

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-788386

Maik Thiele, Wolfgang Lehner

Shrinked Data Marts Enabled for Negative Caching

Erstveröffentlichung in / First published in:

10th International Database Engineering and Applications Symposium (IDEAS'06). Delhi,
11.-14.12.2006. IEEE, S. 148-158. ISBN 0-7695-2577-6

DOI: https://doi.org/10.1109/IDEAS.2006.41

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-788386
https://doi.org/10.1109/IDEAS.2006.41

Shrinked Data Marts Enabled for Negative Caching

Maik Thiele, Wolfgang Lehner
Dresden University of Technology

01069, Dresden
{maik.thiele,lehner}@tu-dresden.de

Abstract

Data marts storing pre-aggregated data, prepared for
further roll-ups, play an essential role in data warehouse
environments and lead to significant performance gains in
the query evaluation. However, in order to ensure the
completeness of query results on the data mart without to
access the underlying data warehouse, null values need
to be stored explicitly; this process is denoted as nega-
tive caching. Such null values typically occur in multi-
dimensional data sets, which are naturally very sparse. To
our knowledge, there is no work on shrinking the null tuples
in a multi-dimensional data set within ROLAP. For these tu-
ples, we propose a lossless compression technique, leading
to a dramatic reduction in size of the data mart. Queries
depending on null value information can be answered with
100% precision by partially inflating the shrunken data
mart. We complement our analytical approach with an ex-
perimental evaluation using real and synthetic data sets,
and demonstrate our results.

1 Introduction

Efficient processing of aggregation operations is one of
the most crucial requirements within OLAP (OnLine An-
alytical Processing). The notion of online processing em-
phasizes the need of short response times for a highly in-
teractive data exploration. Common techniques to speed
up OLAP queries include the precomputation of aggregates
and caching. Data marts storing pre-aggregated data, pre-
pared for further roll-ups, play an essential role in OLAP
and lead to significant performance gains in the query eval-
uation. However, resulting null values must be stored ex-
plicitly, since the non-existence of a tuple is a necessary,
valuable piece of information [13]. It denotes the difference
between a computed aggregate value which was null, i.e. no
data was available and an aggregate which is not existent
within the data mart, whose value is unknown. Hence, neg-
ative caching, i.e. storing null values, enables us to revise

for every query whether it could be answered completely or
not and avoids the round-trip to the underlying data ware-
house.
Thus, we do not focus on the computation of summarized
cubes; instead, we provide a summarization scheme for null
values to enhance cache enabled data marts storing user-
defined aggregates.

Example

We will sketch our main idea for a typical example of an
OLAP query, asking for international car sales, as illustrated
in Figure 1. The example table contains sales and turnover
data for a particular country, by month and by car family,
further divided by a set of features, e.g. brand and color
(the numbers are fictitious). Here, symbol ”*” in a dimen-
sion means that the dimension is generalized such that it
matches any value in its domain. Consider the car family
”Pickup,” which is quite popular in Canada but very rarely
seen in Europe. As it points out, there are a lot of sales in
Canada, very few in Germany, and no sales at all in Italy for
that car type. Furthermore, we see that the brand ”Dodge”
is not well established in Germany since it has no sales in
”May 2006” (see tuple 7). From this fact, it can be inferred
that there cannot be any sales for Dodge pickups at all in
that period in Germany, independent of additional feature
combinations, e.g. colors. So, by preserving the informa-
tion that tuple 8 (”Dodge,” ”silver”) and tuple 9 (”Dodge,”
”white”) are inferable from tuple 7 (”Dodge,” null), both tu-
ples can be deleted. In the case of Italy all null tuples can be
deleted which are inferable from tuples 12 and 14. In reality
very few countries, if any, sell all the car brands monitored
by economists. Thus, it is very likely that the number of
null tuples exceeds the number of tuples which have a value
for the measure of interest.

Contribution

The example from the previous section should show from a
conceptual point of view that null values appear frequently

Final edited form was published in "10th International Database Engineering and Applications Symposium (IDEAS'06)", Delhi, 2006. ISBN 0-7695-2577-6.
https://doi.org/10.1109/IDEAS.2006.41

1

Provided by Sächsische Landesbibliothek Staats- und Universitätsb bliothek Dresden

in multi-dimensional data sets and that there exist struc-
tural dependencies between them. To generalize our idea,
we want to extract a set of dependency rules from a multi-
dimensional data set in order to achieve high compression
ratios by applying these rules. So, our notion of compres-
sion is to shrink the data mart by deleting null tuples and
maintaining full ability to answer any query. In detail we
make following contributions:

• We propose an algorithm which extracts a set of de-
pendency rules from a multi-dimensional data set R.
By applying these dependency rules null tuples in R
can be deleted (deflation step).

• In order to guarantee that all queries relying on the
null value information can be completely answered we
propose a partial inflation mechanism, which uses the
shrinked relation and the dependency rules to recon-
struct the original null values.

• An important aspect of each compression scheme is
the handling of updates. We propose some tech-
niques to handle updates, insertions and deletions
with as little work as possible, avoiding the complete
de/recompression of the data.

• We conduct a comprehensive set of experiments on
both real and synthetic datasets. Our experiments show
very high tuple reduction ratios for uniformly distrib-
uted data as well as for highly skewed data.

Organization of This Paper

In section 2 we discuss related work. Section 3 presents
our algorithm to shrink the null tuples. Section 4 discusses
methods to handle updates on the shrunken data mart. The
effectiveness of our algorithms, based on the experiments
from both synthetic data and real data sets is analyzed in
Section 5. Finally, Section 6 concludes the paper and dis-
cusses future work.

country month family brand sales turnovercolor

Canada
Canada
Canada
Canada

…
Germany
Germany
Germany
Germany
Germany

…
Italy
...

Italy
...

May-06
May-06
May-06
May-06

…
May-06
May-06
May-06
May-06
May-06

…
May-06

...
June-06

...

Pickup
Pickup
Pickup
Pickup

…
Pickup
Pickup
Pickup
Pickup
Pickup

…
Pickup

...
Pickup

...

*
Dodge
Dodge
Dodge

…
*

Dodge
Dodge
Dodge
VW
…
*
...
*
...

*
*

silver
white

…
*
*

silver
white
silver

…
*
...
*
...

14.300
3.800
1.900
1.150

…
255
null
null
null
230
…
null
…
null
...

150.2 Mio
 43.4 Mio
 21.4 Mio
 13.8 Mio

…
 4.8 Mio

null
null
null

 4.3 Mio
…
null
…
null
...

measuresfeature attributesclassification attributes

 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:
12:
13:
14:
15:

Figure 1. Multi-dimensional Data Set

2 Related Work

In order to reduce the size of database tables, an obvious
solution is the use of traditional data compression meth-
ods which are based on statistics or dictionaries [16] [6].
Such methods are syntactic in nature, since they view a ta-
ble as a large byte string. To avoid the de/recompression of
the whole database during a table access, separate compres-
sion of individual tuples and individual attributes is possi-
ble. However, syntactic compression is usually not effec-
tive on small byte sets. Other compression methods which
eliminate duplicate values in a database block perform bet-
ter but do not consider the specific characteristics of multi-
dimensional data [10].
In the domain of MOLAP, mapping-complete compression
methods, such as header compression [4] and chunk-offset
compression [15], which require adjacency preservation of
the multi-dimensional data, are widely used.
More recently, compression techniques which take seman-
tics of the table into consideration during compression are
presented in [1, 8, 7, 9, 14]. Recent work on Condensed
Cubes [14] and Quotient Cubes [8, 9] is perhaps the clos-
est in spirit to our work. Both of this fields try to group
tuples of the cube with similar aggregation values into par-
titions. Since we focus on aggregates with null values, this
can be seen as one large partition consisting of tuples that
all have the same constant value. Condensed cubes explore
the properties of single tuples so that a number of tuples in
a cube can be condensed into one tuple and an additional
single dimension set. A simple operation can expand a con-
densed tuple to all the ”hidden” cube tuples it represents.
This is similar to our idea of seed tuples from which cov-
ered tuples can be inflated; however, we use a top-down ap-
proach to find the most general tuples and to keep the rules
set as small as possible. Similar to condensed cubes, a quo-
tient cube is a representation of a cube in terms of classes of
cells. Each class contains cells that have the same aggregate
value. Compression is achieved because only the lower and
upper bound cells for each class have to be stored.
The notion of iceberg cubes is to compute only the group-
by partitions with an aggregate value above some minimum
support threshold and was first introduced by [2]. In prac-
tice, it is often difficult to decide whether an aggregate value
is interesting or not, especially in our approach, where we
even store aggregates with null values. The Minimum De-
scription Length principle (MDL) has been applied in vari-
ous studies to provide summaries. In the domain of OLAP
applications, [3] studied the problem of finding summaries
for k-dimensional cubes with tree hierarchies, where S gen-
eralizes the query results and H describes all the exceptions
to the generalization. Dwarf Cubes are compressed data
structures that can reduce the size of the data cubes by re-
moving prefix and suffix redundancy. The degree of com-

Final edited form was published in "10th International Database Engineering and Applications Symposium (IDEAS'06)", Delhi, 2006. ISBN 0-7695-2577-6.
https://doi.org/10.1109/IDEAS.2006.41

2

Provided by Sächsische Landesbibliothek Staats- und Universitätsb bliothek Dresden

pression is based on the density of multi-dimensional raw
data [11, 12].
Database compression with data mining methods is pro-
posed in [5]. Their contribution is to find rules in a rela-
tional database using the Apriori Algorithm and storing the
data using these rules to achieve high compression ratios.
The separation into a shrunken data set and a collection of
rules from which the original state can be inferred is similar
to our approach.
In spite of relationships to the work above, we do not focus
on cube computation from the scratch. Instead, we are in-
terested in shrinking user-defined multi-dimensional query
results which are rich of null values in a caching scenario.
Because of that background, we also focus on the handling
of updates, which is one of the most crucial aspects in the
domain of caching.

3 Shrinking the Data Mart

In this section, we develop algorithms to deflate the data
mart as well as a compact data structure to store and search
the shrunken data mart efficiently.

Preliminaries

Multi-dimensional data sets are stretched by orthogonal di-
mensions, which can be further divided into classification
and feature attributes. Classification attributes CAi (i =
0, ..., n) define a hierarchy of dimensional elements and are
ordered according to their functional dependencies. In con-
trast, feature attributes FAi (i = 0, ..., n) represent descrip-
tive properties of the dimensional elements and solely be-
long to a classification hierarchy with top element ”ALL.”
In this paper, we will use relation R(A,B, C, D, E, F,M)
as a running example. R consists of six feature attributes,
A to F , and one measure attribute M . The relation is
filled with a number of user-defined aggregates as it is
shown in Figure 2(a), where we use ”*” to denote the
special value ”ALL.” A combination of feature attributes
which occurs in R is denoted as feature set or node F ,
i.e. F = {FA1, ..., FAn}. An instance of a feature set
F is a tuple which solely has values for the appropriate fea-
ture attributes FAi ∈ F . The feature sets form a lattice
(Γ,≺), illustrated in Figure 2(b). Γ represents all occur-
ring feature sets in a relation R whereas ≺ specifies the
depencies between the single feature sets. (Γ,≺) is not
a representation of the full cube, since not every feature
set occurs in R, e.g. R does not contain instances of fea-
ture set (∗, B, ∗, ∗, ∗, ∗) abbreviated as B; hence, it is not
part of the lattice. The reason is that not every feature set
represents an interesting fact and therefore not every fea-
ture combination appears in the relation. The edges are

defined as F (FA1, ..., FAn) ≺ F ′(FA′
1, ..., FA′

n); when-
ever FA′

i 6= ∗, we have FAi = FA′
i, for all i.

Null Ratio and Feature Dependency

In addition to the lattice structure above, we are further in-
terested in the null ratio of each node.

Definition 3.1 (Null Ratio) Given a feature set F in a re-
lation R, Cv(F) denotes the cardinality of tuples which are
instances from F and having a measure value M 6= null in
R. Similarly, Cn(F) is the cardinality of tuples which have
a measure value M = null. Given both values, we define
the null ratio ρ of a feature set F as

ρ(F) =
Cn(F)

Cv(F) + Cn(F)

The intuition behind this definition is the following: Con-
sider feature set F = (A) in Figure 2(b). It has two in-
stances in relation R, one having a null value for measure
M, and one having a value of 600 (tuple 1 and 2). Therefore,
the null ratio of A is ρA = 0.5. Under the assumption of a
uniform distribution it can be inferred that every descendant
feature set of A must have a null ratio larger or equal then
ρ(A), e.g. ρ(AB) = 0.83 > ρA = 0.5.

Definition 3.2 (Uniform Distribution) Uniform distribu-
tion in our context means that every instance of a feature
attribute in Fi also occurs in every descendant feature set
Fj ≺ Fi.

So, the two instances of feature set A, a1 and a2, should
also occur in each feature set AB, AC, AD, ABC, and so
on. Due to the way how multi-dimensional data is explored,
this assumption is held more or less by many real data sets.
However, we are not restricted to a uniform distribution; it
simply represents just the best case. We will also evaluate
the efficiency of our algorithms for skewed data in Section
5.
Finally, we need to define the width of a feature set:

Definition 3.3 (Width) The width of a feature set Fi is de-
fined as the number of feature attributes which occur in Fi.

Seed Tuple Characteristics

During the previous discussion, we have shown that for
a multi-dimensional relation R, a lattice structure exists
whose nodes consist of the occurring feature sets in R and
the appropriate null ratio ρ. This leads to our new approach,
which is to reduce the size of that partition of R which con-
sists of null values only, denoted as Rnull ⊆ R. The process
of shrinking Rnull is based on so called seed tuples, which
we characterize below.
Consider feature set A, which has two instances a1 and a2

in relation R. Their values are null and 600 respectively,

Final edited form was published in "10th International Database Engineering and Applications Symposium (IDEAS'06)", Delhi, 2006. ISBN 0-7695-2577-6.
https://doi.org/10.1109/IDEAS.2006.41

3

Provided by Sächsische Landesbibliothek Staats- und Universitätsb bliothek Dresden

A

AB

DC

ADAC CDBC

ABC BCD

ABCD

1/2 = 50% 1/10 = 10% 20%

95%

90% 70%

5/6 = 83% 40% 60% 50% 25%

A B C D M
a1 * * * null
a2 * * * 600

* c1 * null
* * c2 * 40
* *
* * c10 * 305

* * d1 90
* * * d2 null
* * * d3 150
* * * d4 200
* * * d5 110
a1 b1 * * null
a1 b2 * * null
a1 b3 * * null
a2 b1 * * 400
a2 b2 * * null
a2 b3 * * null
... null
* * * * null
* * * * null

*

*

*

E F
* *

* *

* *

* *

*

* *
* *

* *

* *

* *

* *

* *
* *

* *

* *

* *

* *
... ...
e1 *
e2 *

*

E2/2 = 100%

EF100%

all
1
2

4
5
6

8
9

10
11
12
13
14
15
16
17
18
19
20

7

3

Figure 2. a) Example Relation R and b) the appropriate Feature Set Lattice

which leads to a null ratio of ρA = 0.5. Under the assump-
tion that Definition 3.2 holds, it can be concluded that 50
percent of all null tuples t ∈ Fi ≺ FA must be null, too.
For example, tuples 12 − 14 in Figure 2(a) are null, since
they contain a1 as instance of feature attribute A; we denote
A as seed feature set and say (a1, ∗, ∗, ∗, ∗, ∗) is a seed tu-
ple because it covers (a1, b1, ∗, ∗, ∗, ∗). Seeds are those null
tuples which need to be stored physically and from which
a set of other null tuples can be generated. In detail, we
distinguish three groups of null tuples:

• Redundant tuples, Rredundant ⊆ Rnull, are those tu-
ples whose existence can be inferred from the set of
seed tuples Rseed, and which can be deleted from
Rnull, e.g. (a1, b1, ∗, ∗, ∗, ∗). When deleting the re-
dundant tuples, we say Rnull deflates to R′

null.

• The set of seeds Rseed ⊂ Rnull, consists of those
tuples from which the existence of other null tuples
can be inferred and which must be kept explicitly,
Rseed ⊂ R′

null.

• The outliers, Routlier ⊆ Rnull, are those tuples which
are not covered by a seed tuple and therefore cannot be
deleted; Routlier ⊂ R′

null.

Before we discuss the required qualifications of a tuple
to become a seed tuple, we need to define the cover ratio of
a feature set. Consider the feature sets A and D in Figure
2(b). From these sets, it can be derived that 50% of all null
tuples in feature set AD are covered by A and 20% are cov-
ered by D. In general, the cover ratio of a feature set Fn,
covered by a set of feature sets C, is defined as follows:

Definition 3.4 (Cover Ratio) The cover ratio ω(Fn, C) of
a feature set Fn covered by a set of feature sets C, where

Fn ≺ Fi for each Fi ∈ C is defined to be

ω(Fn, C) = 1−
∏

Fi∈C

(1− ρ(Fi))

under the assumption that Definition 3.2 holds.

For the example above, this gives ω(FAD, {FA, FD}) =
1 − (1 − 0.5)(1 − 0.2) = 0.6, i.e. 60% of a null tuples in
AD are covered by A and D. In order to maximize the com-
pression ratio, we will use the cover ratio to find adequate
seed feature sets. Therefore, we propose a new algorithm
called Seed Search, which is described in detail in the fol-
lowing section.

Identifying Seeds

The details of Seed Search are shown in Figure 3(a) and (b).
The first step is to determine the ratio of null tuples for each
feature set. The ratios can be determined in a single scan
over the base table R by counting the occurences of null Cn

and non-null instances Cv of each feature set. In the sec-
ond step, the feature set lattice is constructed, as described
in the previous section. For each node, three pieces of in-
formation are maintained: Cn and Cv , from which the null
ratio can be computed and a seed set, which is initialized as
empty. The node data is stored in a relation FeatureSetN-
ode(featureset, Cv , Cn, seeds) and the feature set relations
in FeatureSetEdge(featureset,parent).
In a next step, the lattice structure is traversed in ascending
order of the width and descending order of the null ratios,
i.e. nodes with a low number of features are preferred since
they cover lots of other nodes due to the lattice structure.
The details of the traversing can be seen in Figure 3(b).
For each descendant node of N , it is checked whether its
cover ratio already exceeds a defined limit mincover. If the
cover ratio is lower than the mincover parameter N is added
to the seed set of the actual node and the coverage of that

Final edited form was published in "10th International Database Engineering and Applications Symposium (IDEAS'06)", Delhi, 2006. ISBN 0-7695-2577-6.
https://doi.org/10.1109/IDEAS.2006.41

4

Provided by Sächsische Landesbibliothek Staats- und Universitätsb bliothek Dresden

ALGORITHM 1 (Seed Search)
Input: Base table R. Minimum null coverage mincover.
Output: Seed Dependency Table SDT.

Method:
1. Scan R, count Cn and Cv for each occurring feature set F
2. Create a node for each feature set and construct feature

 set lattice
3. level := 1
4. Process the feature set lattice in decreasing order of the

 null ratio and ascending order of the width:
5. while level < height of feature set lattice

for each Node N with N.width = level
 Trace-Down(N)

 end for each
 level++

 end while
6. SDT := empty
7. for each node N

if N.seedset is not null
 then insert N and N.seedset into the SDT

 end for each

(a) (b)

ALGORITHM 2 (Trace-Down)
Input: Node N.

Method:
1. for all N.children c do

if (c.coverratio < mincover)
 and (N not already in c.seedset)
 then add N to the seedset of node c

c.coverratio := cover(c.seedset)
 trace-down(c)

 else return
 return

ALGORITHM 3 (Cover)
Input: Seed Set S.
Output: Cover Ratio w.r.t to S.

Method:
1. determine null ratio for each ci in S;

if ci has no ancestors in S
then ci.nullratio := ci.nullratio
else ci.nullratio := 1 - (1-ci.nullratio)

 (1-a.nullratio)
2. return 1- ci for all ci in S

Figure 3. (a) Algorithm Seed Search and (b) Trace-Down and Coverage

node is recomputed (Algorithm 3 in 3(b)). Otherwise, the
processing of the descendant node is skipped. The traversal
stops when each node exceeds the minimum coverage or all
nodes in Gamma have been processed. Next, the lattice is
traversed a second time to extract the dependency rules be-
tween a feature set and its seeds. Each node whose seed set
is not empty is inserted together with the appropriate seed
set into the seed dependency table SDT .
Example Figure 4(a) illustrates Seed Search. The para-
meter minimum coverage is set to 90%, i.e. 90% of the
null tuples at each node should be covered by seed tuples.
Through the processing in descending order of the null ra-
tio, the first node which qualifies for the traversing is E.
The only child of node E is EF , for which E is added to its
seed set. The next node is A, which covers AB, AC, AD,
ABC and ABCD. The sixth node to be processed is AB.
This node covers ABC, which is already covered by A and
C with a cover ratio of 1−(1−0.5)(1−0.1) = 0.55, which
is less then minimum coverage of 0.9. The new cover ratio
of ABC can not be computed by adding (1−0.83) to equa-
tion above, since the 83 % of AB are partly covered by A
which is already an element of the seed set of AB. There-
fore, the null ratio of AB, with respect to the existing seed
set S, needs to be computed:

ρ(AB, {A,C}) = 1− (1− 0.83)
(1− 0.5)

= 0.66

This null ratio is now used to compute the new cover ratio
for ABC which is 1− (1−0.5)(1−0.1)(1−0.66) = 0.85.
The resulting seed dependencies for that example are il-
lustrated in Figure 4(b). It should be mentioned that a
seed feature set can also be covered by other seeds, e.g.
AB. Furthermore, under the assumption that Definition

3.2 holds, seed sets with overlapping feature attributes, as
{CD,C,D} for BCD, are redundant, since C and D cover
the same as CD. However, since real data does not always
meet this requirement exactly this additional rule can en-
hance the overall compression ratio.

Deflate the Data Mart

The seed dependency table heavily restricts the search-
space of potential seed candidates, since it only stores fea-
ture sets with a high cover ratio. It allows the very fast deter-
mination of all seeds for a given tuple. The function which
computes the seed tuples for a given tuple ti is denoted as
grow.

Definition 3.4 (Grow) Grow takes a null tuple ti and
the seed dependency table SDT as input, and produces
a set of tuples coarser than the input tuple ti such that
Grow(ti, SDT) = FAout and ti ≺ tj for each tj ∈
FAout.

For example, the tuple {A = a2, B = b1, C = c2} would
match the feature set ABC in the seed dependency ta-
ble in Figure 4(b). The application of grow to that tuple
would lead to four potential seeds {A = a2, B = b1},
{B = b1, C = c2}, {A = a2} and {C = c2}. Without
having the seed dependency table, each subset of a given
feature set would need to be checked for its seed properties.
For the feature set ABCD, that would mean that instead of
the five feature sets derived from the SDT , all 14 subsets
must be considered in the following deflation step.
Relation R is divided into two partitions: Rvalue, contain-
ing all tuples with a value unequal to null, and Rnull, con-
taining all tuples with a null value for measure M . All
subsequent operations are restricted to Rnull. The poten-

Final edited form was published in "10th International Database Engineering and Applications Symposium (IDEAS'06)", Delhi, 2006. ISBN 0-7695-2577-6.
https://doi.org/10.1109/IDEAS.2006.41

5

Provided by Sächsische Landesbibliothek Staats- und Universitätsb bliothek Dresden

A

AB

DC

ADAC CDBC

ABC BCD

ABCD

50% 10% 20%

95%

90% 70%

83% 55% 60% 60% 28%

2,6

2
4

4,8

33

E

EF100%

4

2,4,6,8

1. E - EF
2. A - AB,AC,AD,

 ABC,ABCD
3. D - AD,CD,BCD,

 ABCD
4. C - AC,BC,CD,

 ABC,BCD
5. EF
6. AB - ABC, ABCD
...

3, 10

2

100%

1

feature set seed sets

AB
AC
AD
BC
CD
EF
ABC
BCD
ABCD

A
A, C
A, D
C
C, D
E
AB, BC, A, C
BC, CD, C, D
AB, BC, A, C, D

44

3

processing sequence:

(a) (b)

2

8

Figure 4. (a) Example for Identifying Seeds and (b) Resulting Seed Dependency Table

tial seeds derived from the SDT are used to deflate the ag-
gregate table by executing the statement illustrated as query
graph in Figure 5.
Relation Rnull is joined with itself to determine whether a
certain tuple is covered by a seed tuple (t2 and t3 in Fig-
ure 5). Therefore, the grow operation is applied to each
feature set in t3 to determine all potential seeds for each tu-
ple in Rnull. Aside from the join predicate over the feature
set, it must be guaranteed that only seed tuple pairs within
the same classification hierarchy are considered. For ex-
ample, a tuple {color =′ white′, brand =′ V W ′} within
the car family ”Pickup” cannot be covered by a seed tuple
{color =′ white′} at classification node ”SUV.” For this
reason, all classification attributes CAi of a null tuple and
its potential seeds have to be equal.
The resulting tuples of t4 are removed from the original re-
lation Rnull alias t1 by a MINUS operation. This also
compensates the effect that one tuple can be covered by a
set of seed tuples, i.e. that it occurs several times. Finally,
the deflated relation solely contains a set of seeds and a set
of outlier tuples which were not covered.

4 Deflated Data Mart - Organization and Use

The reverse operation which reconstructs the original
state of relation Rnull must be performed for every incom-
ing query that relies on the existence of null tuples. How-
ever, the range of inflation can be restricted to those tuples
which are necessary to answer the appropriate query. The
corresponding statement, illustrated as query plan in Figure
6, is similar to the deflate statement of the previous section.
First of all, the feature sets requested by a query Q must be
stored in a temporary table called Temp Feature. This ta-
ble is joined with that part of the deflated table R′

null which
fulfils the predicates of the requested query, CAi = Predi

and Predi ∈ Q. By applying the grow operation on each
feature set in t2, it can be verified whether a requested tuple
is covered by tuples in t1. If a requested tuple is covered by
at least one seed in R′

null, it follows that this tuple can be

answered from the partially inflated relation R′
null. Aside

from the covered tuples, each tuple which passes the second
join condition, t1.featureset = t2.featureset, is part of
the inflation result. These tuples are all seed or outlier tu-
ples which could not be deflated. The additional GROUP
BY guarantees that an inflated null tuple occurs only once,
even if it is covered several times by different seed tuples or
if it was covered and physically stored due to an update (see
the following section). Thus, the inflate statement recon-
structs all null aggregates of the original aggregate table.

Incremental Maintenance of the Shrunken Data Mart

Many applications encounter frequent updates; thus, fast
maintenance of the shrunken data mart is highly important.
Complete de/recompression is usually out of the question,
so we propose techniques that can update the system with-
out touching the unaffected data.
Aside updates on the shrunken data mart R′, we need to
maintain the seed dependency table derived from the lat-
tice structure. That means every time an update affects the
null ratio of a node FA, the appropriate counters Cn or Cv

in the FeatureSetNode relation need to be updated, too.
Based on these values, a process running in the background
reorganizes the seed dependency table from time to time to
optimize the deflation. The reorganization will be described
later on in this section.

Insertion

First, we consider the insertion of one tuple into the
shrunken dataset R′. Let tnew be the new tuple. Two sit-
uations may happen:
Case 1: If M(tnew) 6= null, then insert tnew into R′

value

and update FeatureSetNode, i.e. increment Cv by one.
Case 2: If M(tnew) = null, then determine whether tnew

is covered by an existing seed:

• If tnew is covered, then discard tnew and update
FeatureSetNode, i.e. increment Cn .

Final edited form was published in "10th International Database Engineering and Applications Symposium (IDEAS'06)", Delhi, 2006. ISBN 0-7695-2577-6.
https://doi.org/10.1109/IDEAS.2006.41

6

Provided by Sächsische Landesbibliothek Staats- und Universitätsb bliothek Dresden

• If tnew is not covered, then insert tnew into R′
null, up-

date FeatureSetNode, and remove all tuples in Rnull

which may covered by tnew as a seed tuple.

From the description above, it appears that no null tuples are
inserted into the shrunken data mart R′ which are covered
by an existing seed tuple, i.e. only seed and outlier tuples
are inserted. We denote this mode as Instant Mode.
Checking the coverage for a tuple to be inserted can be
costly in some cases, since this requires a partial deflation
of R′ (see Section 5). The idea is to skip the coverage check
for tnew and simply insert the tuple into R′ – independent of
its value M(tnew) – and update the FeatureSetNode re-
lation accordingly. We denote this mode as Delayed Mode,
which performs faster than the InstantMode but does not
maintain the optimal deflation of R′. It is important to note
that no double counts can occur due to insertions of covered
tuples, since this is compensated by the inflation algorithm
from the previous section.

Deletion

Next, we consider the deletion of a tuple from the shrunken
dataset R′. Let tdel be the tuple to be deleted. Again, two
situations may occur:
Case 1: If M(tdel) <> null, then delete tdel in R′

value and
update FeatureSetNode, i.e. decrement Cv by one.
Case 2: If M(tdel) = null, then determine whether tdel is
a seed tuple:

• If tdel is a seed tuple, a deletion of tdel implicates
the deletion of all tuples covered by this seed. The
semantic of deleting a tuple tdel is that tdel is not
valid anymore in context of the data mart. Hence,
deleting a seed tuple {A = a1} further causes the
invalidation of all redundant tuples which it covers,
e.g. {A = a1, D = d7} is implicitly deleted what
is correct in terms of our deletion semantic. The
FeatureSetNode relation is updated, i.e. the appro-
priate feature set for tdel is decremented by one. Fur-
thermore, the null cardinality values of all feature sets

-

Rnull Rnull

as t2 as t3

on t3.featureset in
 grow(t2.featureset)
and t2.CAi = t3.CAi i

Rnull

as t1

as t4

R’null

 (t2.*)

MINUS

Figure 5. Deflation

which were covered by tdel need to be updated. Since
no information about the exact cardinality of covered
tuples is maintained we make use of a heuristic ap-
proach based on Definiton 3.2: The new null cardinal-
ity value C ′

n of a feature set Fj which was covered
by a deleted seed tuple tdel with feature set Fi, where
Fj ≺ Fi is determined as follows:

C ′
n(Fj) = Cn(Fj)−

Cn(Fj) · ρ(Fi)
Cn(Fi)

• If tdel is not a seed tuple, then delete tdel and decre-
ment the appropriate Cn by one.

Updating the Seed Dependency Table

As mentioned in the discussion above, the
FeatureSetNode relation is changed during each
update of the shrunken data mart, i.e. the values for
Cn and Cv are changed. These changes affect the null
ratio ρ(F) of the appropriate feature sets, which leads to
deviations from the initial null ratio distribution over the
time. Since the seed dependency table is inferred from
the lattice structure, which is build on FeatureSetNode
and FeatureSetEdge, these modified null ratios lead to
out-dated as well as to new rules in the SDT . We will
consider both cases. To differentiate between the different
kinds of rules, we extend the seed dependency table with a
new column called ”state”. Furthermore, the seeds will not
be stored set-wise but individually.
We remember the Seed Search algorithm from the previous
section. By application of this algorithm, a new seed
dependency table is created, SDT ′, which can be different
from the original SDT . A dependency rule r, which is
part of the new SDT ′ but does not occur in the previous
SDT , r ∈ SDT ′ ∧ r /∈ SDT , is inserted into SDT and
tagged as ”new”. If a dependency rule r is contained in
both relations, r ∈ SDT ′ ∧ r ∈ SDT , this rule is marked
as ”current”. Rules which are not up-to-date any longer, i.e.
where r /∈ SDT ′ ∧ r ∈ SDT , are tagged as ”out-dated”.

R’null
Temp

Features

as t1

as t2

ON t1.featureset in grow(t2.featureset)
OR t1.featureset=t2.featureset

 (CAi=Predi)

GRP(t1.CAi,t2.featureset,t1.M)

 (t1.CAi,t2.featureset,t1.M)

Figure 6. Partial Inflation

Final edited form was published in "10th International Database Engineering and Applications Symposium (IDEAS'06)", Delhi, 2006. ISBN 0-7695-2577-6.
https://doi.org/10.1109/IDEAS.2006.41

7

Provided by Sächsische Landesbibliothek Staats- und Universitätsb bliothek Dresden

Incremental Reshrinking

The following deflation step can make use of the additional
state information to enhance the overall efficiency. Under
the assumption that updates are accomplished in instant
mode, only dependency rules tagged as ”new” need to be
considered by the deflation algorithm. All rules tagged as
”current” have already been considered by the incremental
deflation during the previous updates. In case that updates
were processed in delayed mode, all rules tagged as ”new”
or ”current” have to be regarded to assure an optimal defla-
tion of the data mart.
Out-dated dependency rules are not considered by the defla-
tion algorithm, since their application leads to a low tuple
reduction or no deflation at all. However, an out-dated rule
can not be deleted from the seed dependency table as long as
there exist seed tuples in R′ which match this rule. The rea-
son is that each seed tuple together with its seed dependency
rules covers a set of null tuples. That means deleting a rule
r from the SDT implicitly deletes all null tuples which are
covered by the seeds in R′

null that match this rule. To avoid
the overhead of too many rules in the SDT which do not
contribute anything to the deflation, a rule can be deleted
after it has been checked that no tuple in R′ exists which
belongs to that rule.

5 Performance Analysis

To assess the effectiveness of the shrinking in terms of
tuple reduction as well as its effects on query performance
and incremental maintenance, a set of experiments has been
conducted. In this section, we present some of the results.
About the datasets In order to examine the effects of var-
ious factors on the performance of the algorithms, we gen-
erated synthetic datasets with uniform distribution as well
as with skewed distribution. Referring to Property 3.1, a
dataset with skew factor S = 1.2 means that 20% of every
instance of a feature attribute in Fi do not occur in the child
feature set Fj ≺ Fi. The skew considers the fact that not
every aggregate defined by the user was requested at each
granularity . In addition, we also used a real market research
dataset containing product sales at various shops and a set
of product features for each article. It contains 2,874,102
tuples (340.2MB) in 11 dimensions and has no skew. The
overall null ratio of the real dataset is about 99%.
All our experiments were run on an Intel Celeron 2,66 GHz
machine with a memory of 1GB and running Windows
2003. There are three classes of datasets used in the ex-
periments: The first two are synthetic datasets with uniform
and skewed distribution and the third is a real dataset con-
taining market research data. The effectiveness of shrinking
can be measured by the ratio between the amount of tuples
of the shrunken data mart R′ and the amount of tuples of

the original data mart R.

Effectiveness of Shrinking

The first set of experiments studies the effectiveness of
shrinking. We report two sets of results, for synthetic and
real datasets, in Figures 7(a), and 7(b), respectively. The
number of tuples for the synthetic dataset was fixed to 2.5M
tuples, which were randomly generated based on uniform
and skewed distribution with factor 1.25 and 1.5, respec-
tively. The cardinality of each attribute was randomly gen-
erated, too. We varied the number of dimensions, i.e. the
number of feature attributes, from 1 to 10.
Several observations could be made from the results: The
proposed shrinking approach can effectively reduce the
amount of null tuples of a data mart. As shown in Figure
7(a), for a 10-dimensional data mart, the shrunken dataset
R′

null contains only 0.05% of the tuples compared to the
original dataset Rnull. With increasing number of dimen-
sions the tuple ratio becomes better since the feature set
lattice gets more complex, which leads to better and more
general dependency rules. As expected, the tuple ratio in-
creases with increasing skew S, but still is 4% for S = 1.5
with 10 dimensions. For the real dataset the tuple ratio ex-
ceeds about 1% for 11 dimensions (Figure 7(b)). Consid-
ering the overall shrinking, the number of rules which are
generated, i.e. the size of the seed dependency table SDT ,
can be neglected. For example, for 2.5M tuples only 226
rules need to be stored.
Furthermore, we measured the time for the shrinking
against the increasing size of the data mart R and for dif-
ferent null ratios, as illustrated in Figure 7(c). It can be seen
that the computation time increases with the cardinality of
the data mart and with its increasing null ratio, which seems
logically since both increase the size of Rnull.

Query Answering Performance

In this experiment, we compared the query answering per-
formance using the shrunken data mart R′ and the original
dataset R. Figures 8(a)-(c) show the result. It becomes clear
that for queries which request a low number of tuples the
query performance for R′ is better than for R, since the car-
dinality of R′ is much lower than the cardinality of R. With
an increasing amount of tuples requested by the queries, the
performance for R becomes better, since the partial defla-
tion of R′ takes increasingly longer.
However, remember our major concern, which is to store
null tuples explicitly. This enables us to decide whether a
query can be completely answered by a data mart without
accessing the underlying data warehouse. Thus, we also
compared our approach to the case that no null tuples have
to be stored, i.e. a recourse to the data warehouse is neces-
sary to determine the completeness of a query. In this case,

Final edited form was published in "10th International Database Engineering and Applications Symposium (IDEAS'06)", Delhi, 2006. ISBN 0-7695-2577-6.
https://doi.org/10.1109/IDEAS.2006.41

8

Provided by Sächsische Landesbibliothek Staats- und Universitätsb bliothek Dresden

(a) (b) (c)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Number of Dimensions

T
u

p
le

 R
at

io

No Skew
Skew 1.2

Skew 1.5

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000000 2000000 3000000 4000000

Cardinality of Base Table R

T
im

e
in

 s
ec

Null Ratio 90%

Null Ratio 50%
Null Ratio 10%

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

Number of Dimensions

T
u

p
le

 R
at

io

Real Dataset

Figure 7. Evaluating the Tuple Ratio on (a) Synthetic Data, (b) Real Data and (c) Runtime

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10 100 1000 10000

Requested Tuples

T
im

e
in

 m
s

Shrunken table, 1.65 Mio. tuples
Base Table, 3.75 Mio tuples
Data Warehouse RT

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 100 1000 10000

Requested Tuples

T
im

e
in

 m
s

Shrunken table, 257.175 tuples
Base Table, 1.5 Mio tuples
Data Warehouse RT

0

500

1000

1500

2000

2500

3000

3500

4000

10 100 1000 10000

Requested Tuples

T
im

e
in

 m
s

Shrunken table, 71.253 tuples
Base Table, 125.000 tuples
Data Warehouse RT

(a) (b) (c)

Figure 8. Query Performance for (a) |R| = 0.125 Mio (b) |R| = 1.5 Mio (c) |R| = 3.75 Mio

the query performance on the shrunken data mart is much
better, as illustrated in Figures 8(a)-(c).

Maintenance of the Shrunken Data Mart

The last set of experiments studies the effectiveness of
maintenance, i.e. insertions, deletions and updates. To
test the scalability of the incremental maintenance of the
shrunken data mart, we fixed the number of tuples in the
base table R to 2.5M with a null ratio of 90%. The tuples
to be maintained are randomly generated and separated into
three classes of the following proportion: 90% are null tu-
ples, from which 40% are covered and 10% are seed tuples.
The remaining tuples either have a value or are null tuples
which are not considered by the actual seed dependency ta-
ble.
In Figure 9(a), we compared the performance of insertions
for an increasing number of inserted tuples. It turns out that
inserting tuples in the Delayed Mode causes the best perfor-
mance due to the smaller size of R′ compared to R and the
avoidance of the partial inflation. Insertions into shrunken
datasets also depend on the overall null ratio of the base ta-
ble R. For lower null ratios, e.g. 50%, insertions perform
better than on the base table R, whereas for higher null ra-
tios, e.g. 90%, the insertions perform slower. This is due
to the inflation step denoted in Section 4, during which all
tuples are considered that are covered by a seed. Since a tu-

ple can be covered several times, the generated data space,
multiple increases with growing R′

null.
The costs of the insertion steps are compared with each
other in Figure 9(b). We can see that with an increase in the
number of inserted tuples, the costs of the step to determine
whether an inserted tuple is covered, dominates the overall
costs with about 85%. This is different to the computation
of tuples which are covered by inserted seeds. Since, for
our experiments, only 10% of all null tuples are seeds, these
costs are comparatively small. The computation of whether
or not a tuple is a seed remains constant, since this only re-
quires the seed dependency table, which is very small com-
pared to the size of R′.
Finally, we considered the scalability for deletions as illus-
trated in Figure 9 (b). In order to delete tuples from the
shrunken data mart, it has to be determined whether these
tuples are seeds or not. As mentioned in the discussion
above, the computation of the seed affiliation is very fast.
Hence, deletions from the shrunken data mart perform much
better because of the lower cardinality of R′ in comparison
with R.

6 Summary

The technique of negative caching as a promising ap-
proach to support efficient on-line analytical processing has

Final edited form was published in "10th International Database Engineering and Applications Symposium (IDEAS'06)", Delhi, 2006. ISBN 0-7695-2577-6.
https://doi.org/10.1109/IDEAS.2006.41

9

Provided by Sächsische Landesbibliothek Staats- und Universitätsb bliothek Dresden

(a) (b) (c)

0%

20%

40%

60%

80%

100%

1 25 50 10
0

20
0

30
0

50
0

10
00

20
00

50
00

Inserted Tuples

T
im

e
R

at
io

Is Null Is Covered Is Seed Covered Tuples Insert Delete

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000

Deleted Tuples

T
im

e
in

 m
s

Base Table R

R' - 50%
R' - 90%

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000

Inserted Tuples

T
im

e
in

 m
s

R
R' - Delayed Mode
R' - 50%
R' - 90%

Figure 9. Performance of (a) Insertion (b) Deletion and (c) Distribution of the Multiple Insertion Steps
(|R| = 2.5 Mio)

recently been proposed in [13]. It allows us to ensure the
completeness of queries to the data mart without access-
ing the underlying data warehouse. However, the applica-
tion of this technique leads to a high amount of null tuples,
which easily exceed the number of regular tuples in sparse
datasets.
In this paper, we proposed a new approach to efficiently
shrink the size of such sparse multi-dimensional datasets.
The approach explores the properties of so-called seed tu-
ples; these seeds are to be used to deflate a number of tuples
without loss of information. A simple grow operation can
inflate a seed tuple to all the null tuples it covers. Our ap-
proach is compact and elegant in that the only information
kept is a small set of rules from which all covered tuples
can be inferred. A set of algorithms for query answering
and incremental maintenance of the shrunken data mart is
also presented.
Experimental results indicate that the tuple reduction ratio is
very high for synthetic as well as for real data. Even highly
skewed data achieve a reduction rate of 90%. The strong
tuple reduction also has positive effects on the update per-
formance, which is noticeably faster in instant mode and
significantly faster in delayed mode.
To summarize, we believe that negative caching in conjunc-
tion with our shrinking framework specified in this paper is
essential to enrich data marts with completeness informa-
tion, which leads to a much more efficient overall on-line
analytical processing.

References

[1] S. Babu, M. Garofalakis, and R. Rastogi. SPARTAN: A
Model-based Semantic Compression System for Massive
Data Tables. In SIGMOD 2001, pages 283–294, New York,
NY, USA, 2001. ACM Press.

[2] K. Beyer and R. Ramakrishnan. Bottom-up Computation of
Sparse and Iceberg CUBE. In SIGMOD 1999, pages 359–
370, New York, NY, USA, 1999. ACM Press.

[3] S. Bu, L. V. S. Lakshmanan, and R. T. Ng. MDL Summa-
rization with Holes. In VLDB 2005, pages 433–444. VLDB
Endowment, 2005.

[4] S. J. Eggers, F. Olken, and A. Shoshani. A Compression
Technique for Large Statistical Data-Bases. In VLDB 1981,
pages 424–434. IEEE Computer Society, 1981.

[5] C.-L. Goh, K. Aisaka, M. Tsukamoto, and S. Nishio. Data-
base Compression with Data Mining Methods. pages 177–
190, 2000.

[6] D. A. Huffmann. A Method for the Construction of
Minimum-Redundancy Codes. Proc. Inst. Radio Eng. 40,
pages 1098–1101, 1952.

[7] H. V. Jagadish, R. T. Ng, B. C. Ooi, and A. K. H. Tung. It-
Compress: An Iterative Semantic Compression Algorithm.
In ICDE 2004, page 646, Washington, DC, USA, 2004.
IEEE Computer Society.

[8] L. V. S. Lakshmanan, J. Pei, and J. Han. Quotient Cube:
How to Summarize the Semantics of a Data Cube. In VLDB
2002, pages 778–789, 2002.

[9] L. V. S. Lakshmanan, J. Pei, and Y. Zhao. Qc-Trees: An Ef-
ficient Summary Structure for Semantic Olap. In SIGMOD
2003, pages 64–75, New York, NY, USA, 2003. ACM Press.

[10] M. Pöss and D. Potapov. Data Compression in Oracle. In
VLDB, pages 937–947, 2003.

[11] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Ko-
tidis. Dwarf: Shrinking the PetaCube. In SIGMOD 2002,
pages 464–475, 2002.

[12] Y. Sismanis and N. Roussopoulos. The Dwarf Data Cube
Eliminates the High Dimensionality Curse, 2003.

[13] M. Thiele, J. Albrecht, and W. Lehner. Optimistic Coarse-
Grained Cache Semantics for Data Marts. In SSDBM 2006,
2006.

[14] W. Wang, H. Lu, J. Feng, and J. X. Yu. Condensed Cube: An
Effective Approach to Reducing Data Cube Size. In ICDE
2002, 2002.

[15] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An Array-
based Algorithm for Simultaneous Multidimensional Ag-
gregates. pages 159–170, 1997.

[16] J. Ziv and A. Lempel. A Universal Algorithm for Sequen-
tial Data Compression. IEEE Transactions on Information
Theory, 23(3):337–343, 1977.

Final edited form was published in "10th International Database Engineering and Applications Symposium (IDEAS'06)", Delhi, 2006. ISBN 0-7695-2577-6.
https://doi.org/10.1109/IDEAS.2006.41

10

Provided by Sächsische Landesbibliothek Staats- und Universitätsb bliothek Dresden

