
Fast and Scalable Complex Network Descriptor
Using PageRank and Persistent Homology

1st Mustafa Hajij
Department of Mathematics and Computer Science

Santa Clara, California
mhajij@scu.edu

2nd Elizabeth Munch
Department of Computational Mathematics, Science, and Engineering

Michigan State University
Lansing, Michigan
muncheli@msu.edu

3rd Paul Rosen
Department of Computer Science and Engineering

University of South Florida
Tampa, Florida
prosen@usf.edu

Abstract—The PageRank of a graph is a scalar function defined
on the node set of the graph which encodes nodes centrality
information of the graph. In this article we use the PageRank
function along with persistent homology to obtain a scalable
graph descriptor and utilize it to compare the similarities between
graphs. For a given graph G(V,E), our descriptor can be
computed in O(|E|α(|V |)), where α is the inverse Ackermann
function which makes it scalable and computable on massive
graphs. We show the effectiveness of our method by utilizing it
on multiple shape mesh datasets.

Index Terms—PageRank, Complex Networks Similarity, Topo-
logical Data Analysis, Graph Similarity

I. INTRODUCTION

The problem of studying similarity between graphs has
attracted much attention recently in the pattern recognition and
machine learning communities. One of the main challenges is
to construct an effective similarity measure between graphs
that takes into account the complexity of the underlying
structure while still being computed efficiently.

In this work, we utilize the PageRank vector [2] in conjunc-
tion with a tool available in persistent homology [10] to define
a graph descriptor. More specifically, we view the PageRank
as a continuous scalar function [20] defined on the vertices of
the graph and utilize this scalar function to induce a filtration
as defined traditionally in the context of persistent homology.
We show that the persistence diagram induced by this filtration
can be utilized for graph similarity.

Persistent homology provides a robust set of tools for the
theoretical and practical capacity to understand the shape of
data [4] in any number of dimensions and on multiple scales,
placing the concept of shape, as applied to data analysis,
on a solid mathematical foundation. On the other hand, the
PageRank function of a graph stores information regarding the
centrality information of the underlying nodes. The filtration
induced by the PageRank provides a method to decode the
information encoded in this scalar function and stores it
in the persistence diagram. The latter, when combined with

bottleneck distance, can then be used for the graph similarity
task.

Utilizing the PageRank vector has two main advantages.
First, PageRank was originally designed to compute efficiently
on very large graphs. The efficiency of the PageRank vector
has been studied extensively [14]. The PageRank vector has
found many applications, including graph partition [1], image
search [16], and citation analysis [17], among others. Second,
as we will show here, as a function defined on the nodes of the
graph the PageRank vector stores rich structural information
about the underlying graph that can be utilized to to detect the
similarity between different graphs effectively.

Graph similarity lies within the realm of pattern recognition
and machine learning [21]. Persistent homology provides
unique information about the graphs, discover uncovering
insights, and determines which predictors are more related to
the outcome. Persistent Homology-based methods have shown
excellent performance in several applications including pattern
recognition on graphs [5], [8], [18], [19], [25], time-varying
data [9], [13], and images [6], [11], [22], among others.

II. BACKGROUND

In this section, we give a brief review of persistent ho-
mology and the PageRank vector. While the work here is
concerned with graphs, we choose here to introduce persistent
homology for simplicial complexes since our work can be
generalized easily to more general domains. We assume the
reader is familiar with the basics of simplicial homology.

A. Persistent Homology

Let K be a simplicial complex. We will denote the vertices
of K by V (K). Let S be an ordered sequence σ1, · · · , σn of
all simplices in K, such that for simplex σ ∈ K every face of
σ appear before it σ in S. Then S induces a nested sequence
of subcomplexes called a filtration: φ = K0 ⊂ K1 ⊂ ... ⊂
Kn = K. A d-homology class α ∈ Hd(Ki) is said to be born
at the time i if it appears for the first time as a homology class

ar
X

iv
:2

00
2.

05
15

8v
2

 [
cs

.C
G

]
 1

2
Se

p
20

20

in Hd(Ki). A class α dies at time j if it is trivial Hd(Kj)
but not trivial in Hd(Kj−1). The persistence of α is defined
to be j − i. Persistent homology captures the birth and death
events in a given filtration and summarizes them in a multi-set
structure called the persistence diagram P d(φ). Specifically,
the persistence diagram of the a filtration φ is a collection
of pairs (i, j) in the plane where each (i, j) indicates a d-
homology class that is created at time i in the filtration φ and
killed entering time j.

Persistent homology can be defined given any filtration.
For the purposes of this work, the input is a piecewise linear
function f : |K| −→ R defined on the vertices of complex K.
Furthermore, we assume the function f has different values
on different nodes of K. Any such a function induces the
lower-star filtration as follows.

Let V = {v1, · · · , vn} be the set of vertices of K sorted
in non-decreasing order of their f -values, and let Ki := {σ ∈
K|maxv∈σ f(v) ≤ f(vi)}. The lower-star filtration is defined
as:

Ff (K) : φ = K0 ⊂ K1 ⊂ ... ⊂ Kn = K. (1)

The lower-star filtration reflects the topology of the function
f in the sense that the persistence homology induced by
the filtration 1 is identical to the persistent homology of the
sublevel sets of the function f . We denote by Pf (K) to
the persistence diagram induced by the lower-star filtration
Ff (K). See Figure 1.

Furthermore, we will denote by P kf (K) to the kth persis-
tence diagram induced by the lower-star filtration Ff (K). In
this work, we will only consider the 0-dimensional persistence
diagram.

B. Computing the 0-persistence diagram the of a lower-star
filtration

For completeness of our treatment we give a brief descrip-
tion for computing the 0-persistence diagram the PageRank
defined on the nodes of on a graph G. The computation
of the zero persistent diagram P 0

f (G) can actually be done
using union-find data structure. We give the details next.
If e = (u, v) is an edge of the graph G then we will
extend the PageRank vector to e by defining PR(e) :=
max(PR(u), PR(v)).

Let V = {v1, · · · , vm} be the node set of G. Let E =
{e1, · · · , en} be its edge set ordered with respect to their PR-
values. The steps of the the algorithm to compute the zero PD
associated with the PageRank is given as follows.

The first step in the algorithm creates a connected compo-
nent Ci for each node vi in the graph G. Here we assume
that the connected components are created using the disjoint
set data structure.

The second step of the algorithm looks at the edges of
G in the ascending order with respect to their PR-values.
For each e = (u, v), we check if the nodes u and v of
e belong to two different sets. If this is the case, then
we merge the two connected components containing u and

Algorithm 1: Computing the Persistence Diagram induced
by the PageRank

1 Function computePageRankPD(G,PR : G −→ R)
2 bars = []
3 U = ∅
4 foreach Node i in V (G) do
5 U.make(i);

6 Sort the edge of the graph G in ascending order
using the their PR-values.

7 foreach Edge e = (u, v) in E(G) do
8 c← U.get(u)
9 d← U.get(v)

10 if c 6= d then
11 U.merge(c, d)
12 bars.append((max(PR(c), PR(d)), PR(e)))

13 return bars

14 End Function

v. Furthermore, we append to the list of bars the pair
(max(PR(c), PR(d)), PR(e)) where c and d are the roots
of the trees that contain the nodes u and v respectively in the
disjoint set data structure. The algorithm return the list bars
representing the birth and death of 0-features of the graph G
with respect to PageRank functional values.

The merge operation in line 12 in Algorithm 1 assumes
the following merge order on the sub-trees in disjoint set data
structure. The tree with root c is merged with the tree with
root d according to the PR values of c and d. Namely, if
PR(c) > PR(d) then we set d to be the parent of c. Otherwise
c to be the parent of d.

An illustrative example of running this algorithm on a 1-d
function is given in Figure 2.

III. COMPUTING THE DISTANCE BETWEEN THE
PERSISTENCE DIAGRAMS

Given two persistence diagrams, we measure the distance
between them using the bottleneck distance. Namely, given
two persistence diagrams X and Y , let η be a bijection
between points in the diagrams. The bottleneck distance is
defined as,

W∞(X,Y) = inf
η:X→Y

sup
x∈X
‖x− η(x)‖∞ .

For technical reasons we usually add to the persistence di-
agram infinitely many points on the diagonal and each one
of these points with is counted with infinite multiplicity. In
our study we utilize the bottleneck distance to quantify the
difference between two PR descriptors. Other distances can
also be employed such as the Wasserstein distance.

A. PageRank

This work utilizes the lower-star filtration induced by the
PageRank function [2]; more specifically, we consider a

Fig. 1: Left : a graph with a scalar function defined on its nodes. Middle the star of the node v. Right: the lower-star of a
vertex v.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

v1 v2
v3

v4
v5

v6
v7

v8

v9 v10

Fig. 2: An example illustrating the computation of the persistence diagram on a scalar function defined on 1-d simplicial
complex K. We assume that the we have a scalar function f : V (K) −→ R defined on the vertex set V (K) of K. We order
the nodes and the edges in the function using their f values and process them with respect to this order. The values of the
function f hence induces a lower star filtration where at every stage in this filtration we introduce a vertex along with the
edges that are connected to it and have lower f -values, if it has any.

version applicable to undirected graphs [12]. The PageRank
function PR : V → R is defined for every vertex v ∈ V by

PR(v) =
(1− d)
|V |

+ d
∑

u∈N(v)

PR(u)

|N(u)|
, (2)

where N(v) is the set of neighbors of v; 0 < d < 1 is
the damping factor, typically set at 0.85. Equation (2) can
solved efficiently by the power method [15]. See also [24] for
a O(

√
log(n)/ε) distributed algorithm where n is the number

of nodes in the graph and ε is fixed constant.

A high PageRank score at v typically means that v is

connected to many nodes, which also have high PageRank
scores. For our purpose, it is important to notice that the
PageRank is a continuous function [20]. For example, Figure
3 illustrates the continuity of the function on the nodes of the
graph on a random geometric graph.

IV. RUNNING TIME

The proposed descriptor can be computed in almost linear
time. Once the graph data is loaded, the 0-dimensional persis-
tence diagram can be computed using disjoint sets which take
O(|E|α(|V |)), where α is the inverse Ackermann function
[7], an extremely slow growing function. The PageRank can

Fig. 3: Example of the PageRank vector computed on a
geometric graph. Higher PageRank values indicate higher node
centrality. In this figure the PageRank values are indicated by
the size of the nodes as well as the the color of the nodes
color (nodes with higher PR values have darker colors).

be computed in sub-linear time. For instance see [24] for a
O(

√
log(n)/ε) distributed algorithm where n is the number

of nodes in the graph and ε is fixed constant.

V. RESULTS

To validate the method proposed, we run some experiments
on three publicly available datasets. We use mesh datasets to
make a visual comparison between similar graphs easier.

In our experiments, we compute the persistence diagram
of each mesh obtained from the lower-star filtration induced
by the PageRank vector defined on that mesh. The pairwise
bottleneck distance is then computed between every pair of
persistence diagrams. Finally, the resulting discrete metric
space is visualized using a 2d t-SNE projection [27].

The first dataset [26] consists of 60 meshes that are divided
into 6 categories: cat, elephant, face, head, horse, and lion.
Each category contains ten triangulated meshes. The result is
reported in Figure 5 left handside.

The second dataset [23] consists of 30 meshes that are
divided into 2 categories: kid A and kid B. The result is
reported in Figure 5 right-handside.

The third dataset [3] contains a total of 80 objects, including
11 cats, 9 dogs, 3 wolves, 8 horses, 6 centaurs, 4gorillas, 12
female figures The vertex count for each object in this data is
about 50K.

In all of our three example datasets, one can clearly observe
the effectiveness of the proposed descriptor at capture the
geometry of the underlying meshes. In particular, one can
easily see that the meshes within the same category are
clustered together. We also notice that meshes with similar
topology tend to be closer than those with different topology.
Observe for instance the clusters of horses and cats in Figure
5.

VI. CONCLUSION

In this work, we have illustrated how the PageRank
can be utilized in conjunction with persistent homology to
study graph similarity and demonstrated our results on small
datasets. In future work, we are planning to conduct a more
thorough analysis with larger datasets. Moreover, the PageR-
ank is typically defined on directed graphs. This feature of the
PageRank vector can be utilized to induce a filtration that is
sensitive to the directionality of the edges a directed graph.
We are planning to investigate this direction in the future.

VII. ACKNOWLEDGMENT

This work was supported in part by a grant from the
National Science Foundation (IIS-1845204).

REFERENCES

[1] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning
using pagerank vectors. In 2006 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’06), pages 475–486. IEEE,
2006.

[2] Sergey Brin and Lawrence Page. The anatomy of a large-scale hy-
pertextual web search engine. Computer networks and ISDN systems,
30(1-7):107–117, 1998.

[3] Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel.
Numerical geometry of non-rigid shapes. Springer Science & Business
Media, 2008.

[4] Gunnar Carlsson. Topology and data. Bulletin of the American
Mathematical Society, 46(2):255–308, 2009.

[5] C. J. Carstens and K. J. Horadam. Persistent homology of collaboration
networks. Mathematical Problems in Engineering, 2013, 2013.

[6] James R Clough, Ilkay Oksuz, Nicholas Byrne, Veronika A Zimmer,
Julia A Schnabel, and Andrew P King. A topological loss function
for deep-learning based image segmentation using persistent homology.
arXiv preprint arXiv:1910.01877, 2019.

[7] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2009.

[8] Weinan E, Jianfeng Lu, and Yuan Yao. The landscape of complex
networks. CoRR, abs/1204.6376, 2012.

[9] Herbert Edelsbrunner, John Harer, Ajith Mascarenhas, and Valerio
Pascucci. Time-varying reeb graphs for continuous space-time data.
In Proceedings of the twentieth annual symposium on Computational
geometry, pages 366–372. ACM, 2004.

[10] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topo-
logical persistence and simplification. In Proceedings 41st Annual
Symposium on Foundations of Computer Science, pages 454–463. IEEE,
2000.

[11] Kathryn Garside, Robin Henderson, Irina Makarenko, and Cristina Ma-
soller. Topological data analysis of high resolution diabetic retinopathy
images. PloS one, 14(5):e0217413, 2019.

[12] Vince Grolmusz. A note on the pagerank of undirected graphs. arXiv
preprint arXiv:1205.1960, 2012.

[13] Mustafa Hajij, Bei Wang, Carlos Scheidegger, and Paul Rosen. Visual
detection of structural changes in time-varying graphs using persistent
homology. In 2018 IEEE Pacific Visualization Symposium (PacificVis),
pages 125–134. IEEE, 2018.

[14] Taher Haveliwala. Efficient computation of pagerank. Technical report,
Stanford, 1999.

[15] Joe D Hoffman and Steven Frankel. Numerical methods for engineers
and scientists. CRC press, 2018.

[16] Yushi Jing and Shumeet Baluja. Pagerank for product image search. In
Proceedings of the 17th international conference on World Wide Web,
pages 307–316, 2008.

[17] Nan Ma, Jiancheng Guan, and Yi Zhao. Bringing pagerank to the citation
analysis. Information Processing & Management, 44(2):800–810, 2008.

[18] Giovanni Petri, Martina Scolamiero, Irene Donato, and Francesco Vac-
carino. Networks and cycles: A persistent homology approach to
complex networks. Proceedings European Conference on Complex
Systems 2012, Springer Proceedings in Complexity, pages 93–99, 2013.

Fig. 4: In both left and right Figure we compute the PageRank’s vector for each mesh in a data set is computed. We then
utilize this function to compute 0-persistence diagram associated with the lower-star filtration of PageRank. Then we compute
the pairwise bottleneck distance between every pair of of that dataset. The final distance matrix is then visualized using a 2d
t-SNE projection. In the left figure, we show the application of our method to a data set consists of 60 triangulated meshes
divided into 6 categories [26]. On the other hand the right figure shows the application of this method to kids dataset [23]
which consists of 30 meshes, 15 meshes of kid A and 15 meshes of kid B.

Fig. 5: On the left the dataset [3] which consists a total of 80 objects, including 11 cats, 9 dogs, 3 wolves, 8 horses, 6 centaurs,
4 gorillas, 12 female figures. The vertex count for this dataset is about 50,000. On the right the t-SNE projection obtained
from the distance matrix of the pairwise bottleneck distance between the persistence diagrams associated with the lower-star
filtration of the PageRank vectors.

[19] Giovanni Petri, Martina Scolamiero, Irene Donato, and Francesco Vac-
carino. Topological strata of weighted complex networks. PLoS ONE,
8(6):e66506, 2013.

[20] Luca Pretto. Analysis of web link analysis algorithms: The mathematics
of ranking. In Maristella Agosti, editor, Information Access through
Search Engines and Digital Libraries, pages 97–111. Springer, 2008.

[21] Saif Ur Rehman, Asmat Ullah Khan, and Simon Fong. Graph mining: A
survey of graph mining techniques. In Seventh International Conference
on Digital Information Management (ICDIM 2012), pages 88–92. IEEE,
2012.

[22] Alejandro Robles, Mustafa Hajij, and Paul Rosen. The shape of an
image: A study of mapper on images. arXiv preprint arXiv:1710.09008,
2017.

[23] Emanuele Rodolà, Samuel Rota Bulo, Thomas Windheuser, Matthias
Vestner, and Daniel Cremers. Dense non-rigid shape correspondence
using random forests. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4177–4184, 2014.

[24] Atish Das Sarma, Anisur Rahaman Molla, Gopal Pandurangan, and
Eli Upfal. Fast distributed pagerank computation. In International
Conference on Distributed Computing and Networking, pages 11–26.
Springer, 2013.

[25] Ashley Suh, Mustafa Hajij, Bei Wang, Carlos Scheidegger, and Paul
Rosen. Persistent homology guided force-directed graph layouts. IEEE

Transactions on Visualization and Computer Graphics, 26(1):697–707,
2019.

[26] Robert W Sumner and Jovan Popović. Deformation transfer for triangle
meshes. ACM Transactions on graphics (TOG), 23(3):399–405, 2004.

[27] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-SNE. Journal of Machine Learning Research, 9:2579–2605, 2008.

	I Introduction
	II Background
	II-A Persistent Homology
	II-B Computing the 0-persistence diagram the of a lower-star filtration

	III Computing the distance between the Persistence diagrams
	III-A PageRank

	IV Running Time
	V Results
	VI Conclusion
	VII Acknowledgment
	References

