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Abstract—Over the last years, new generations of mobile
devices have found their way into our pockets. They provide
more and more computational power and memory capacity
to perform complex calculations that formerly could only be
accomplished with bulky desktop machines. Moreover, mobile
devices are equipped with a range of sensors to capture people’s
motion, environmental sound etc. These capabilities combined
with the willingness of people to permanently carry them around
open up completely new ways of observing human behaviour
no longer in laboratories, but “in the wild”. However, the
detection and analysis of social cues is still a challenging task
and requires adequate tools to synchronise, process and analyse
relevant signals. This may be the reason why many studies and
applications focus on offline analysis and typically collect data
over long periods of time and analyse them afterwards. To allow
for immediate feedback, real-time assessment is necessary. In
this paper, we present MobileSSI, a port of the Social Signal
Interpretation (SSI) framework to Android and embedded Linux
platforms. The framework supports the joint development of
processing pipelines for the analysis of social signals on a desktop
computer and mobile devices. Throughout the paper we report
on challenges we had to face when porting SSI to a mobile
context. Furthermore, we summarise first experiences with a
real-life setting in a pub where we focused on the analysis of
multimodal social group dynamics investigating laughter as a
sign of enjoyment.

I. INTRODUCTION

With each passing season, a new generation of mobile
devices finds their way into our pockets. They allow us to
handle our daily home and work tasks without the help of
bulky desktop computers. In fact, smart phones have become
so omnipresent that people do no longer perceive them as
computers any more. Meanwhile the computing power of
those devices steadily increases and the amount of integrated
sensors grows. This opens up completely new possibilities
of combining personal data about an individual with context
information that is autonomously acquired from the environ-
ment. Furthermore, it bears great potential for a research
domain, which over the past years has gained increased
attention: Social Signal Processing (SSP). SSP aims at making
machines more human-like by equipping them with the ability
to recognize, interpret and express nonverbal behavioural cues
[20]. Since SSP targets phenomena observed in everyday
communication it is difficult, if not impossible, to develop
robust models of human-human interaction solely based on
experiences gained in laboratory settings. Here, mobile devices
provide completely new possibilities to collect data in a natural

and unobtrusive way [19], [25]. The benefits of mobile devices
for SSP can be summarized as follows:

• Mobile devices have become an integral part of people’s
everyday life. Therefore, they enable us to design exper-
iments that balance realistic conditions and experimental
control.

• Mobile devices are equipped with a wide array of sensors
to monitor user behaviour and derive context information.

• Mobile devices are small and lightweight and can be
carried around for an extended period of time, which suits
long-term and in-situ recording. More spontaneous and
natural interactions can therefore be expected.

• Mobile devices also allow us to go beyond short-term
social and emotional cues and to create long-term user
profiles. Battery power still comes in as a limitation which
is mitigated by the fact that most people keep their phones
charged routinely.

Hence, it is not surprising that there has been growing
interest over the past few years in the development of mobile
applications that monitor user behaviour. In order to help
users improve their lifestyle, research has been conducted to
identify correlations between mood and human behaviours
including their physical activity, social interactions and sleep
[10]. Typically, behavioural data, derived from sensor’s data
such as acceleration, skin conductance or voice, is obtained
from mobile phones or wrist sensors. In addition to data
provided by the mobile phone sensors, communication data,
such as the number of text messages or missed calls, have been
investigated as stress and mood indicators or predictors [16],
[4], [11], [7]. Furthermore, attempts have been made to detect
stress from the user’s voice in natural environments using
microphones on smartphones. Some approaches just make use
of the microphones to collect data [12], while others [6], [1]
developed a platform that offers feature extraction functionali-
ties for vocal emotion recognition running on mobile devices.
Renaud and Crawford [14] suggest employing behavioural
biometrics, such as keystroke dynamics, use patterns and
voice analysis techniques for passive authentication. Crossan
et al. [2] present a multi-modal contact list to enhance remote
communication by sharing selected context information, which
is automatically derived by the system (e. g. the current user
mood). Damian et al. [3] developed a portable system that
provides real-time feedback about the quality of a presen-



ter’s performance in public speaking. Recommendations are
automatically derived by analysing openness, body energy and
speech rate and presented through a wearable display, such as
Google Glass.

However, most studies focus on offline analysis and typi-
cally data of people is collected over the day and analysed
afterwards. To allow for immediate analysis and feedback,
real-time assessment is necessary. Providing developers with
tools to record, analyse and recognise human behaviour in
real-time on mobile devices has been our driving force when
porting the Social Signal Interpretation (SSI) framework [23]
to run on Android platforms. In the following, we will briefly
introduce SSI and describe particular challenges we had to
face during porting. Finally, we will demonstrate the potential
SSI offers on mobile phones by means of an application that
detects user enjoyment in real-time in a multimodal context.

II. MOBILE SSI

The SSI framework aims at closing the gap between offline
analysis and the development of online systems. To this end,
it provides an architecture that does not only provide tools
for data recording and machine learning, but also supports the
immediate implementation of a learned model in a real-time
fashion. Originally, SSI was developed for desktop machines.
However, given the mobile boom in the last years and the
great potential mobile devices offer to unobtrusively monitor
and analyse user behaviour in the wild, it seems natural to
extend the framework into the mobile world. Since mobile
and desktop systems benefit each other, we keep them as
consistent as possible. In fact, with the current implementation
it is possible to develop a system on a desktop machine and
run it without (or only marginal) modification on a mobile
device and vice versa.

The core idea of SSI is to accomplish complex signal
processing pipelines from simple reusable units (see Figure 1).
To this end, SSI implements a plug-in system to dynamically
load pipeline components at run-time. The structure of a
pipeline is described using plain XML. Both properties offer a
sufficient level of abstraction to define a pipeline independent
of the platform it will run on. Nevertheless, we had to face a
number of challenges on the way.

Since SSI is written in C++ and was originally developed
to run on Windows platforms, porting the core system to
Linux was a necessary step to support embedded systems.
CMake was chosen as a platform-independent build system.
Wherever possible platform-dependent implementations were
replaced by platform-independent solutions (e. g. switching
threading to C++11 standard). The main challenges, however,
arose from the limitations and peculiarities of mobile devices.
Due to its wide distribution and open nature, we decided
to primarily target Android as mobile operating system. One
inherent property of SSI is its strict synchronisation between
various processing channels to enable a proper integration of
multi-modal information. On a desktop machine with a steady
energy supply the primary way of processing information is in
form of continuous streams at a fixed sample rate. On mobile
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Fig. 1. Components in an SSI pipeline used for laughter recognition in Section
III. Data flows in streams and events from one component to another.

devices, however, limited and heterogeneous computing power
as well as inaccurate timers and battery usage have to be taken
into account. Therefore, it often makes sense to handle signals
in a ”process-on-demand” fashion, i.e. to process signals
only when they convey something meaningful [13]. Hence,
representing information in form of events becomes more
important on a mobile platform. Here, SSI’s event handling
system already provides a suited mechanism, though some
extensions had to be made, e. g. serialisation of events back
into continuous streams.

Integrated sensors are a key feature of mobile devices as
they allow us to constantly monitor a user’s behaviour without
the requirement for extra wiring [8]. In addition, a mobile
system can be extended with supplementary sensors worn by
the user, as well as stationary ones placed in the surrounding
environment. We use a messaging protocol (XMPP or MQTT)
with a publish-subscribe model [18] to be able to add sensors
dynamically and aim at a more opportunistic approach [15].
To combine XMPP events with information perceived by reg-
ular sensors we rely on an asynchronous vector-based fusion
approach [5]. SSI also offers an appropriate way to cope with
situations in which information is only partly available. The
problem with missing data [22] is often ignored in laboratory
settings, but represents a typical case in mobile applications
where sensors may occasionally be out of range or deliver
delayed input due to performance limitations.

To support distributed processing of sensor input over
multiple machines and platforms, SSI offers a socket-based
interface to start multiple pipelines in-sync and hosts a time
server to keep timers from drifting apart. This feature also
allows us to outsource heavy processing steps to a desktop
computer and immediately receive the result to continue
processing. In addition, MobileSSI features a web server for
communication via web sockets, for instance, to visualize
information in a browser either on the mobile device itself
or an external machine in the network.

Like SSI, MobileSSI is open source and available for the
public.1

III. LAUGHTER DETECTION IN A DAILY ENVIRONMENT

To validate our approach, we decided to implement a
laughter detection system with MobileSSI. We have already
built an enjoyment recognition system based on audiovisual
laughter and smile detection [5]. Data acquisition, however,

1https://hcm-lab.de/git/project/mobileSSI

https://hcm-lab.de/git/project/mobileSSI
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Fig. 3. In addition to audio analysis we capture acceleration, which is a
useful indicator of body movement to differentiate laughters from spoken
conversation.

was done in a typical static lab setting in which up to four
subjects were recorded while telling each other funny stories
of their lives [9].

The aim of our present research is to port the existing system
to run on mobile phones in order to research the following
topics:

• Can we replace the sensor devices of the previous sys-
tem using solely sensor technology provided on mobile
phones?

• Which parts of the signal processing pipeline needs
adaptation to work in a less predictable and changing
environment?

• Can we expect an acceptable recognition performance?
As a natural environment for our study we picked a pub,

as it is a common place for people to meet and have funny
conversations. Since we decided to use only hardware that
is available on smart phones and continuously provides data
for analysis, we could no longer rely on face recognition and
depth image processing as in the previous study. Instead we
decided to stick to audio and accelerometer sensors. The new
setup is depicted in Figure 2 and shows three probands, each
of them equipped with a smart phone in their breast pocket
connected to a clip microphone. Figure 3 features a signal
snippet showing a speech event followed by a laughter event.
Throughout the whole session probands were completely free
in choosing the topics of their conversations, i.e. we did not
specify any guidelines regarding the discussed content. For
the experiment, we used Galaxy S4 phones running Android
5.0.1.

First, we set up a pipeline to continuously record audio and
accelerometer data. To ensure that captured signals are kept in
sync, we relied on SSI’s synchronisation techniques (see [23]).
We ran two recording sessions on different days and collected
a total of four hours of natural conversations per user. To
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Fig. 4. Change in audio amplitude and accelerometer energy before and after
entering the pub.

prevent data loss, we turned off the sleep mode of the mobile
phones. Our experiments showed that data can be reliably
captured with the sensors provided by the smart phones for up
to five hours per charge. Audio was recorded with 16 kHz and
acceleration data with 100 Hz. When reviewing the data, we
also found a significant amount of laughter (about 50 events
per session and user). In total, we extracted 21500 overall
samples by using a sliding window of one second and 400 ms
frame shift. This figure compares well to the story–telling
corpus collected in the lab consisting of 27000 samples. For
the annotation task we used the ELAN tool2 [24].

IV. RESULTS AND DISCUSSION

As in our previous study [5], we trained a Support Vector
Machine (SVM) classifier for each modality and used leave-
one-user-out for evaluation, calculating an average over the
results of each users. We make use of the EmoVoice feature
extraction algorithms that cover 1451 in total [21] for audio
in addition to a series of 14 features (mean, variance, peaks,
...) for motion that we compute for each axis and their first
and second derivation. Recognition results are shown in table
I. For the audio channel, we found a clear drop from 90% to
67% in recognition accuracy compared to the result obtained
in the controlled laboratory setting. The detection rate for the
accelerometer data was lower as well yielding 67% compared
to 79% obtained with the video modality in the reference
study. When altering the window size, audio classification
improved for larger frames (up to 78% for frames of 2.0 s)
whereas accelerometer detection rates were more stable for
smaller frames. An asynchronous fusion scheme using both
modalities and an ensemble of features is under work.

Classification Results in %

Audio Accelerometer

Laughter 59.37 57.24
¬ Laughter 74.24 77.54

Average 66.80 67.39
TABLE I

Compared to the story–telling corpus we found clear dif-
ferences regarding the quality of the signals. For instance,

2http://tla.mpi.nl/tools/tla-tools/elan/
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in the pub the captured audio signals were overlaid with
diverse sources of noise: music playing in the background,
surrounding conversations of varying intensity, utterances of
the waitress while taking orders, interferences with mobile net-
work activity etc. These disturbances present great challenges
to voice activity detection and audio classification and should
be addressed, for instance, by applying noise reduction tech-
niques. Since the environment in a mobile setting is subject
to great changes, e. g. when the group is temporarily leaving
the pub for a smoke (see Figure 4), noise cancelling schemes
are required that are able to dynamically adapt to the current
situation. It is important to note that the surrounding sound
scape also contains relevant data that should be analyzed to
gain further information about the environment and the user’s
activity. For instance, tailored classification models could be
used for outdoor and indoor settings.

Overall, our experiment demonstrated the benefits of Mo-
bileSSI when porting existing lab settings into a mobile
environment. Since battery life of today’s smart phones is
sufficient to record and process data in real-time for several
hours, we are able to run real-life experiments, which provide
better insights on the actual challenges we have to face when
applying social signal processing in the wild.

V. CONCLUSION

With MobileSSI, we presented a tool that brings social
sensing to mobile and embedded devices. Our deployment in
a real-life setting gave promising results and demonstrated the
capability of MobileSSI to run complex signal processing and
machine learning tasks locally on mobile devices. Processing
data captured ”in the wild” is clearly more challenging than
analyzing data recorded in laboratory settings. MobileSSI does
not only help developers pinpoint these challenges, but also
offers a flexible software framework to implement algorithms
that are able to address them. In order to cope with partially
missing, unreliable or noisy data, we provided an event-based
fusion approach that tolerates gaps in data streams. In the
CARE project [17], we currently employ MobileSSI to provide
elderly people with personalized life style recommendations
based on context information about their living environment.
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nach, A. Ferscha, M. Kurz, G. Hölzl, H. Sagha, H. Bayati, J. del
R. Millán, and R. Chavarriaga. Activity recognition in opportunistic
sensor environments. In Proceedings of the European Future Technolo-
gies Conference and Exhibition, pages 173–174, 2011.

[16] A. Sano and R. W. Picard. Stress recognition using wearable sensors
and mobile phones. In Proceedings of the International Conference on
Affective Computing and Intelligent Interaction, pages 671–676, 2013.

[17] A. Seiderer, S. Hammer, E. Andre, M. Mayr, and T. Rist. Exploring
digital image frames for lifestyle intervention to improve well-being of
older adults. In Proceedings of the 5th International Conference on
Digital Health 2015, DH ’15, pages 71–78, New York, NY, USA, 2015.
ACM.

[18] C.-F. Sørensen, M. Wu, T. Sivaharan, G. S. Blair, P. Okanda, A. Friday,
and H. Duran-Limon. A context-aware middleware for applications in
mobile ad hoc environments. In Proceedings of the 2Nd Workshop on
Middleware for Pervasive and Ad-hoc Computing, MPAC ’04, pages
107–110, New York, NY, USA, 2004. ACM.

[19] A. Vinciarelli, R. Murray-Smith, and H. Bourlard. Mobile social
signal processing: Vision and research issues. In Proceedings of the
International Conference on Human Computer Interaction with Mobile
Devices and Services, pages 513–516, 2010.

[20] A. Vinciarelli, M. Pantic, and H. Bourlard. Social signal processing:
Survey of an emerging domain. Image Vision Computing, 27(12):1743–
1759, 2009.
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