
A Framework for Region-based Instrumentation of
Energy Consumption of Software Programs

Simon Ostermann, Thomas S. Eiter, Vlad Nae, and Radu Prodan
Institute of Computer Science, University of Innsbruck, Austria

c©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: https://doi.org/10.1109/IECON.2013.6699897

Abstract—Energy efficiency has become a key issue in com-
puter science related research and development over the last
years. While most approaches focus either on hardware or on
software, we propose a solution incorporating both hardware
and software enabling the measurement the energy consumption
of code segments executed on physical machines. Our novel
approach to energy measurement and instrumentation allows for
both state-of-the-art offline analysis, and innovative online mea-
surements associated with the code being executed. We present
our modular architecture which shields the users from in-depth
knowledge of their energy measurement hardware, and allows
the development of code for measurement and instrumentation
independent of each instruments’ proprietary interface. Finally,
we propose an efficient method for increasing the accuracy of
measurements for low sampling rate measurement devices.

I. INTRODUCTION

Energy efficiency has become a key issue in computer
science research and development over the last years. Driving
forces behind this are the ever growing energy consumption of
computers worldwide, the trend towards mobile devices, and
the Green IT initiative, aiming to save ecological resources
during the lifetime of a product. According to [1], the global
energy consumption of data centres has more than doubled
between 2000 and 2005. This sharp rise has slowed down
to approximately 56% between 2005 and 2010, partly due
to the technical improvements and partly due to the financial
crisis starting from 2008. As illustrated in Figure 1, the data
centres were responsible for about 0.5% (75 billion kWh) of
the world’s energy consumption year 2000, increasing up to
1.0% (150 billion kWh) in 2005, and reaching between 1.1%
and 1.5% (200 to 275 billion kWh) in 2010. [1, p. 6]. Another
reason for the increasing importance of energy is the trend
towards mobile devices such as smartphones and tablets that
conquered the market over the last years. For example, in
Germany, U.K. and France there were more customers using
mobile devices than personal computers in 2011 [2, p. 2].

Regarding energy consumption in computer science, Green
IT has become a major initiative whose major goal is to save
ecological resources during lifetime of a hardware or software
product (or a combination of both [3]), covering production,
active runtime, recycling and biodegradability. Focusing on
energy, the aim is to consume as little energy as possible during
the product life-cycle. To curb the energy consumption and
improve energy efficiency, many techniques and technologies
have been invented in the last decade, most of them focusing
either on hardware or on software. Besides the hardware,
the software application plays a key role concerning energy
consumption, as it defines which hardware components are

 0

 50

 100

 150

 200

 250

 300

2000 2005 2012

E
ne

rg
y

co
ns

um
pt

io
n

of
 d

at
a

ce
nt

er
s

w
or

ld
w

id
e

(in
 b

ill
io

n
kw

H
)

Year

0.5 %

1.0 %

1.1 %

1.5 %
Percentages refer

to worldwide
 energy consumption

 in the given year

Fig. 1. Energy consumption of data centres worldwide, based on [1, p. 13].

used, when they are used, and to what degree. Thus, the total
energy consumption of a code execution on a specific machine
depends on both the machine and on the code characteris-
tics. To achieve the best possible energy efficiency, one of
the promising approaches is to design self-tuning codes that
receive online feedback about their energy consumption and
allow for fast and precise parameter adjustments for improving
their energy efficiency. However, energy measurements in the
field of data centres are coarse grained (e.g. power-rail level,
rack level), difficult to collect (e.g. proprietary interfaces,
sometimes not available to the users), and are typically not
associated to the codes being executed. Moreover, if energy
profiling data is available and can be associated to the code,
it is only available post-mortem (i.e. after the code has been
executed) and not online during its execution.

To address these issues we propose in this paper an energy
instrumentation and measurement framework which allows
implementation and easy deployment of self-tuning codes
in data centres. Our framework allows for both offline and
online (i.e. during execution) analyses by providing detailed
energy consumption data for software programs with a region-
level granularity. Our modular architecture shields the users
from needing in-depth knowledge of their energy measurement
hardware, and allows the development of measurement and
instrumentation code independent of the instrument’s propri-
etary interface. Finally, we propose an efficient method for
increasing the accuracy of measurements for low sampling rate
measurement devices (e.g. 0.5 – 10 Hertz).

The next section describes the framework architecture,

Fig. 2. Framework architecture with one server managing two sessions, each
comprising one measurement device, one client, and the application code.

followed by the methodology for energy consumption com-
putation in Section III. Section IV presents techniques for
improving the accuracy of energy measurements. Section V
discusses the related work and Section VI concludes the paper.

II. ARCHITECTURE

We propose an energy measurement framework based on a
client-server architecture which allows for easy extensions to
different programming languages, as only the client part has
to be ported. The architecture allows the server to be run on a
different physical machine and the deployment of lightweight
clients with minimum energy overhead intrusion. A diagram
of the proposed architecture with a server and two measure-
ment sessions is presented in Figure 2. A server program
(PMServer) is continuously running on a service machine,
communicating and managing all measurement devices such as
Voltech PM1000+. The other machines electrically connected
to the measurement devices run the code to be measured, which
uses the PMClient to retrieve runtime online measurements
from the PMServer. In the following we present the role of
each component and the interaction protocols.

A. Measurement server

The PMServer is responsible for managing the direct
communication with the measurement devices, hiding the
different access methods and data representations of different
device types and allowing for easy client access to the mea-
surement results via a predefined interface. The server runs on
a dedicated machine (i.e. not the machine being instrumented),
records power and/or energy measurements from different de-
vice types, and makes them available to the clients. To request
data from the measurement devices, the server implements
the communication protocols provided and supported by the
respective device types as decoupled modules. To maintain
the light coupling of components, the communication and data
exchange with the client is based on a separate communication
protocol built over TCP/IP, and independent of the proprietary
device (see Section II-D). For concurrent handling of multiple
measurement devices, multiple clients, and multiple requests,
we employ encapsulated measurement sessions. When a new
measurement session is initiated, the requested measurement

Fig. 3. Interaction protocol between PMClient, PMServer, and measure-
ment device during a PMSession life-cycle.

device is reserved and a session key used for further session-
related requests and authentication by the session owner is
generated. When a session is ended and its measurement
results are retrieved by the session owner, the session is deleted
and the measurement device is freed.

B. Measurement client

The PMClient offers a unified code instrumentation
interface, allowing to start and stop measurements on specific
devices connected to the server, and to collect and process
the corresponding data via simple function calls. The client is
the central piece in our architecture which allows the online
collection of measurement data with minimal disruption to
the measured process. Therefore, it is purposely designed
as lightweight code, offloading all instrumentation data post-
processing to the server to minimise its influence on the
measurements. The client is implemented as a library which
can be utilised by the code being instrumented. For increased
flexibility, the client library provides multiple interfaces in
different programming languages (e.g. C++, C, Java). The
client communicates with the server using the communication
protocol introduced in Section II-D.

C. Measurement session

The PMSession associates the power/energy measure-
ments to a specific code region. A PMSession has a life-
cycle determined by its associated code region and comprises a
sequence of procedures designed to initiate, terminate and col-
lect measurement data from the device. A typical PMSession
is presented in Figure 3. The first step any instrumented
code performs in its initialization phase consists of collecting
information about the available measurement devices (the get
devices call) and select the relevant one. Then the relevant
regions of code are instrumented for energy consumption
encompassed in a measurement session (line 5) and surrounded
by start and stop session calls (lines 7 and 11). During
the PMSession’s life-cycle, the PMServer continuously
collects the measurement data from the measurement device,
which it aggregates and delivers to the PMClient after the
end of the session (line 15).

Listing 1. Code instrumentation example using the C++ interface.
1 # i n c l u d e <C P P I n t e r f a c e . h> // C++ Interface
2

3 i n t main (i n t a rgc , c h a r ∗∗ a rgv){
4 // Defining parameters for the session
5 pmCreateNewSession (” s e s s i o n I d ” , ” 1 0 . 0 . 0 . 1 ” , 5025) ;
6

7 p m S t a r t S e s s i o n (0) ; // Start session on device 0
8

9 /* Insert HERE the code to measure */
10

11 pmStopSess ion () ;
12

13 p m R e t r i e v e R e s u l t s () ;
14

15 /* Use the desired measurements */
16 do ub l e consumpt ion = pmGetEnergyConsumption () ;
17

18 p m D e l e t e S e s s i o n () ;
19 . . .
20 }

D. Client-server communication protocol

The communication protocol for data exchange between
server and client is built upon TCP/IP for platform and
language independence. The basic format of a client request
is <HEAD>:<TAIL>, where HEAD contains a code defining
the action to be performed on the server, and TAIL contains
the corresponding parameters separated by a semicolon. The
same message format is used for server answers, where HEAD
indicates if the action succeeded or an error occurred, and
TAIL is used for further action-related data.

E. Instrumentation interface

The instrumentation interface offers the methods needed
to discover the available measurement devices managed by
a server, to start, stop, suspend, and resume a measurement
session, and to collect, access, and process the measurement
data. The interface is designed for simplicity of use that
hides many background operations from the user (e.g. server
communication, result post-processing). An example of a code
instrumentation using the C++ interface is given in Listing 1.
The intialisation phase consists of creating the measurement
session with a certain ID and indicating the connection details
for the PMServer (line 5). The measurement begins with
the pmStartSession call using the measurement device
with the specified ID (line 7). The code to be instrumented
should be placed immediately after the session start call. The
measurements are stopped with the pmStopSession call
(line 11), then the values are retrieved from the server (line
13). Finally, the instrumentation data is available locally and
it can be used, as exemplified in line 16, and eventually the
session can be deleted and the data released (line 18).

III. ENERGY CONSUMPTION COMPUTATION

Some power measurement devices only provide the basic
instantaneous power consumption readings. Thus, in order to
provide energy measurements even for these legacy devices,
our framework needs to record the power consumption during
the PMSession and eventually compute the energy consump-
tion.

 140

 150

 160

 170

 180

 190

 200

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

W
at

t

Time (sec.)

Measurement interval 250 ms

Continuous power values
Measured power values

 140

 150

 160

 170

 180

 190

 200

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

W
at

t

Time (sec.)

Measurement interval 500 ms

Continuous power values
Measured power values

Fig. 4. Accuracy deviation using different measurement intervals.

 0

 5

 10

 15

 20

 0 5 10 15 20

D
ev

ia
tio

n
in

 %

Session runtime (sec.)

Measurement set 1
Measurement set 2
Measurement set 3
Measurement set 4
Estimated deviation

Fig. 5. Average deviation of calculated versus measured energy consumption.

To calculate the exact energy consumption:

E =

∫ tn

t0

P · dt (1)

between the start time t0 and end time tn of the PMSession,
we would require continuous values for the power consump-
tion. Since only a discrete amount of samples are available
determined by the capabilities of the measurement device, we
approximate the energy Ẽ using the Riemann sum:

Ẽ =
1

2
·
n−1∑
i=0

wi + wi+1

ti+1 − ti
, (2)

where [w0, . . . , wn] represent the measured instantaneous
power consumptions and [t0, . . . , tn] their associated times-
tamps on the server. The accuracy of the integral approx-
imation improves by decreasing measurement interval, as
illustrated in Figure 4. The measured code is a CPU intensive
computation of Π to a certain precision. Some measurement
devices such as the built-in integrator circuit of the Voltech
PM1000+ offer native support for measuring energy consump-
tion that can be used by our framework too, in addition to the
integration method.

To assess the accuracy of the energy integration Ẽ, we
compared it with the values measured by the hardware inte-
grator of the Voltech PM1000+ power meter. We run the same

 120
 130
 140
 150
 160
 170
 180
 190
 200

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

W
at

t

Time (sec.)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
P

U
 W

or
kl

oa
d

in
 %

Time (sec.)

∆t

Fig. 6. Delay between workload and power consumption increase reflected
at the outlet.

CPU intensive code (i.e. Π computation) with varying target
precision resulting in proportionally longer run times, starting
from 1 up to 20 seconds. Figure 5 illustrates the average devia-
tion of the Ẽ values as a percentage of the hardware-measured
values, corresponding to different PMSession durations. The
trend-line represents an estimation of the average deviation.
We observed the highest average divergence of approximately
20% during our shortest test sessions lasting 250 milliseconds.
Overall, we observed an average deviation of more than 5%
only for sessions shorter than 5 seconds. For longer sessions,
the average deviation decreases to approximately 1%.

IV. IMPROVING THE ACCURACY OF ENERGY
MEASUREMENTS

We present several methods for improving the accuracy
of energy measurements. First, we present in Section IV-A
our approach to minimise the inaccuracy introduced by the
delay between the code execution and its reflected energy
draw. Then, we propose in Section IV-B buffering methods for
avoiding inaccuracies introduced by measurement truncation.
Finally, we present in Section IV-C three methods for aggre-
gating measurements collected with the buffering methods.

A. Workload – power consumption delay

Because of the long, multi-tier electronic circuitry between
the mains outlet and the components involved in actual com-
putation (e.g. the processor, the memory), it takes a certain
amount of time from the moment when placing a workload on
a machine (i.e. executing code) until this state change (i.e. idle-
to-load) is reflected in the power consumption (see Figure 6).
This delay is caused by multiple high capacitance capacitors
placed on the power supply line for current stabilisation and
noise filtering purposes. The actual delay ∆t between the
workload increase and the increase in energy consumption is
machine dependent and has to be taken into account to increase
the accuracy of our energy consumption measurements.

We determine the typical delay of a machine based on
power consumption measurements in three steps: (1) a ses-
sion is run for measuring the machine’s characteristic power

 140

 145

 150

 155

 160

 165

 170

 175

 180

 0 1 2 3

P
o
w

e
r

(w
a
tt
)

Time (sec.)

widle

tidle ts

wload

tload

idle phase load phase

Fig. 7. Time and power values available for delay calculation.

TABLE I. CHARACTERISTIC WORKLOAD POWER CONSUMPTION
DELAYS (dm).

No. CPUs and GPUs Power dm widle

Type Count Supplies [seconds] [watt]

1. CPU: AMD Opteron 6168 2 1 0.485 245.074GPU: AMD Radeon HD 5870 1

2. CPU: AMD Opteron 6168 2 1 0.412 176.074GPU: Nvidia GeForce GTX 460 1
3. CPU: Intel Xeon X5650 2 2 0.240 199.736

4. CPU: Intel Xeon X5650 2 2 0.349 371.171GPU: Nvidia GeForce GTX 480 2
5. CPU: AMD Opteron 885 8 4 0.368 832.816
6. CPU: Intel Xeon E7-4870 4 2 0.512 474.203
7. CPU: AMD Opteron 8356 8 4 0.242 494.092
8. CPU: AMD Opteron 8356 8 4 0.333 508.244
9. CPU: AMP Opteron 885 4 2 0.372 423.764

consumption in idle state; (2) a succession of intensive codes
combined with idle periods are run on the machine and the
power consumption is monitored; (3) the characteristic work-
load power consumption delay of the machine is computed for
each execution and the results are aggregated.

For each workload measurement session, the following
values are available in the last step (see Figure 7): (1) maxi-
mum characteristic power consumption jitter in the machine
idle state jm; (2) session start time ts; (3) time tidle and
power widle of the last measurement before ts; (4) time tload
and power wload of first measurement after ts for which the
condition wload−widle > jm holds. Since for time ts no power
measurement is available (except for the extreme case where
ts = tidle), we use widle as reference as it is the temporally
nearest power measurement to ts. To determine the delay value
of a session, we compute first the power increase gradient F :

F =
wload − widle

tload − ts
. (3)

We compute F for all code executions and extract the char-
acteristic machine delay:

dm = ts − tidle (4)

from the maximum gradient. Using this method, we measured
the characteristic machine delay of multiple machines as
presented in Table I. We observe for the 9 studied machines
delays between 240 milliseconds and 512 milliseconds and no
correlation of dm to the number of redundant power supplies
or the machines’ peak power consumptions.

 120

 130

 140

 150

 160

 170

 180

 190

 200

 0 1 3 4 5 7 8

P
ow

er
 (

w
at

t)

Time (sec.)

pre buffering post buffering

measurement session

total logged measurements

t0ts tetn

wpre

w0

wn

wpost

Fig. 8. Logged values for a measurement session with pre- and post-buffering.

B. Measurement truncation

If a measurement session is shorter than the typical mea-
surement interval of a device, we obtain at most one mea-
surement within this session from which we cannot calculate
the overall energy consumption. For this reason, we log on the
server side a certain additional amount of measurements before
the start and after the end of the session called pre- and post-
buffering, as shown in Figure 8. This method also improves
the accuracy of short sessions with multiple measurements, as
the additional pre- and post-buffering measurements allow us
to better interpolate the energy consumption Et, as follows:

Et =
w0 + wpre

2
·(t0 − ts)+

wn + wpost

2
·(te − tn)+Em, (5)

where ts is the session start time, te is its end time, Em us
the session energy consumption calculated from measurements
w0 to wn captured at times t0 to tn, with i ∈ [0, n] : ts ≤
ti ≤ te, and wpre , wpost is the pre- and post-buffering values
captured at times tpre and tpost . Similarly to the delay, no
measured values are typically available for the session start
ts and end te times unless ts = t0 or te = tn. Hence, we
use for interpolation the pre- and post-buffering values wpre

and wpost , as those are the temporally closest measurements
available before t0 and after tn.

For a better understanding of the Equation 5 and its use, we
give a short example measuring the idle energy consumption
of an imaginary machine for which the measurement device
measures a constant power of 200 Watt every 500 milliseconds.
Our measurement session runs for 1.400 milliseconds starting
at time ts = 50 and ending at time te = 1450. We have one
pre-buffered measurement w0 at time t0 = 0, one post-buffered
measurement at time t0 = 1500, and two measurements
at times t0 = 500 and t1 = 1000. The measured energy
consumption Em within the session is:

Em = Pm · tm = 200W · (1000ms − 500ms) =

200W · 500ms = 100Ws. (6)

By applying Equation 5 for calculating the total energy con-
sumption Et, we obtain:

Et = 200W ·(500ms−50ms)+200W ·(1450ms−1000ms)+

100Ws = 90Ws + 90Ws + 100Ws = 280Ws. (7)

By comparing the measured and the interpolated energy con-
sumption in this example, we get an absolute difference of 180

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120

A
cc

ur
ac

y
in

pr
ov

em
en

t %

Session Runtime (sec.)

Fig. 9. Accuracy improvements using different session runtimes.

Ws, which means that the accuracy improvement using the
interpolation mechanism is 180%. However, this mechanism
is mainly beneficial for short measurement sessions. Figure
9 shows the accuracy improvements using different session
runtimes sharing the same setup as in this example.

Pre- and post-buffering further allows us to meet the
workload-energy delay problem described in the previous
section, and use it to offer different measurement selection
functionality to the user as described in the next section.

C. Measurement aggregation functions

Based on the additional measurements available through
pre- and post-buffering, we offer three different (measurement)
aggregation functions which determine the range of measure-
ments retrieved from the server.

a) Skewing: aggregation function takes into account the
characteristic delay dm of the machine, as described in Section
IV-A. This delay is added to session start ts and end te times,
so that the new session start tsn and session end ten correspond
to: tsn = ts + dm and ten = te + dm. All measurements in
the [tsn; ten] time interval are sent to the client, including the
interpolated values for tsn and ten.

b) Graph: aggregation function detects the increasing
and decreasing flanks of a measurement session based on
the measured power consumption values. All measurements
between the start of the first increasing flank and the end of
the last decreasing flank are sent to the client. This aggregation
function can be employed only if the energy consumption
increases at the beginning of a session, and decreases at the
end, therefore it is useful for the precise instrumentation of a
single power-intensive code region.

c) Basic: aggregation function is a special case of
skewing with the machine-specific delay dm = 0. All measure-
ments between the session start and end are sent to the client
without considering the workload energy delay. If necessary,
the values for the start and end time are interpolated. This
represents the safe approach in case the characteristic delay
of the machine is not known (i.e. skewing cannot be applied)
and the user instruments multiple consecutive power-intensive
code regions (i.e. graph cannot be applied).

Figure 10 illustrates the different value ranges returned
when applying the different aggregation functions for mea-
suring a power-intensive test code which computes Π to a

 140

 150

 160

 170

 180

 190

 200

 0 4 6 10

P
ow

er
 (

w
at

t)

Session Runtime (sec.)

dm dm

basic

skewing

graph

ts tetsn ten

Fig. 10. Retrieved measurement values for the three aggregation functions.

certain precision. The total execution time of the test code is
approximately 6 seconds.

V. RELATED WORK

We introduce in this section the related work organised in
two research fields: energy efficiency and power measurement.

A. Energy efficiency

Several source code level transformations for C/C++ code
and their impact on energy consumption during sequential
execution are analysed in [4]. The results show that fairly
all code transformations which reduce execution time also
reduce energy consumption. Power and energy consumption
are captured using a model based on the number of clock
cycles, cache misses, memory access and further values. The
impact of source-to-source code transformations on energy
consumption models is studied in [5]. Based on this, a
methodology for estimating the potential benefits of applying
a code transformation is introduced. This model considers
the three major consumers in a machine: processor, system
bus, and main memory. The energy estimates are based on
three execution parameters: number of assembly instructions,
number of instructions and number of data cache misses.
These works based on estimation models are complementary to
our work, as our measurement and instrumentation framework
could be used to test the accuracy of the models on different
architectures, especially for code regions .

Qasem et al. present in [6] a strategy based on static
compiler analysis and a corresponding auto-tuning framework,
allowing to automatically transform a code for parallel exe-
cution on multicore architectures and to exploit data locality
to improve energy efficiency without sacrificing performance.
They estimate the codes’ energy efficiency using the HPC-
Toolkit [7] and perform the validation using WattsPro power
meters. In contrast, our approach is not based on modelling
requiring complex validation, but offers direct online energy
consumption measurements.

B. Energy measurement

SoftWatt [8] is a power consumption simulator that es-
timates the components’ power characteristics during code
execution. In contrast, our solution directly measures the power
and energy characteristics on system, subsystem or component
level, depending on the available measurement devices.

PowerPack [9] is a framework for measuring energy con-
sumption of devices including disks, network interface cards,
processors, memories, and total systems, and correlate it to
application functions. PowerPack uses timestamps to synchro-
nise multiple data streams from different measurement devices
and create post-mortem power consumption profiles. While
PowerPack is especially tailored towards high performance
clusters, our solution aims at general applicability. We use
code instrumentation with single machine timestamps (the
measurement server’s), thus eliminating synchronisation pro-
cesses which may introduce inaccuracies, especially for short
time intervals. Moreover, our approach is not restricted to
post-mortem analysis but can supply the measurement data
at runtime, this being a viable option for self-tuning systems.

VI. CONCLUSIONS

We proposed in this paper an energy instrumentation and
online measurement framework targeting the deployment of
self-tuning codes in data centres. Our framework allows for
both offline and online analyses by providing detailed energy
consumption data for software programs with a region-level
granularity. Our modular architecture shields the users from
needing in-depth knowledge of their energy measurement
hardware, and allows the development of measurement and
instrumentation code independent of the instrument’s propri-
etary interface. We also proposed an efficient method for
increasing the accuracy of measurements for low sampling
rate measurement devices (e.g. 0.5 to 10 Hertz sampling
frequency). Using Voltech PM1000+ measurement devices. we
showed an increase in accuracy of approximately 20% for
measurements lasting 5 seconds and of approximately 9% for
measurements lasting 10 seconds.

REFERENCES

[1] J. Koomey, “Growth in data center electricity use 2005 to 2010.”
Analytics Press, Tech. Rep., August 2011. [Online]. Available:
http://www.analyticspress.com/datacenters.html

[2] G. M. ads blog, “Mobile internet & smartphone adoption,” January 2012,
online available at: http://googlemobileads.blogspot.com/2012/01/new-
research-global-surge-in-smartphone.htm, visited on 25th February 2013.

[3] S. Murugesan, “Harnessing green it: Principles and practices,” IT Pro-
fessional, vol. 10, no. 1, pp. 24–33, 2008.

[4] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “The impact of
source code transformations on software power and energy consumption,”
Journal of Circuits, Systems, and Computers, vol. 11, no. 5, pp. 477–502,
2002.

[5] ——, “Analysis and modeling of energy reducing source code trans-
formations,” in Design, Automation and Test in Europe Conference and
Exhibition, 2004. Proceedings, vol. 3, 2004, pp. 306–311 Vol.3.

[6] A. Qasem, M. Cade, and D. Tamir, “Improved energy efficiency for
multithreaded kernels through model-based autotuning,” in Green Tech-
nologies Conference, 2012 IEEE, 2012, pp. 1–6.

[7] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: tools for performance analysis
of optimized parallel programs http://hpctoolkit.org,” Concurr. Comput.
: Pract. Exper., vol. 22, no. 6, pp. 685–701, Apr. 2010. [Online].
Available: http://dx.doi.org/10.1002/cpe.v22:6

[8] S. Gurumurthi, A. Sivasubramaniam, M. Irwin, N. Vijaykrishnan, and
M. Kandemir, “Using complete machine simulation for software power
estimation: the softwatt approach,” in Eighth International Symposium
on High-Performance Computer Architecture, 2002, pp. 141–150.

[9] R. Ge, X. Feng, X. Song, H. Chang, D. Li, and K. Cameron, “Pow-
erpack: Energy profiling and analysis of high-performance systems and
applications,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 21, no. 5, pp. 658 –671, May 2010.

