible to dis- These clusters are illustrated in Figure 6(b).

cover the same cluster more than once and therefore, less

computational effort is required. The outline of the Cl algo-

dimensions
deleted

deleted

dimensions

rithm is depicted in Figure 5. [ o] o 4] aa a0 | o | a ||
s, |74|46|67|55]|8.2 St|l Gz | o Cap|Can Cag| Can | Csz

3.2 Cluster Maintenance 2| 5 |[64]37|82/8016.1]  £]%2|CunCizl Gy | Gy | Cap | G
§4 s, 81|39 (865683 98| e, | Cor | o | Cr | G2

%l s,|52|60|55|5855 Sell Gy | Ca | Car | Car | Csn

The purpose of the cluster maintenance (CM) phase isto | s, |80|32|7.8|83 |50 S| € | G | G | Cup | s

keep the answers up to date. This phase is executed when
new values for all the streams become available. Since pro-
cessing is based on the sliding window paradigm, the left-

(a) stream values (b) simple a-clusters

Figure 6. Arrival of dimension  ds.



Algorithm CM-UPALL (S, a, minRows, minCols, W)
Input
S: set of streams,

«: max value difference for a dimension in a cluster,

minRows: min number of streams per cluster,
minC'ols: min number of dimensions per cluster,
W sliding window size

Output
A: set of maximal subspace-clusters

delete all the simple-clusters of the first dimension;
find all the simplex-clusters for the new dimension;
update existing maximal subspae&lusters;
delete the clusters that have less thamCols
dimensions;
for i=1to N — minRows + 1

setm = 2;
7. generaten-level candidatex-clusters of

streami only for the lastninCols dimensions;

8. apply cluster pruning;
9. while there existn-level candidatedo

PR

oo

10. generaten + 1-level candidatex-clusters that
containminCols dimensions;

11. increase m;

12. if m > minRows and

13. C'is maximal subspace-clusterthen

14. update4;

15. end if

16. apply cluster pruning;

17. end while

18. end for

19. reportA;

Figure 7. Outline of CM-UPALL algorithm.

The cluster maintenance algorithm CM-UPALL, which

is depicted in Figure 7, operates in two steps.

with less thanminCols dimensions, then it is deleted.
Finally, the other clusters that are not affected by the
deletion ofd; and the inclusion ofi; are considered part
of the new answer. To search for new clusters that may
have been formed due to the inclusion of dimensign

the algorithm inspects only the lastinCols dimensions
(Proposition 5).

Proposition 5 (correctness of CM-UPALL algorithm
Let d,.., be the newly created dimension. To search for
new clusters it is sufficient to study the lagstinCols

dimensions (i-e-;dnew—minCols+11 dnew—minCols+2y seey
dnew)- Od

4 Performance Evaluation

The proposed method has been implemented in C++
and all experiments have been conducted on a Pentium IV
at 3.6 GHz, with 1 GB RAM, running Windows XP. In the
sequel, we present the data sets that have been used in our
experiments and the experimental results obtained by the
performance study. The performance evaluation is based
on the following data sets:

SYNTHETIC : The parameter values used (if not otherwise
specified) are: the number of stream¥)(is 5000, the
sliding window (#) is 100, « = 0.0, the number of
embedded maximal subspaaeclusters is 100, and each
one contains 50 streams in 10 dimensions.

STOCKS: The data set consists of a number of series
denoting the closing prices of stocks and can be obtained
from http://finance.yahoo.com. Each stock has been subdi-
vided to a number of subseries of length 200, to obtain a
total of 2313 different time series.

ECG: The data set contains electrocardiograms of two-
channel recordings and can be obtained from the MIT-BIH

1. In the first step, existing maximal subspacelusters
are checked, since some of them may be rejected du
to the deletion of dimensiog,. Moreover, some of the
existing clusters may be expanded by the inclusion of
the newly created dimensiai.

Arrhythmia Database (http: //www.physionet.org/physio
eDank/database/mitdb/). Each channel was digitized at 360
samples per second. We chose an electrocardiogram of a
sixty nine years old male, containing 650000 samples. To
form the data set, we picked 30000 of out of the 650000

2. In the second step, the algorithm searches for newPOints randomly and each time series is formed from the

maximal subspace-clusters that may be generated Consecutive 200 values of the selected point.

due to the arrival of the new dimensidg. N ) o
Initially, we examine the efficiency of the proposed prun-

Initially, each cluster containingl, as its right-most  ing criteria. Recall that to generate-level a-clusters, the
dimension is checked for possible expansion by adding (m — 1)-level clusters are required. It can be shown that
dimensionds. If the cluster can be expanded, it is included the total number of possible clusters that can be generated
in the answer. Next, dimensios; is deleted from all is 2V — 1, where N is the number of streaming time se-
clusters that contain it. If by deleting, a cluster is left ries. However, the application of the pruning criteria man-
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\ is set to 100. Figure 10(a) shows that the cost decreases as
I\ Lo the parametersiin Rows andminCols increase their val-
RN R ues. In Figure 10(b), it is shown that the cost decreases as

streams per cluster streams per cluster

minRows increases and: decreases. A small gives a
large number of simple-clusters and therefore, the prob-
ability that two streams will belong to the same simple
cluster is reduced. Thus, the number of maximal subspace

Figure 8. Pruning power for STOCKS. a-clusters decreases.

Finally, Table 2 shows the number of maximal subspace

. a-clusters for the ECG data set. The sliding window size
ages to reduce drastically the number of generated clusterg; ¢t 1o 100. The table depicts the number of clusters, the

This effect is demonstrated in Figure 8, which depicts (1)¢ogt of cluster initialization phase, the number of clusters

the total number of clusters in each level, (2) the number,hon some update operations have been performed and the
of pruned clusters due to cluster pruning, (3) the number Ofaverage update time.

pruned clusters due to dimension pruning and (4) the num-
ber of affected clusters by the dimensionality shrinkage. Itproposed algorithm in the ECGy (— 2) data set. It is evi-

is evident, that the majority of the candidateclusters is . . T
. o o . dent, that there is a high degree of similarity among streams
discarded. Cluster pruning is more significant when it hap- . o )
belonging to the same cluster for the specific dimensions.

pens in the first levels, since more clusters are pruned su
sequently.

(@) a = 0.2, minRows = 15, minCols = 3, W = 100
(b) a = 0.2, minRows = 5, minCols = 6, W = 100

Figure 11 illustrates some of the clusters identified by the
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Fi 9 R i lid . Figure 10. Response time vs (&) minRows and
\gureé 9. kesponse time vs (a) sliding win- minCols (« fixed at 0.2) and (b) minRows and
dow size and (b) number of streams. o (minCols fixed at 5) for STOCKS.

Next, we study the scalability of the method with re-
spect to the size of the sliding windowi{) and the num-
ber of streams/). The corresponding results are depicted
in Figure 9. The graph has logarithmic scale along the y
coordinate. We give both the initialization and the update
time. Figure 9(a) illustrates the scalability of the method
with respect to the sliding window size. Figure 9(b) depicts
the scalability of the method with respect to the number of
streams. In order to have a similar set up, we generated dif-
ferent synthetic data sets of 1000 to 20000 streams. In each
data set, we embedded 100 maximal subspactusters,
but we varied thenin Rows parameter so that the number
of values used in the clusters to be proportional to the to-
tal number of values. In both cases, the cost of Cl is more
significant than that of CM-UPALL. It is evident that the Figure 11. Examples of maximal subspace a-
incremental subspace clustering using the CM-UPALL pro-  clusters for ECG data set.
cedure outperforms the reclustering process by applying the




number of clusters and average update time after
« minRows | minCols initialization 5 updates 10 updates 15 updates 20 updates
0.0 30 3 984 2695.75| 980 65.08 | 984 68.41 | 979 68.15| 986 68.90
0.0 150 2 76  8211.28| 75 65.96 | 72 64.60 | 71 86.40 | 69 76.88
1.0 10 9 335 1362.11| 321 73.67 | 314 75.27 | 310 76.06 | 311 77.31
1.0 35 5 220 9879.22| 209 219.32| 203 231.61| 201 231.60| 194 237.57

Table 2. Number of clusters and average update time for ECG.

5 Conclusions

We have studied the problem of continuous subspace
clustering in streaming time series data. More specifically,

[6]

a novel method has been proposed towards efficient cluster [71
generation and maintenance. Each cluster is composed of a

number of streaming time series, where the pair-wise value

difference inside a cluster is at mestsubject to the restric-
tions that the minimum number of streamsisn Rows and

the minimum number of dimensions i8inCols.

It has

[8]

been demonstrated that by using the proposed pruning cri-
teria, significant search space reduction is achieved.
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