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Abstract—Parking has been a painful problem for urban
drivers. The parking pain exacerbates as more people tend to
live in cities in the context of global urbanization. Thus, it
is demanding to find a solution to mitigate drivers’ parking
headaches. Many solutions tried to resolve the parking issue
by predicting parking occupancy. Their focuses were on the
accuracy of the theoretical side but lacked a standardized model
to evaluate these proposals in practice. This paper develops
a Driver-Side and Traffic-Based Evaluation Model (DSTBM),
which provides a general evaluation scheme for different parking
solutions. Two common parking detection methods - fixed sensing
and mobile sensing - are analyzed using DSTBM. The results
indicate: first, DSTBM examines different solutions from the
driver’s perspective and has no conflicts with other evaluation
schemes; second, DSTBM confirms that fixed sensing performs
better than mobile sensing in terms of prediction accuracy.

Index Terms—smart parking, evaluation model, data-based

I. INTRODUCTION

It is not only a pain, but also a waste (e.g., time or fuel) for
drivers to search for parking spaces in cities. It is estimated
that up to 7 billion people, meaning more than two-thirds of
the world population, will live in urban areas by 2050 [1].
The growing urbanization rate leads to higher car ownership
that aggravates the urban parking pain. As cities only have
limited land spaces, urbanization and parking form a group of
conflicts competing for land resources. Thus, it is essential to
find effective solutions to fix the parking problem [2].

According to the reports [3], [4], West Europe has around
300 million parking spots, while the United States has 2 billion
ones. Many of those parking spaces are not used effectively
due to a lack of real-time information on parking occupancy.
Thus, smart parking can play a vital role in mitigating the
urban parking pain by bringing in instant parking information
to make the best use of city parking facilities.

In general, parking solutions can be divided into three cate-
gories: fixed sensing, mobile sensing, and data-based modeling
[5], [6]. Conventionally, fixed sensing is the most used one
among the three solutions, the mechanism of which is to
install sensors at the parking spaces to detect the parking
occupancy. As for mobile sensing, sensors are attached to
moving vehicles and take the chance when vehicles pass
by the parking region to gain the parking information. In

mobile sensing, one sensor keeps an eye on multiple parking
spaces, reducing the cost for sensor implementations compared
with the fixed sensing solution. In the past years, data-based
modeling has become a popular tool as the advancement of
machine learning, which utilizes historical data to estimate the
future parking occupancy.

An evaluation model is needed to verify the proposed
parking solution. This paper presents a Driver-Side and Traffic-
Based Evaluation Model (DSTBM) for different parking so-
lutions from a new angle - the driver’s perspective. Usually,
the conventional evaluation models focus on the accuracy of
parking occupancy. In DSTBM, we use traffic flows to set up
our model, and predict the parking status from the driver’s
perspective, which means the driver’s decision (to park or
not to park) is also included into the accuracy calculation of
DSTBM.

DSTBM consists of two parts: a driver’s decision model
and a simulation process. In the driver’s decision model, we
set a group of policies to help drivers decide whether to park
or not. The decision results and traffic data are taken as the
inputs for the simulation process, which simulates the drivers’
parking behaviors and estimates the parking status.

The rest of the paper is organized as follows: section II
reviews evaluation models in the literature, summarizes their
features, and introduces the main contribution of our work;
section III presents DSTBM by explaining assumptions and
the simulation mechanism; section IV shows the performance
evaluation of fixed sensing and mobile sensing solutions
proposed in [7] using DSTBM; section V concludes the paper
and looks into the future work.

II. RELATED WORK

This section reviews three types of parking solutions: fixed
sensing [8]–[10], mobile sensing [11]–[15], and data-based
modeling [16], [17], whose features are summarized in Table
I.

Zhang et al. [8] present a street parking system (SPS) based
on wireless sensor networks. This system equips magnetic
sensor nodes on parking spots to detect parking occupancy. In
total 82 sensor nodes are installed to evaluate the performance
of SPS. The authors claim SPS can achieve a detection
accuracy of around 98%.978-1-6654-6934-0/22/$31.00 © 2022 IEEE
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TABLE I

FEATURES OF THREE CATEGORIES OF PARKING SOLUTIONS

Type Authors/ Project Name Features

Fixed sensing

Zhang et al. [8]
Based on wireless sensor networks. 82 sensor nodes

are deployed to evaluate the performance

SFpark [9]
Wireless sensor network structure adopted. The pilot

deployment cost is high

Evenepoel et al. [10]
Provide only a fraction of parking spaces’ sensor

readings. Use extrapolation

Mobile sensing

ParkNet [11]
Ultrasonic sensors and GPS units. Reduce GPS error

with environmental fingerprinting approach

Coric et al. [12]
Weighted occupancy rate thresholding algorithm to

estimate the number of parked cars

Bock et al. [13]
Consider multiple factors, such as road segments, taxi

transit frequencies, and fleet sizes

Data-based

modelling

Xiao et al. [16]
Analyse historical occupancy data to predict future

parking status

Ye et al. [17]
Machine learning-based approach. Based on Wavelet

Neural Network (WNN)

SFpark [9] is a U.S. parking project started by San Francisco
Municipal Transportation Agency (SFMTA). Eight thousand
parking spaces were equipped with 11711 magnetometer sen-
sors. Parking availability data collected by parking sensors
were periodically broadcasted, so that drivers can save time
on cruising for parking spaces and congestion can be reduced.

One of the shortcomings of fixed sensing solutions is the
high deployment cost. To lower the costs, Evenepoel et al.
[10] utilize sensor information on a portion of parking spaces
to estimate the city-wide parking status using extrapolation.
In addition, they build a probabilistic model to calculate the
degree of dependence between the performance of sensor
networks and the number of installed sensors. They define
the performance measure based on the use of ”redirection
threshold”. Due to the computational complexity of the model,
the estimated number of discrete points does not always match
the reality.

For mobile sensing solutions, there is no need to equip indi-
vidual parking spots with sensors. ParkNet [11] aims to build a
real-time parking map. The authors employ ultrasonic sensors
and GPS units to determine the number of parked vehicles.
In addition, they devise an environmental fingerprinting to
improve the precision of GPS. The authors took a two-month
drive test to collect 500-mile parking data and claimed the
accuracy of the parking occupancy map is over 90%.

Coric et al. [12] build a parking map using pre-installed
parking sensors on vehicles. Unlike ParkNet, the authors
propose a weighted occupancy rate threshold algorithm to
estimate the number of vehicles parked on the streets. They

collect more than 2 million sensor readings and demonstrate
that the accuracy of their parking maps is around 90%.

Bock et al. [13] simulate the sensing coverage of on-street
parking by down-sampling the parking data from SFpark.
They assume that a fleet of taxis equipped with sensors are
able to detect free on-street parking spots. According to the
taxi trajectories, the authors estimate the sensing coverage
of probing taxis with different number of taxis. Bock et al.
[14] and Liao et al. [15] make a further investigation on the
suitability of taxis to crowdsense on-street parking availability.
Multiple factors are considered, such as road segments, taxi
transit frequencies, and fleet size. The results show that crowd-
sensing parking occupancy via taxis is a promising alternative
to the expensive fixed-sensing solution.

Data-based modeling makes use of data such as traffic
conditions, historical parking data, and drivers’ parking de-
mands. Xiao et al. [16] put forward a model-based practical
framework, the core idea of which is to utilize a queuing model
to analyze the historical occupancy data and then predict the
future parking status. The authors applied their model to study
parking spaces in San Francisco. The results indicate that their
model can predict parking occupancy with good accuracy.

Ye et al. [17] proposed a machine learning-based approach
to make a short-term estimation of available parking spaces
(APS). The prediction model is based on Wavelet Neural Net-
work. The authors show the positive impacts of APS, such as
lessening cruising time, reducing illegal parking behaviors, and
providing information for adjusting parking rates dynamically.
The prediction accuracy is compared with that of a control



TABLE Ⅱ 
THE VARIABLES AND PARAMETERS IN DSTBM 

 
 

Variable Explanation 
𝑁! The number of cars that wants to park except for driver’s car 
𝑁" The number of free parking spaces in parking region 
𝐷# The decision made by drivers 
𝐷$ The number of free parking spaces determined by a detection solution 
𝑃% Prediction accuracy 

Parameter  
𝑇&/𝑇' The traffic flow in/out obtained from real-time monitoring 
𝑇! The time difference between drivers checking the parking occupancy and the 

actual arrival time at the parking space 
𝐷! The parking duration of a parked car 
𝑉! The velocity of driver’s car 

𝑇&()*$+%, The time interval of cars arriving at the parking region’s entry 

group.
Zheng et al. in [18] used historical parking data to evaluate

the performance of a mobile sensing solution. The analytical
results are compared with the ground truth data. However,
the model only takes the number of parking spaces into the
calculation, which is too simplified.

According to the reported results in [9], the accuracy of
SFpark, a complete fixed sensing solution, is around 86%,
while some mobile sensing solutions’ accuracy can be above
90%. The common evaluation method used for mobile sensing
is to check the prediction result against the ground truth to
decide the detection accuracy. However, the works in the
literature ignore that there is a time gap between the detected
parking occupancy and the actual arrival time of drivers. For
example, when drivers receive the parking occupancy updates,
they may still be several blocks away from the preferred
parking spot. It implies that we should take drivers’ decisions
when drivers arrive at the preferred parking region into the
parking evaluation model. Thus, the main contribution of this
paper is that we present a unified evaluation model integrating
drivers’ decisions with other factors (e.g., traffic conditions)
for different parking detection solutions.

III. DRIVER-SIDE AND TRAFFIC-BASED EVALUATION
MODEL

In this section, we develop a Driver-Side and Traffic-Based
Evaluation Model (DSTBM) aiming to evaluate parking solu-
tions by incorporating drivers’ perspectives. DSTBM consists
of two parts: a driver’s decision model and a simulation
process. The driver’s decision model generates the driver’s
parking decision based on real-time traffic conditions and
driver’s consideration. The simulation process takes drivers’
decisions derived from the decision model as inputs, and
then gives the prediction accuracy of the concerned parking

detection solution. The corresponding algorithms are shown in
Algorithm1 and Algorithm2 in Appendix.

A. DSTBM Preliminary

We build DSTBM to provide a standardized evaluation
method for parking detection. One fact and four assumptions
of the model are explained as follows. The variables and
parameters of the model are shown in Table II.
• Fact 1: Every car has a GPS, and we can obtain the car’s

position and velocity from GPS.
• Assumption 1: The velocity of a car that goes through

a parking region is considered to be constant. Namely, a
car goes through a parking lot containing multiple parking
spots without changing its speed.

• Assumption 2: A single lane inside the parking region,
or a single queue, is assumed. Namely, a car willing to
park will not leave the parking region before a car ahead
of it has parked or exited the parking region.

• Assumption 3: The parking duration of a car stayed in a
parking spot (Dc) is a continuous random variable and
follows the normal distribution with mean µ and variance
σ2, both of which can be determined by historical parking
data.

• Assumption 4: The time interval of cars arriving at
the parking region (Tinterval) is a continuous random
variable and follows the exponential distribution with an
arriving rate λ. Tinterval is memoryless, meaning the
intervals of the following drivers are unrelated.

B. Driver’s decision model

As mentioned above, in a real driving practice, there will
likely be a time gap between the detected parking availability
and the actual arrival time of the driver. In order to make
driver’s decision closer to reality, we develop a driver’s deci-
sion model by introducing this time gap. The core idea is to



A driver reaches the entrance of the region at !!
Input: !!

Obtain the traffic flow in/out "" and  "# from real data at !!

Calculate the number of parking cars #$ with "" , "# , #%
Calculate detection result %& at !!

Driver decides not to park his car
Output: %' = 0

Driver decides not to park his car
Output: %' = 0

Driver decides to park his car
Output: Dm  = 1

Calculate the minimum of the velocity of 
the parking cars with Nc

&'#( = '() &), &*, …… , &+!

#$ ≥ %& #$ < %&

&'#( > &$ &'#( ≤ &$

Fig. 1. Driver’s Decision Model

jointly utilize other influential factors (e.g., traffic conditions)
and the detection result based on crowdsourcing to predict a
driver’s decision in the real parking situation.

The mechanism of the driver’s decision model is illustrated
in Fig. 1. The starting point of the model is t0, and the output
is Dm, i.e., the parking decision that the driver makes. When
a driver reaches the entrance of a parking region, the model
is activated. The number of cars (Nc) that are looking for
parking spaces except for driver’s car is calculated based on
the traffic flow data. There are three cases for drivers, as Nc
and Dr (detection result of parking spaces) form different
combinations. If Nc ≥ Dr, it indicates there are not enough
parking spaces, so the driver will decide not to park (Dm = 0).
If Nc < Dr, the driver is likely to obtain a parking space but
not guaranteed because Dr may not be completely accurate.
So, the driver will consider further. If Vmin > Vc, it means
the driver’s car is slower than all other cars. Once the Dr is
not accurate, the driver will fail to compete with others due
to the car’s low speed, so Dm = 0 as well. If Nc < Dr

and Vmin ≤ Vc, that is the driver is not slower than all those
looking for parking spaces, then the driver can arrive at the
parking space earlier than some other cars, so the driver will
decide to park in the region (Dm = 1).

C. Simulation Process

In the simulation process, we will trace the driver’s behavior
after they have made their decisions to obtain the prediction
accuracy Pa of a parking solution. As explained above, the
driver’s decision model has two outcomes: Dm = 0 or
Dm = 1. The former means drivers decide not to park based
on parking detection results and traffic conditions (e.g., the
number of cars looking for parking spaces). If Dm = 0, but
there are actually chances to park, it is a false negative, namely,
a wrong prediction. The latter means drivers decide to park. If

Dm = 1, but drivers fail to park finally, it is a false positive,
which is also a wrong prediction. The drivers’ actual parking
behaviors can be examined when the cars finally arrive at
the parking spaces (i.e., after Tc) by simulations. Thus, the
prediction accuracy Pa of a parking solution can be calculated
as true positive plus true negative:

Pa =
free space predicted& driver actually park

total prediction
+

no free space predicted& driver actually not park

total prediction
.

The simulation codes have been made available via the link
below.1

D. DSTBM Summary

As shown in Fig. 2, the car in blue represents a randomly
moving vehicle that is equipped with sensors to detect on-
street parking occupancy, while the car in green represents a
normal car.

Note that, the number of free parking spaces Np, detection
result Dr, and traffic flow data Ti/To are variables, which
will be continuously updated to the data processing center
to compute Nc. According to Assumption 4, the interval
(Tinterval) between adjacent cars arriving at the parking region
follows exponential distribution with a coming rate of λ. If we
denote G(Tinterval) as the probability density function of the
arrival interval, then, the probability that adjacent cars enter
the parking region is equal to

∫ t+δ1
t−δ1 G(x)dx, where δ1 is a

small number and G(x) = λe−λx, x ≥ 0.
When a car arrives at the entrance of the parking region

(the red star in Fig. 2), the decision model is activated,
which combines Nc and Vc to produce an output (Dm):

1https://www.dropbox.com/s/0rcunfnunh2p6f9/Driver Side and Traffic
Based Evaluation Model.ipynb?dl=0

https://www.dropbox.com/s/0rcunfnunh2p6f9/Driver_Side_and_Traffic_Based_Evaluation_Model.ipynb?dl=0
https://www.dropbox.com/s/0rcunfnunh2p6f9/Driver_Side_and_Traffic_Based_Evaluation_Model.ipynb?dl=0


              

              

    

  

  

                  

     

  

  
  

  

Fig. 2. Driver-Side and Traffic-Based Model

whether to park or not. Drivers will then behave according
to the output of the decision model. Meanwhile, Dm will
be transmitted as inputs to the simulation process. Dm plus
Dc (the parking duration of a car) combined are used to
determine the prediction accuracy. According to Assumption
3, Dc follows normal distribution. So, the probability that
the car still parks in the parking spot at the next moment
is equal to

∫ d+δ2
d−δ2 F (y)dy, where δ2 is a small number and

F (y) = 1
σ
√
2π
e−

(y−µ)2

2σ2 , y ≥ 0.

IV. SIMULATION RESULTS

With the help of DSTBM, we can evaluate the prediction
accuracy of different parking solutions. To this end, we make
two comparisons, as shown in Fig. 3 and Fig. 4. Both figures
take the time (week) as the abscissa, while the ordinate
represents the detection accuracy. In the two figures, the lines
in different colors represent different detection schedules (Ds).
The detection schedule means the interval that a crowdsourc-
ing detection car scans a specific parking spot. For example, in
Fig. 3, Ds = 0 means a fixed sensing solution that constantly
updates the parking status, while Ds = 15 means that a
detecting car passes by a parking spot and updates the parking
status every 15 minutes.

A. Comparing fixed sensing and mobile sensing

We collected a set of real on-street parking occupancy data
in Nanshan, Shenzhen from 2018/11/12 to 2019/01/27 [19].
We use this data set as the result of the fixed sensing solution,
since the detection schedule is Ds = 0.

11/12-11/18
11/19-11/25
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12/3-12/9

12/10-12/16
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Fig. 3. Fixed sensing vs mobile sensing
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Fig. 4. Mobile sensing with different detection schedules



Also, we used this data set to simulate the detection result
given by a fleet of crowdsensing vehicles, which are assumed
to be equipped with detection sensors, periodically cruising
the Nanshan streets, and passing by on-street parking spaces
every Ds.

From the results shown in Fig. 3, the accuracy of the fixed
sensing solution is around 90%, which is consistent with the
situation in practice. The accuracy of the simulated mobile
sensing solution is not as good as that of fixed sensing, which
fluctuates around 80%. This is evident that DSTBM has no
conflicts with the other evaluation models. It is also reasonable
that the accuracy of mobile sensing is lower than that of fixed
sensing, as mobile sensing sacrifices some accuracy in pursuit
of reducing the number of sensor deployment costs.

B. Mobile sensing with different detection schedules

We can simulate the mobile sensing solution by setting
different detection schedules to process real parking occupancy
data in Nanshan. For instance, suppose that the detection
schedule is every 10 minutes (Ds = 10), and let 0 and 1
denote the parking status (0 for free, and 1 for occupied). If the
initial parking status is occupied, and the sensing vehicle scans
the parking spaces in the first minute of every 10 minutes,
then, the parking status gained by simulated mobile sensing
is 1111111111. But in a busy street, the actual parking status
from the minute 1 to the minute 10 can be 1110010001. So,
we will get different detection results by processing the real
data set using different Ds. If Ds = 0, it is equivalent to fixed
sensing.

The mobile sensing solution is simulated assuming the taxi
fleet is equipped with detection sensors with different detection
schedules: 15min, 35min and 50min.

In general, the accuracy is higher when the detection sched-
ule is smaller, indicating the accuracy of parking solutions
decreases as the detection interval increases. As shown in
Fig. 4, the accuracy when Ds = 15 (red line) is generally
higher than other lines. However, there are some cases that
the accuracy of Ds = 50 is higher than that of Ds = 15.
These occurrences are due to the fact that our simulation is
based on real parking data (but a relatively small set), so that
fluctuations are inevitable. The other reason is that we derive
the model by adding the driver’s perspective, which can lead
to different results from fixed sensing.

C. Discussion

Results of the above two sub-sections all match the sit-
uations in practice. The DSTBM model examines detecting
solutions from both the driver’s perspective and real-time
traffic conditions, thus this reality-based evaluation model
conforms with the results of other evaluation models. In
addition, the DSTBM model considers more practical factors,
making it a more robust evaluation method.

V. CONCLUSIONS

In this paper, we proposed a Driver-Side and Traffic-Based
Evaluation Model (DSTBM) aiming to recover the lack of

a unified evaluation model for different parking solutions.
The DSTBM model is consisted of two parts: a driver’s
decision model and a simulation process, which simulates
different parking solutions and outputs the detection accuracy.
The driver’s decision model generates reasonable suggestions
based on different traffic parameters. Then, based on those
suggestions, the simulation model gives the prediction accu-
racy by incorporating the driver’s perspective.

The fixed sensing solution and mobile crowdsourcing so-
lution proposed in [7] are taken to assess the performance
of DSTBM. DSTBM maintains the same conclusion: fixed
sensing solutions have a higher prediction accuracy than the
mobile sensing ones. In addition, DSTBM introduces many
practical factors (e.g., traffic flow and drivers’ arrival time),
making the model more robust.

For the future work, we will consider a more general case,
in which drivers randomly check parking information until
arriving at the parking region. To fully capture this feature, we
will adopt the dynamic programming in the driver’s decision
model.
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APPENDIX A
DSTBM ALGORITHMS

	Algorithm	1:	Driver	Decision	Model	 	
Input:	 the	 time	 of	 the	 driver	 reaches	 the	
entrance	of	the	region	 𝑡!	 	
Output:	0	or	1	 	 (0	represent	the	decision	
of	not	parking	car,	1	represent	the	decision	
of	parking	car)	
Function0	 (Return	 the	 number	 of	 free	
parking	spaces	in	reality	at	time	 𝑡)	
Function1	 (Return	 the	 number	 of	 free	
parking	spaces	of	detection	at	time	 𝑡)	
Np	=	Function0	(input)	
Dr	=	Function1	(input)	
"#!
"$
	 =	 𝑇%-	 𝑇& 	 +	

"#"
"$
	

If	(𝑁' 	 < 𝐷()	then	
	 𝑉)&*	 =	 𝑚𝑖𝑛Q𝑉+, 𝑉,, …… , 𝑉#!S	

If	(𝑉)&* > 𝑉')	then	
	 Output	0	
End	 	
Output	1	

End	 	
If	(𝑁' 	 ≥ 𝐷()	then	
	 Output	0	
End	 	

	Algorithm	2:	 	 Simulation	Process	
Input:	The	set	of	time	that	the	driver	reaches	the	
entrance	of	the	region	T	
Output:	Accuracy	 𝑃!	
Initialization	
	 	 Initialize	global	parking	status	matrix	 𝑃	
	 	 Initialize	correct	number	 correct	 =	0	
Function0	(Driver	Decision	Model,	return	driver’s	
decision	)	
Function1	 (Return	 the	 number	 of	 free	 parking	
spaces	in	reality	at	time	t)	
Function2	 (Return	 the	 parking	 duration	 of	
driver’s	car)	
For	each	time	t	 ∈	 T	do	
	 Dm	=	Function0	(t)	

Np	=	Function1	(P,	t+Tc)	
If	(	Dm	==	0	and	Np	!=	0)	then	
	 correct	 +=	1	
End	
If	(Dm	==	1	and	Np	==	0)	then	
	 correct	 +=	1	
End	
If	(	Dm	==	1	)	then	
	 If	(	Np	!=	0)	then	

	 Dc	=	Function2	(𝜇, 𝜎")	
Update	 	 𝑃	
Update	 	 𝜇	
Update	 	 𝜎	

End	 	
End	 	

End	

𝑃!	 =	
#$%%&#'

'$'!(	*%&+,#',$-	
	

Output	 	 𝑃!	 	
	

https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200_00403593
https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200_00403593
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