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Abstract—This paper introduces a new approach to 3-D 

position estimation from acceleration data, i.e., a 3-D motion 

tracking system having a small size and low-cost magnetic and 

inertial measurement unit (MIMU) composed by both a digital 

compass and a gyroscope as interaction technology. A major 

challenge is to minimize the error caused by the process of 

double integration of accelerations due to motion (these ones 

have to be separated from the accelerations due to gravity). 

Owing to drift error, position estimation cannot be performed 

with adequate accuracy for periods longer than few seconds. For 

this reason, we propose a method to detect motion stops and only 

integrate accelerations in moments of effective hand motion 

during the demonstration process. The proposed system is 

validated and evaluated with experiments reporting a common 

daily life pick-and-place task. 

Keywords—3-D position estimation, inertial sensing, double 

integration, accelerations, tracking, robotics  

I. INTRODUCTION 

The reliability, size, intrusive character and cost of some 
existing motion tracking technologies have hindered the 
development of some areas of robotics. This is particularly 
true, for example, in areas related with robot autonomy and 
programming by demonstration. Each interaction technology 
has advantages and disadvantages. Some hybrid systems 
combining different types of technology (inertial, magnetic, 
optical and GPS based technologies) have shown good results. 
Nevertheless, reliable and accessible 3-D position estimation is 
still a problem. 

A. Interaction Technologies and methods 

Interaction technologies for human motion tracking have 
increasingly being subject of study by researchers. A review on 
motion capture technologies and current challenges associated 
to their application in robotic systems is presented in [1]. 
Different methods have been employed to approach problems 
related to modeling and recognition of human behaviors [2] 
and motion tracking. Basic concepts for mapping typical 
human actions performed in a household environment to a 
robotic system are explained in [3]. Magnetic and optical 
sensors allow obtaining an absolute reference for the system in 
study and do not suffer from the problem of drift that the 

inertial sensors suffer. A major drawback of magnetic-based 
sensors is its sensitivity to magnetic distortions in the Earth’s 
magnetic field. Ekvall and Kragic explore grasp recognition in 
a PbD system using a magnetic tracker to capture motion [4]. 
Sugiyama and Miura develop a vision-based interface in which 
the user can instruct a robot by making it move in the same 
way as the user’s motion [5]. These vision-based systems 
present some important drawbacks such as the limited fields of 
view, occlusions, etc. 

Inertial-based motion capture systems rely on acceleration 
and rotational velocity measurements from accelerometers and 
gyroscopes, respectively. Inertial tracking suffers from severe 
drift problems: high noise and large uncertainties such as bias 
and scale factor. Thus, they cannot provide accurate pose 
information during continuous operation (long term stability is 
affected). Despite the inherent problems associated with these 
sensors, the overall performance can be improved by 
combining them with other sensors. There are many 
possibilities to combine individual sensors into a new multi-
sensorial system. The positive aspects of different sensors can 
be explored and combined, originating a “better” sensor. The 
small sensors that combine inertial and magnetic sensing are 
usually called miniature magnetic and inertial measurement 
units (MIMUs). Maeda et al. present a sensor-based system 
that measures full body motion of the user [6]. Miller et al. 
report the use of a set of inertial sensors to control the robot 
arm of NASA Robonaut [7]. A real-time hybrid solution to 
articulated 3D arm motion tracking for home-based 
rehabilitation by combining visual and inertial sensors is 
presented in [8]. An inertial-sensor-based hybrid tracking 
technology is presented in [9]. Sessa et al. present a method for 
reliable comparison among IMUs using a Vicon system as 
reference measurement system [10]. Ojeda and Borenstein 
present a navigation system for walking persons based on a 6-
axis IMU attached to the user’s boot [11]. They propose a 
technique known as “Zero Velocity Update” that virtually 
eliminates the ill-effects of drift in the accelerometers. Another 
study presents a 3-D position tracking system composed by an 
IMU and an external marker-based video tracking solution 
[12]. Drift is reduced by fusing measurements from both 
sensors using an extended Kalman filter. 



B. Proposed Approach 

This paper presents a new approach to 3-D position and 
velocity estimation from acceleration data, i.e., a 3-D motion 
tracking system having a small size and low-cost MIMU 
composed by both a digital compass and a gyroscope as 
interaction technology, Fig. 1. By combining inertial and 
magnetic sensing we ensure not only fast motion tracking but 
also relatively long term stability. Hand positions are estimated 
by double integrating motion data (accelerations due to 
effective hand motion) provided by a 3-axis accelerometer 
embedded into the digital compass, Fig. 2. Since the 
accelerometer provides both accelerations due to motion and 
gravity, it is proposed a method to separate these two 
acceleration components. Roll and pitch angles are acquired 
from the digital compass and yaw angles are estimated by 
fusing data from the digital compass and the gyroscope using 
the Kalman filter (this process is out of the scope of this paper).  

A major challenge is to minimize the error caused by the 
process of double integration of accelerations. Owing to drift 
error (error accumulates with time), position estimation cannot 
be performed with an adequate accuracy for periods longer 
than few seconds. For this reason, we propose a method to 
detect hand motion stops and only integrate accelerations in 
effective moments of hand motion during the demonstration 
process. The proposed system is validated and evaluated with 
experiments reporting a common daily life pick-and-place task. 
Errors are analyzed and discussed. 
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Fig. 1. Layout of the proposed system. 
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Fig. 2. Block diagram of the proposed system. 

II. POSITION AND VELOCITY ESTIMATION 

For the sake of clarity, it is important to establish at this 
stage the reference frames involved in the system, Fig. 3: 

1) Inertial frame {I}: Inertial sensors provide 

measurements relative to an inertial frame. The axes Ix  and 

Iy  are located in the local level tangent plane, while the Iz  

axis points in the opposite direction to the center of the Earth. 

2) Body frame {B}: This frame is attached to the MIMU 

in/with a desired location and orientation. 

3) Navigation frame {N}: The navigation frame is 

attached to a fixed point on the surface of the Earth. 

In order to convert hand motion into robot motion, the 
measurements made on the inertial and body frame must be 
transformed (mapped) to the navigation frame by using a 
proper rotation matrix and translation vector defining the initial 
MIMU pose in relation to the navigation frame. These ones are 
made known to the robot by means of the calibration process. 
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Fig. 3. Reference frames. 

Accelerations can be mathematically integrated once to 
obtain velocity and twice to obtain changes in position. Only 
the accelerations due to effective hand motion have to be 
integrated. Since the accelerometer provides a combination of 
accelerations due to motion, gravity and error, it becomes 
necessary to separate these acceleration components. 



Errors in measured accelerations can be deterministic (bias, 
scale factor and axis misalignment) and/or random errors. Such 
errors propagate through the integration process, causing a 
considerable drift in estimated positions. Owing to drift error, 
position estimation cannot be performed with adequate 
accuracy for periods longer than few seconds [13-14]. For this 
reason, we are proposing a method to only integrate 
accelerations in effective moments of hand motion during the 
demonstration process. In addition, since we are using 
estimated orientations to separate and project accelerations, 
errors in estimated roll, pitch and yaw angles also affect 
position estimation accuracy. A small error in estimated 
orientation can yield a large error in estimated position. 

A. Sepparation of Acceleration 

The accelerations ( , , )T
x y za a aa  given by the 3-axis 

accelerometer are a combination of accelerations due to motion 

ma , a gravitational component ga  and error ε : 

 m g  a a a ε  

Since only ma  is integrated to estimate 

positions/displacements, it becomes necessary to separate a 
into its component parts highlighted in (1). 

The accelerations a are given in the body frame {B}. At the 

same time, the gravity vector (0,0, )Tgg  has a constant 

value and direction, being g the Earth’s gravity. g is expressed 
in the inertial frame {I}, Fig. 3. Knowing the orientation of the 
MIMU in each instant of time we can estimate the acceleration 

ga  projected in {B} by recurring to g and to a rotation matrix 

describing the transformation from frame {I} to {B}, B
I R . 

This matrix is defined with estimated roll, pitch and yaw angles 

from the MIMU in each instant of time. Thus, B
I R  performs 

the coordinate transformation of g into a vector in body frame 
{B}: 

 ,

B

g B Ia R g  

From (1), if the MIMU is static we have that g a a ε . On 

contrary, if the MIMU is moving, from (1) and (2), the 
acceleration due to motion in frame {B} can be computed by 
the following: 

  ,

B

m B I  a a R g ε  

It is assumed that 0ε . Owing to the constantly changing 

orientation of the MIMU during a demonstration, real-time 

updates of estimated orientations are required to define 
B
I R . 

B. Projection of Acceleration 

Accelerations due to motion defined in relation to {B}, Fig. 
3, must be projected into a navigation frame {N} defined a 
priori (the frame that the “robot knows” from the calibration 

process). As we know B
I R  and N

I R , and I N T
N IR R , we 

have that B B I
N I NR R R . Finally, the accelerations due to 

motion expressed in {N} are: 

 , ,

B T

m N N m Ba R a  4

From (4) it can be clearly seen that error in estimated 
orientation angles promotes error in projected accelerations. 

C. Numerical Integration of Acceleration 

The MIMU velocities ( ) ( , , )T
x y z nn v v vv  at an instant of 

time nt  can be estimated by accumulating velocity changes: 


,

1

( ) (0) ( )
n

m N

k

n k t


  v v a  

In which (0)v  is the initial velocity and t  the integration 

time. The displacements ( ) ( , , )T
x y z nn s s ss , can be estimated 

by accumulating changes in position: 


1

( ) (0) ( )
n

k

n k t


  s s v  

D. Detection of Motion Stops 

During the demonstration of a given task there are moments 
in which the demonstrator hand (with the MIMU attached) is in 
effective motion and others in which the hand is stopped. It 
becomes necessary to identify these moments to only integrate 
motion accelerations corresponding to the moments of hand 
motion. First, we need to compute the resulting acceleration 
due to motion for each instant of time: 

 2 2 2

mr mx my mza a a a    

In which mxa , mya  and mza  are the components of ,m Na . To 

detect motion stops we propose to compute the variance of 
each value of resulting acceleration: 

  
22

1

1
( ) ( ) ( )

1

i

mr mr

j i n

i a j a j
n


  

 


  

Being n the population size and a  the population 

(accelerations) average. For this specific problem the 
population average can be defined by: 


1

1
( ) ( )

n

mr mr

j

a i a j
n 

   

The moments corresponding to hand motion are defined by 

establishing a threshold value v  applied to the computed 

variances (8) and Alghorithm 1. The value of v  is defined by 

trial-and-error and it directly influences error estimation (it is 
defined according to the sensibility of the accelerometer). 



III. EXPERIMENTS 

Having worn the data glove and with the MIMU 
(OceanServer OS500-US) attached to the hand, the 
demonstrator performs a demonstration that a posteriori is 
supposed to be repeated by a robot. The demonstration task 
consists in a pick-and-place operation, more specifically the 
transportation of a plastic bottle from one location to another 
for the purpose of putting water in a plastic cup. This is a daily 
life task that presents a clear success/failure criterion. 

1:     Begin

2:        n ← 0

3:        For Each      Do

4:           n ← n + 1

5:           If (             ) Then

6:              m(i) ← 1

7:           Else

8:              m(i) ← 0

9:           End If 

10:      End For

11:      For i = 1 To n

12:          /* definition of the begining of motion space b */

13:          If (m(i) = 1) Then

14:             VarB = true

15:             b = i

16:             While (VarB = true) Do

17:                 For j = 1 To

18:                    If ( m(i + j) = 1) Then

19:                       updated ← i + j

20:                    End If

21:                 End For

22:                 If (updated > i) Then

23:                    VarB = true

24:                    i ← updated

25:                 /* definition of the end of motion space e */

26:                 Else

27:                    VarB = false

28:                    e ← updated

29:                 End If

30:             End While

31:         End If

32:      End For

33:   End

2

2
v 

Algorithm 1 Detection of hand motion 

Input: variance      , threshold for variance      , 

Output: motion detector m, begining of motion space b,

2 v

m

m

threshold for motion detection        (lenght of motion)       

end of motion space e, number of readings n

 

A. Tests 

Two different experimental tests for the same pick-and-
place task are presented. In Test 1 the user demonstrates the 
task respecting the following actions, Fig. 4: 

 Grasp the plastic bottle, Fig. 4 (a).   

 Move the plastic bottle in vertical direction along z 
axis, Fig. 4 (b), and stop for a while. 

 Move the bottle along x axis, Fig. 4 (c), and stop for a 
while. 

 Move the bottle in direction to the plastic cup 
(essentially along y axis), Fig. 4 (d), and stop for a 
while, Fig. 4 (e). 

 The hand rotates as if the demonstrator were to put 
water into the plastic cup, Fig. 4 (f). The final target is 
the centre of the plastic cup. 

Test 2 differs from Test 1 in the way the demonstrator performs 
the task. In this case the demonstrator transports the plastic 
bottle directly to the target, without motion stops. 

(a) (c)

(e) (f)

Ny
Nx

(b)

(d)

Nz

 

Fig. 4. Demonstration actions for Test 1. 

B. Results and Discussion 

Fig. 5 shows the resulting acceleration due to motion 
established in (7) for Test 1. 
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Fig. 5. Resulting accelerations due to motion for Test 1. 

There follows the computation of the variance of the resulting 
accelerations (considering that n=2 in (8)), Fig. 6. To detect 
motion stops during the demonstration, the Alghorithm 1 is 

applied with a threshold value 0.01v  . The result shown in 

Fig. 7 clearly indicates the moments in which the demonstrator 
hand is moving and stopped. These moments are highlighted in 
Table I. It presents details about the interval of the 
demonstration in which each different action occurs and how 
much long it takes.  
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Fig. 6. Variance of resulting accelerations due to motion for Test 1. 
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Fig. 7. Moments of hand motion stops (value 0) for Test 1. 

TABLE I.  DIFFERENT ACTIONS OF THE DEMONSTRATION (TEST 1) 

Interval of 

time 
Description 

Time 

[ms] 

0 - 86 No hand motion occurs 2150 

87 - 94 Vertical motion (mainly along z axis) 175 

95 - 114 No hand motion occurs 475 

115 - 126 Horizontal motion (mainly along x axis) 275 

127 - 140 No hand motion occurs 325 

141 - 155 Horizontal motion (mainly along y axis) 350 

156 - 185 No hand motion occurs 725 

186 - 192 Hand rotation 125 

193 - 250 No hand motion occurs 1425 

 
The estimated hand path poses (positions and orientations) 

are represented in a 3-D graph, Fig. 8. The hand orientation is 
represented by a set of three vectors corresponding to each 
column of the rotation matrix defined by estimated roll, pitch 
and yaw angles. The projected views of the 3-D graph help to 
visualize the hand path, especially when such views are 
complemented with schematic drawings of the plastic bottle 
and cup. The view yx is shown in Fig. 9 and the view yz in Fig. 
10. 

For Test 2 the estimated path poses are represented in Fig. 
11 (view yx) and in Fig. 12 (view yz). Error is difficult to 
estimate because we do not have a nominal path to compare 
with the estimated one. On the other hand, we have a well 
defined target, the centre of the plastic cup. 
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Fig. 8. Estimated hand path poses for Test 1. 
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Fig. 9. Estimated hand path poses for Test 1, view yx. 
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Fig. 10. Estimated hand path poses for Test 1, view yz. 
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Fig. 11. Estimated hand path poses for Test 2, view yx. 
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Fig. 12. Estimated hand path poses for Test 2, view yz. 

Analyzing Fig. 9, Fig. 10, Fig. 11, Fig. 12, it can be stated 
that the error in plane xy for Test 1 is about 1 cm along x axis 



and 2 cm along the y axis. For Test 2 the error is about 2 cm 
along x axis and 2 cm along the y axis. In relation to the error 
along the z axis, analyzing the recording of both 
demonstrations it can be concluded that for both tests the error 
is about less than 1 cm. In reality, when we are dealing with 
magnetic and inertial sensing we cannot have an accurate 
estimate to error because it depends on several factors: 

 Propagation of the error from estimated roll, pitch and 
yaw angles (definition of rotation matrix R).   

 Double integration of accelerations (drift). 

 Error associated with the hardware itself. 

 Environmental factors (temperature, etc.). 

All these factors result in a rapidly accumulating error in 
estimated positions. Some researchers have studied the way the 
error evolves when positions are obtained by double 
integrating accelerations. An interesting study in the field 

reports that in specific conditions error increases as 1.5t , being 

t the integration time [15]. Thong et al. study the error 
dependence on accelerometer noise [16]. Woodman analyses in 
detail some of the most important issues related with inertial 
navigation systems, including the error behavior [14]. 
Nevertheless, there is a lack of consensus regarding how errors 
behave with integration time. As error increases with time, the 
proposed solution to only integrate accelerations in moments of 
effective motion revealed to be a good option. 

Analyzing the experimental tests from a practical 
perspective we can state that in Test 1 the demonstrated task 
can be realized with success so that the estimated hand poses 
are transferred to a robot that executes the task, Fig. 13. In Test 
2 the water would be “placed” outside the plastic cup [17]. 

(a) (b) (c)

(d) (e) (f)

 
Fig. 13. A robot reproducing the demonstrated task in Test 1. 

IV. CONCLUSIONS AND FUTURE WORK 

A new method for estimating 3-D positions from 
acceleration data has been described. It is based on the double 
integration of accelerations due to motion from a small size 
and low-cost MIMU composed by both a digital compass and a 
gyroscope. It was presented a method to separate accelerations 
due to motion from accelerations due to gravity, and another 
one to detect motion stops during a demonstration. Error in 
position estimation exists. It comes from different sources such 
as the MIMU hardware and from the process of double 
integration of accelerations. These increasing errors from the 
process of double integration of accelerations can be reduced if 
accelerations are integrated in short intervals of time, when 

effective motion occurs. Experiments demonstrated that the 
achieved error is still too large (especially for relatively long 
periods of time) to consider the proposed solution a reliable 
alternative to existing ones, namely the magnetic and vision 
based tracking systems. Nevertheless, the tolerance to magnetic 
fields, occlusions and the low-cost nature of the proposed 
system makes it a promising motion tracking solution. 

Future work will focus on reducing the error associated to 
position estimation by improving the hardware that composes 
the MIMU. The system performance has to be validated with 
more tests performed by different people. 
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