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Abstract—A lot of different real-life systems can be modeled
by retrial queuing (RQ) models. In this paper, RQ-systems
are considered. The single server system is non-reliable, non-
deterministic system failures might occur. This is a finite source
system. In applications, it is more realistic, and there is no
stability problem. One of the first considered system operational
characteristics is the collision or the conflict of customers. When
a job is under service at the server, and a new job comes, they
will collide. In this case, both jobs will transport to a virtual
waiting room, called orbit. The customers retry their requests
from the orbit. The retrial times are random. Server failures
might happen, the server might go down. While the server is
down state, the new requests are transported to the orbit, or the
source is blocked, that is, no customer can enter into the system.
The second system characteristic is the impatient property of
the customers. The customers stay in the orbit and waiting for
their service. After a non-deterministic time-interval, a customer
gives up retrying and leaves the system. These customers will be
lost from the system, they remain unserved. This is the impatient
characteristic. The third system characteristic is the catastrophic
breakdown. It means, that in case of a negative event, all of the
customers at the server and in the orbit leave the system, and
take their places in the source. The novelty of this paper is to
investigate the phenomenon of the catastrophic breakdown in a
collision environment with impatient customers.

This impatient property results, that the recursive algorithm
for the time-independent probabilities can not be formulated.
MOSEL-2 tool can be used for solving the system equations and
calculating the system performance measures. These measures
are, for example, the average sojourn time and other reliability
metrics. The main goal is to investigate the effect of the impatient
property under catastrophic breakdown. Numerical results are
presented graphically, as well.

I. INTRODUCTION

Modeling infocommunication systems is essential to under-
stand their dynamical behavior and find an optimal working
environment. There exist a lot of tools and methods for
modeling these types of systems. One of the most popular and
effective tools are the retrial queueing systems (RQ-systems).
Compared with the simple queueing systems, in RQ-models
the customers are not lost when the system is busy. An RQ-
system can have an infinite and finite number of sources. The
requests arrive from the outside world or the source facility,
respectively. If a customer arrives to the server, and the server
is still working with an other customer, the new job enters
a virtual lobby, called orbit and waits for a non-deterministic

time interval (exponential), and it retries its service demand
again. The orbit can be imagined as a virtual waiting facility,
and it is assumed to be large enough, so an incoming job
always finds a free place in the orbit. From the orbit, the jobs
do not give up, they try to reach the server. Once the server
is free, the jobs step into the service facility, and they will be
served. This is the patient behavior of jobs.

In this paper, the impatient behavior of the customers is also
considered. A job waiting in the virtual lobby (orbit) might
leave the system after constant or random waiting time. Our
models deal with random times, described with a distribution,
e.g. the exponential distribution. These customers will remain
unserved, their requests are lost.

Examples of technologies and applications, which can be
modeled by an RQ-systems can be telephone centers, sensor
networks, repair facilities, telecommunication environment,
etc. Infinite source models have been considered and studied
by numerous authors, very large number of papers were
published in the literature. But, in real-life applications, there
are a lot of situations, where the infinite sources are not so
suitable. When there are only finite numbers of entities, which
are related with the system, the finite source models are more
adequate. Many examples can be mentioned, for example,
mobile cellular networks, intelligent sensor networks, a lot of
new loT systems, and so on. Results on finite source retrial
queueing systems are, for example, in [1], [2], [3], [4], [5],
[6].

In many applications, unfortunately, the systems are non-
reliable. They subject to random breakdowns. This situation
also has to be investigated. Random server failures and repairs
are included in the models. Generally or exponentially dis-
tributed random times and time intervals can be considered in
modeling the breakdown and repair processes. A non-reliable
system is very sensitive, the calculated outcomes and descrip-
tors of the system have to be handled very carefully. Non-
reliable, finite source retrial systems have been investigated
by many authors, e.g. in [7], [8], [9], [3], [10].

A non-reliable M/M/1//N retrial queueing system with
conflict of jobs is also a part of this investigation. The
phenomenon of collisions of jobs (or conflict of jobs) is a very
common behavior in non-synchronized infocommunication
systems with a constrained resources, for example, Ethernet
transmissions and other communication facilities. In case of
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conflict, all of the involved signals are damaged, and they need
to re-send. The working and the performance of the system
is sub-optimal. It is very important, to build up procedures,
which try to avoid or at least decrease the effects of conflicts.
Results can be found in [11], [12], [13], [14], [15], [16].

The focus of this paper is the catastrophic breakdown.
Retrial queueing models in which customers are removed
from the system due to catastrophic or disaster events have
been investigated extensively by authors. Modeling special
systems, e.g. automatic teller machines needs different types
of breakdowns. A catastrophic event can be, for example,
mechanical failures or power outages. Disaster events are
known also as a negative arrival or a negative customer. The
presence or arrival of a negative job might be dangerous for
the system. The other jobs, which work for the system, are
called positive jobs. These positive jobs can be damaged by
the negative ones. The positive jobs might even be removed
from the system. The most extreme situation is, when all of the
positive jobs are removed from the system. This event is called
a disaster, or catastrophic breakdown. In addition, this type
of event interrupts all of the service processes at the servers
and breaks down the service unit. The service in the service
unit will be interrupted. The service has been done until the
interruption point is lost. All of the customers from the server
and the orbit are sent back to the source. Detailed studies on
catastrophic breakdowns and negative customers can be found
in [17], [18] [19], [20], [21].

The impatient property of customers and the feature of
catastrophic breakdown make the system equations so com-
plex, that a simple numeric solution can not be performed.
That’s why a computer program is used for calculating the
system probabilities. Using the resulting steady-state system
distribution, the most important system measures characteris-
tics can be formulated. Figures will be provided with the effect
of different parameters on these performance metrics.

II. DESCRIPTION OF THE SYSTEM

In this paper, an M/M/1//N model is considered. This is
a finite source system, and by Kendall’s description, the inter-
arrival times and the service times follow the exponential law,
the number of servers is one, and the number of sources is V.
Two scenarios of the system can be studied and compared:

e The common break-down mode. This is the well-known
non-reliable environment, that is the service facility is
exposed to non-deterministic failures. The inter-event
times between the failures follow the exponential law.
Two different parameters can be considered for describing
the failure events. In the case of a non-working service
unit, the parameter is 7. In the case of a working server,
the failure parameter is ~;. Later, in numerical investi-
gations, these two parameters will not be distinguished.
The behavior of the job interrupted at the server can
be different. The service can be continued or started
again. Here, the job interrupted at the service facility is
transferred back to the orbit. There is no time transition
before the repair. After the failure event, the process of
the repair begins immediately. The repair time is also a

random variable, the distribution is exponential, and the
repair parameter is yo. While the repair is in progress,
different behavior of the source can be handled. The
system is blocked, that is, no new request can enter into
the system. Or, the system is not blocked, generating of
new requests continues. These new jobs can not reach
the server under repair, so they are transferred into the
orbit. Since this is a retrial system, the jobs try to find a
free server from the orbit. This retrial is described with a
random variable with exponential distribution. The retrial
parameter is o/N. The customers do not give up finding
a free server in up state. In the models considered below,
the blocked situation will be studied.

o The catastrophic break-down mode. This is the situation
when a disaster event removes all of the jobs from
the system (from the orbit and from the server after
interrupting the service). The repair of the system starts
immediately. The same breakdown parameters are used
as in the common breakdown mode, i.e. 7o and 7; for
an idle server breakdown and a busy server breakdown,
respectively, and ~y, for the repair. During the down period
of the system, the source is blocked, no new request can
enter into the system.

o The customers have impatient behavior. The breakdown
event of the server is either the regular (common) break-
down mode, or it is the catastrophic breakdown. The
customers are impatient. Based on the retrial property,
a customer retries to reach the server after a random,
exponentially distributed time, or the customer gives it
up, and leaves the service unit, and is transferred back to
the source after a random waiting time. The distribution
is exponential, and the parameter is 7. In this case, the
customer will not be served.

Let us consider the dynamic workflow of the system. A
job (it can be called a customer or a request, as well) is
generated from the source. The job inter-arrival times toward
the server are exponentially distributed random times with
parameter A/N. Until the end of service of this job, the source
will not generate a new job for this token. The generated job
enters the service environment. The server can be empty (or
idle), or there can be another job under service. This time the
server is called as busy. When there is no job at the server, the
service of the incoming job, which can arrive from the source
or the orbit, starts at once. The random service time intervals
are considered to follow the exponential distribution law with
parameter p. When the server is in busy state, that is a job is
under service at the server, and a new request is arriving to
the server, the two jobs will collide. This is the phenomenon
of the collision of the customers. In this case, both jobs (the
job served and the job just arrived) are moved into the orbit.
From the orbit the jobs retry reaching the server again after a
random time interval. The distribution of the retrial times is
exponential with the expectation of 1/(c/N). See the model
on Figure 1.

Let’s consider the following notations. i(¢) denotes the state
of the system. This is the total number of jobs in the system
(under service and waiting in the orbit). k(t) is the server
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status descriptor:

0, the service unit is up and non-working,

k(t) = ¢ 1,the service unit is up and working,

2, the service unit is failed and repair is in progress.

The P(k(t) = k,i(t) = i) = Pi(i,t) quantities are the
system probabilities: at a time of ¢ there are number of ¢ jobs
in the system and the value of the server state descriptor is
k. With these conditions the process X (t) = {k(t),i(t)} is
a Markovian-chain with two dimensions, and a state space of
{0,1,2}2{0,1,..., N}.

Catastrophic breakdown 1 o Orbit

Sources
A

Fig. 1. System model

A successfully served job steps back to the source. All
the random times, time intervals considered in the model are
assumed to be totally independent of each other.

Since the X(t) = {k(t),i(t)} process is a finite state
Markov-chain, so the stability conditions hold, and the ex-
istence of the steady-state probabilities of Py (i,t) = Px(4) is
ensured.

For patient case, and with collision of jobs, the Kolmogorov
balance equations for probabilities Py (7,t) can be written, as
follows (see, in [13] and [14]):

OPy (0,
IROD) (4 50) Po(0.0) + mPL(L.1) + 22 P20.0),

OP(1,t) N-1
o <)\T +M+71) Py(1,t)+

AP (0,4) + — Py (1, 1),

N

AP, (0,

% = —(A+72)P2(0,1) + 70 FPo(0,1), (D
OPy(it) N-1 i ,
o  \"N +O’N + 7 | Po(i,t)+

N-it1
+uPLi+1,8) + AT”Pl(z' 1,0+
i~ 1
+ o= Pi(it) + 2 Pa(i ),

P, (i N -1 i —1
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N—i+1l_ e
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Again, the X (t) = {k(t),i(t)} process is a finite state
Markov-chain, so the stability conditions hold, and the ex-
istence of the steady-state probabilities of Py (i,t) = Py (i) is
ensured.

Thus, the steady-state Kolmogorov balance equations can
be formulated, as

—(A+7)Po(0) + pPi(1) + v2P2(0) = 0,

N -1
—(A+72)P2(0) + 70 (0) = 0, (2)

N -1 ? . )
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- ()\¥ + ’Yz) Py (i) +v0Po(i)+

N—-i+1
N
From these equations, the case of a reliable server with
collision of customers can be derived easily. Just give the value
of zero for the parameter of 79, and probabilities of P5.
Following a similar method, the system balance equations
can be formulated for the case of collision, server with regular
failure, and impatient jobs:

~(\ 4 90)Po(0) + uPs (1) 432 Pa(0) + - Po(1) = 0.

N-1
- (/\T +p+ ’n) Pi(1) + APy(0) + %Po(lﬂ

T
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—(A+72)P2(0) + 40 FPo(0) = 0, 3)
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III. PERFORMANCE CHARACTERISTICS

Investigating the effect of the different parameters on the
behavior of the system, the usual performance characteristics
can be calculated from the steady-state probabilities.

o Average number of customers in the system @ and in the
orbit O

1N \
A= ZZ(N - i)ﬁpk(i)»

o Average response time 7 and mean waiting time W in
the orbit can be obtained by the Little-formula

T=2 W=

)

> Q)
> Qf

6:§_P17

o Average total service time F(Ts) and average total
sojourn time in the source F(k)
N-Q)T
FE (I’i) = %,
Q
o Average number of trials from the source E(Npg) and
from the orbit E(Nrto)

E(Ts) =T -,

E(Nrg) = %E(T), E(Nro) = %W
N
Q=>iP()), 0=Q-P.
1=0

IV. NUMERICAL RESULTS

The steady-state equations can be solved by different meth-
ods. Here an analytical software tool, namely the MOSEL-2
was chosen. This tool formulates the underlying Markovian-
equations of the system, and provides an algebraic solution
for the steady-state probabilities. With the assumption of
exponentiality of the system parameters, this tool is effective
and quick for a reasonably large number of sources.

Figure A ©L | o T Yo =71 Y2
2 01..10 | 1 | 5 | Legend 0.01 1
3 037 .77 | 1 | 5 | Legend 0.01 1
4 01..10 | 1 | 5 | Legend 0.01 1
5 1 T | 5 | Legend | 0.001 .. 0.111 | 1
6 1 T | 5 | Legend | 0.001 .. 0.111 | 1
7 1 T | 5 | Legend | 0.001 .. 0.111 | 1
TABLE I

NUMERICAL VALUES OF MODEL PARAMETERS

The collision of customers and catastrophic breakdown
features are applied for all of the following figures. In the
MOSEL program the idle and the busy state failure rates (7o
and ~; are the same. The number of sources is N = 100. All
the other system parameters are listed in Table I.

The dynamic behavior of the system can be seen on the fig-
ures. Different system characteristics are displayed in function
of overall generation rate and the failure rate.

All figures compare three different cases with respect to
different values of the impatient parameter, 7. The first one
is a small parameter value. In this case, the expectation of
patient time interval is large. This case corresponds to the
patient behavior of the customers. The other two values of the
impatient parameter are medium and large.

Mean Response Time

RSN EEEEE DNy

1 T

Mean response time

Fig. 2. Mean response time vs. generation rate

On Figures 2, 3, and 4 the overall generation rate, A
is the running parameter on the X-axes. On Figure 2 the
mean response time is displayed. For the patient behavior,
this performance measure has larger values. In this case, the
customers do not leave the system from the orbit.

Figure 3 shows the utilization of the server. For larger gen-
eration rates larger utilization can be observed. It is interesting,
that for larger impatient parameters larger increments of the
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Utilisation

Utilisation

4% 51 53 55 57 59

61 €3 65 67 69 71 73 75 77
Lambda

Fig. 3. Utilization vs. generation rate

corresponding curves are present. In addition, the curves have
a single intersection point, which means, for a given generation
rate (A=5), the same utilization can be observed with a
different impatient rate. This phenomenon might be resulted
from a special coincidence of the collision, the catastrophic
breakdown, and the impatient properties.

Mean Number of Source

Wean Number of Scurce

010509 1,3 1,7 21 25 29 33 37 41 45 49 53 57 61 65 6% 73 77 E1 85 89 93 97 101

Lambda

Fig. 4. Mean number of source vs. generation rate

On Figure 4 the number of free tokens in the source can
be seen. The curves have a decrement in their slopes. The
higher generation rate implies a higher number of collisions,
so, the customers will fill up the orbit. The patient customers
remain in the orbit, consequently, the corresponding curve has
the smallest values.

On Figures 5, 6, and 7 the failure rates are the running
parameter. The figures display the same system characteristics,
as Figures 2, 3, and 4. Due to the increasing catastrophic
failure generation rates, the mean response time and the
utilization have decreasing curves. Because of the frequent
catastrophic breakdown, all of the customers leave the systems
at every breakdown event, thus the number of sources will
increase. These general trends are refined with the patient /
impatient behavior of the customer.

V. CONCLUSION

In this paper, the interaction of the behaviors of colli-
sion, catastrophic breakdown, and impatient customers has

Mean Response Time

Mean response time

Fig. 5. Mean response time vs. failure rate

Utilisation

Fig. 6. Utilization vs. failure rate

been investigated. The impatient property and the catastrophic
breakdowns result extra dimension in the Kolmogorov balance
equations, so the recursive numerical solution can not be
provided. The MOSEL-2 tool was used for solving the system
equations and calculating the steady-state probabilities. Due
to the finite state space, these probabilities exist, there are
no stability problems. With the help of the system proba-
bilities, reliability investigations can be performed. In this
paper, the most important and interesting system measures
were presented. A lot of system parameters were tried. Those
parameters were chosen, where the considered performance
measures display significant deviation between the scenarios.

Mean Number of Source

Mean Number of Source

Gamma

Fig. 7. Mean number of source vs. failure rate
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