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Abstract - In mobile and stationary battery systems, lifetime 

expectancy is a key parameter for the calculation of monetary 
effectiveness. It significantly affects return on investment and 
therefore is a key parameter for the market breakthrough of the 
desired battery application. Battery life is influenced by two 
different factors, namely electrical utilization and environmental 
conditions. As higher temperatures lead to a faster deterioration 
of the lithium-ion battery, smart thermal design can not only 
increase battery lifetime, but also reduce cooling costs and 
improve overall efficiency. It is therefore essential to establish an 
effective thermal design through perfoming electrothermal 
modeling and characterization of the battery cell, battery 
module and fully assembled battery pack. In this paper, the 
motivation for electrothermal modeling of lithium-ion battery 
cells and modules is introduced and design challenges are 
identified for applications in mobile and stationary battery 
systems. An electrothermal model of batteries with appropriate 
cell chemistry for mobile and stationary applications is 
developed with focus on further implementation in thermal 
simulation of battery modules and packs. The parameterization 
process of the presented models is shown and a model of battery 
cells with derived parameters is presented. Finally, the 
electrothermal model is verified experimentally. 

 

I. INTRODUCTION AND MOTIVATION 

 

A. Temperature Dependent Battery Models 

 

A battery system should be able to estimate its own state, 

protect itself against failure and degradation, and provide 

information about its state to other system components, e.g. to 

a driver’s user interface in electric vehicles or to a power 

utility in stationary applications. 

To predict valuable information such as remaining driving 

distance, state of charge (SOC) and others, various battery 

models can be used. Correction and adaption of these models 

can be applied by different filters like the extended Kalman 

filter (EKF) [1][2] and other variations of the Kalman filter 

[3][4]. The parameters for the models are significantly 

dependent on temperature. Exact thermal characterization 

leads to more accurate estimations of SOC and all 

temperature dependent indicators. 

 

B. Battery Degradation Induced by Temperature 

 

Lithium-ion batteries lose capacity when electric charge is 

transferred and also while they are simply being stored. 

Operational parameters such as maximum current limits, 

number of cycles, cycle depth and internal heat generation 

along with thermal parameters as ambient temperature and 

cooling strategies together all have an impact on battery 

lifetime. 

 Loss of capacity due to charging and discharging of the 

battery influences the so called cyclic lifetime. Capacity 

losses related to specific ambient parameters such as 

temperature and storage time are called calendric losses. The 

indicator of overall capacity loss in a battery is called its state 

of health (SOH) and can be defined as ratio of actual capacity 

Qact to initial capacity Qinitial. Consequently, SOH can be 

divided into SOHcyclic, which is a function of transferred 

charge, and SOHcalendric, which is a function of temperature 

and time. 

The calendric lifetime is mainly determined by the time 

and the temperature of the cell since the internal processes are 

of chemical nature and thus follow the Arrhenius 

equation [5]. This equation describes the dependency of 

reaction kinetics (i.e., battery cell aging) in relation to 

temperature (i.e., battery temperature). Foresighted thermal 

design is obligatory to minimize a battery’s rate of 

degradation. 

 

II. CHALLENGES OF THERMAL DESIGN 

 

The foremost aim for the thermal design of a battery 

system should be to minimize temperature gradients while 

delivering sufficient cooling power to dissipate heat 

generated during battery operation. Temperature differences 

between cells inside modules and packs lead to variances in 

all temperature dependent processes, especially leading to 

unequal aging and self-discharge rates. With the resulting 

capacity variation, more battery cell voltage balancing effort 

is required and the overall efficiency decreases.  

Thermal design optimization has to be broken down into 

local domains:  

• low temperature gradients across cell 

• low temperature gradients across module 

• low temperature gradients across pack 

To provide sufficient cooling power, different strategies 

can be used, namely air and liquid cooling. Liquid cooling 

can transport and dissipate more energy than air cooling, but 



liquid cooling systems are more complex and are thus more 

costly. 

To define the optimum operating temperature of the 

battery, a tradeoff has to be made. On the one hand lithium- 

ion batteries can deliver significantly higher currents when 

operated at higher temperatures. This can be explained by a 

drop in internal resistances and is described in the following 

section. On the other hand, the cells undergo increased 

degradation at higher temperatures and will consequently 

reach their end-of-life earlier. 

The type of temperature sensor, their number and position 

should also be part of the thermal design. The current trend is 

to reduce the number of temperature sensors inside battery 

modules to lower costs. Though this has the advantage of 

reducing packaging and cabling complexity, but it has the 

disadvantage of losing the possibility to determine every 

battery cell’s individual temperature. A possible approach to 

reduce costs while still enabling temperature measurements 

on every cell, is to integrate printed temperature sensors on 

foils or directly onto the battery package as shown in Fig. 1. 

This sensor is based on the development presented in [6]. 

The positioning of the foil based temperature sensor is also 

a sensitive point in the design of a battery system. In high-

power applications requiring battery cells providing high C-

rates (i.e., current peaks above 5C), like hybrid electric 

vehicle (HEV) or electric sports cars, hotspots can occur 

inside the battery or at the battery electrodes and connectors. 

These hotspots can result in faults that either go undetected or 

are detected too late and lead to a thermal runaway of 

batteries with certain lithium-ion chemistries. It therefore 

represents a safety risk when a temperature sensor is not 

positioned at the hottest location (i.e., in general the positive 

electrode of the pouch cells). On the other hand, error is 

introduced into the calculation of the temperature dependent 

parameters such as SOC when using hotspot temperatures 

instead of average temperatures. 

After this introduction of the challenges present in the 

thermal design of battery systems, an overview of the 

methods used for both electric and thermal modeling will be 

presented hereafter. 

III. ELECTROTHERMAL MODELING 

 

State-of-the-art battery models can follow different 

approaches [7]. Electrothermal battery models are often split 

into an electrical and thermal model [8]. In the following, 

they are described separately first and their coupling is 

discussed subsequently. 

 

A.  Electrical Modeling 

 

For electrical modeling of battery cells, equivalent 

networks are mainly used. Lumped elements of the equivalent 

networks can be of electrical nature (e.g., resistors, 

capacitance, inductor, voltage and current sources) or 

describe chemical effects, like diffusion in the active material 

(e.g., constant phase element, Warburg impedance, Nernst 

impedance). In Fig. 2, a typical electrical equivalent circuit 

model is shown. It comprises a voltage source V0, an internal 

resistance Ri and one or more RC circuits [9]. The accuracy 

of the model can be improved by using more RC circuits, but 

often just one is used due to the parameterization effort and 

the required computing power [10]. This first RC circuit 

models the most significant process in the battery: the 

intrinsic electrochemical double layer capacitance that is 

present in every lithium-ion battery due to the electrode-

electrolyte interface. Additionally, a resistor Rsd representing 

the self-discharge of the battery can be added. The self-

discharge process of a battery is voltage, time and 

temperature dependent, thus making the parameterization of 

this resistor difficult. However, self-discharge of the cell can 

be neglected in most power applications and in systems 

dominated by the standby energy consumption of the battery 

monitoring electronics. 

Various methods for the parameterization of the electrical 

equivalent circuit can be used. Besides electrochemical 

impedance spectroscopy (EIS) [11] and a numerical approach 

using hybrid power pulse characterization (HPPC), other 

methods like the current step response method or the current 

interrupt method are also possible. 

EIS was used in a first approach for the characterization of 

the battery cell and parameterization of the equivalent circuit 

model. Nyquist plots of various EIS measurements at 

different temperatures can be seen in Fig. 3. The 

measurements were performed with high precision 

measurement equipment, in this case a Gamry Reference 

3000 potentiostat. When characterizing low impedance  

 

Fig.  1: Photography of a temperature sensor printed on foil 

 

Fig.  2: Electrical equivalent circuit representing a lithium-ion battery cell 



materials such as high capacity lithium-ion pouch cells, a 

booster has to be used in order to have a higher stimulus 

current and therefore to measure an utilizable voltage 

response. To perform measurements at different temperatures, 

aluminum plates with liquid flowing within at the desired 

temperature were used. 

The frequency range of the spectra for battery material 

analysis typically ranges from 10 kHz down to 10 mHz. 

Above 10 kHz, the inductive behavior of the measurement 

feed lines is dominant even in a four-wire system with 

shielded cables. 

In Fig. 3, the spectra of the measurement of a 45 Ah pouch 

cell with lithium iron phosphate (i.e., LiFePO4, LFP) 

chemistry are shown. At the point of the zero-crossing of the 

x-axis, the real part of the impedance indicates the internal 

resistance Ri. The half circle at lower frequencies represents 

the electrochemical double layer or the RC part of the 

equivalent circuit, respectively. Parameter optimization of the 

equivalent circuit can be done with a Levenberg-Marquardt 

algorithm for nonlinear least square optimization. 

 

B. Electrical Parameterization 

 

Since the EIS method does not give information on V0, 

which is essential for determining SOC in state space models 

used in EKF, V0 has to be modeled separately. This is a 

challenging task, because of the temperature dependence of 

the SOC and other effects such as hysteresis of the open 

circuit voltage (OCV) [12][13][14] or the series resistance Ri 

[15]. The variation of the OCV with temperature is related to 

a change in entropy [16] and a measurement with a 45 Ah 

LFP pouch cell can be seen in Fig. 4. The same cell was also 

used for the measurement of the OCV variation with different 

states of charge that can be seen in Fig. 5. This figure shows 

only 140 mV variation between the fully charged state and 

the fully discharged state. 

A first approach with simple averaging charge and 

discharge curves at very low currents (i.e., C/20 rate) showed 

insufficient results and thus HPPC measurements were 

performed, according to Dynamic Discharge Power Profile B 

in the ISO/DIS 12405-2 [17] (see Fig. 6). These 

measurements were then used to correctly parameterize a 

Thévenin model by minimizing the misfit between measured 

and simulated data. The measurement and the corresponding 

simulated voltage curve can be seen in Fig. 7. The parameters 

of the replacement model served as optimization variables. 

Since even this simplistic model can be expected to broadly 

capture the physical behavior of the battery, there is at least 

one solution to the error minimization problem that actually 

reflects the state of the battery that corresponds to the 

measured terminal voltages under the given charge/discharge 

cycle. Under this assumption, the optimized model 

parameters adequately describe the non-measurable data of 

the battery. However, this methodology constitutes an ill-

posed problem in which there exist many different solutions 

that minimize the misfit error. From an optimization 

perspective, the search space exhibits a high number of local 

 

Fig. 3: Nyquist plot for EIS spectra of LFP cell at 50% SOC and at different 

temperatures 

 

 

Fig.  4: OCV variation with different temperatures 

 

 

Fig. 5: Open circuit voltage variation with different SOC after 12 hour 

relaxation at 20 °C 

 



optima from which the one that most closely resembles the 

physical behavior has to be selected. A number of approaches 

for these situations are available, including regularization 

frameworks [18] or rigorous constraint formulations to 

exclude non-viable solutions. 

Another issue is the selection of an appropriate search 

strategy. The majority of numerical optimizers, for example, 

strongly depend on the selected initial guess: different start 

values lead to different final minimization solutions. Global 

optimizers, on the other hand, are well suited to 

simultaneously explore large areas of the search space. Often, 

however, they fail to intensively exploit local information 

such as gradients. Thus, a hybrid approach in which the entire 

search space is broadly scanned followed with the obtained 

sub-optima being used as start values for a thorough local 

search, can be considered an adequate approach, similarly to 

what has been proposed by [19]. In this work, a multi-

objective genetic algorithm was applied [20], with the misfit 

error as the first optimization target and the constraint 

violation value as the second. A first-order RC model without 

accounting for hysteresis was used in this first stage. 

Constraints were formulated such that only realistic 

resistances (0 Ω < Ri <4 mΩ) and open-circuit voltages 

(0 V < V0 < 5 V) were permitted. Additionally, V0 start values 

were obtained through an equilibrium charge/discharge cycle. 

These values were used as “seeds” for the genetic algorithm. 

After approximately 1500 iterations (50 candidate solutions 

per iteration), a number of solutions that represent a 

compromise between constraint violation and minimum error 

were achieved. From this set of solutions, one or two 

promising candidates were extracted and taken as initial 

guesses for the second stage, a local optimization step. In the 

scope of this work, we have experimented with different 

numerical optimizers and found that a sequential least-

squares and a trust-region sequential quadratic programming 

[21] approach showed the best performance. Both methods 

are suited for non-linear programming problems with equality 

and inequality constraints.  The same constraints as for the 

global optimization step but without hysteresis were 

considered for this stage. An intensive search yielding close 

fits between measured and simulated data was conducted. In 

order to account for hysteresis, the final solutions were 

refined during a third optimization stage. The hysteresis was 

considered through an extended Thévenin model [22] in 

which both the open circuit voltage and the RC-network 

resistances were separated into a charge and discharge 

component.  

 

C. Thermal Modeling and Parameterization 

 

Thermal modeling can be performed with the help of finite 

element methods (FEM). A detailed CAD model of the 

battery cell is created with CAD software and parameterized 

with the appropriate thermal parameters, namely thermal 

conductivity and specific heat. As the complete geometry of 

the battery cell is considered, detailed boundary conditions 

can be defined, to describe the cooling conditions used. The 

specific losses are applied to the geometry on the appropriate 

elements. The model was simulated using the ANSYS 

framework. 

The losses are not constant and depend on both the 

temperature of the cell and its state of charge. As a 

consequence, it is necessary to use a coupled simulation to be 

able to take into account the influence of the temperature on 

both the internal resistance of the battery and accordingly that 

of the losses. The issue is that such FEM simulations are very 

time consuming. A solution to this issue is the use of model 

order reduction (MOR). A large scale dynamic system of the 

first order is described as 
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where A and E are the system matrices, B the input matrix 

and C the output matrix. x is the state vector of the system, u 

is the input of the system and y the output. The aim of MOR 

as stated in [23] is to generate a low-dimensional 

approximation in the form 

 

Fig. 7: Voltage and SOC Measurement of HPPC cycle and simulated voltage 

with equivalent circuit model 

 

 
Fig. 6: Single cycle of HPPC current profile according to [17] 
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which describes the dependence of y on u while the 

dimension of the reduced state vector z is much smaller than 

the dimension of the original state vector x. MOR was used 

with the software mor4ansys as described in [23]. 

Fig. 8 compares the results of the reduced model with the 

results of the FEM model for the simulated mean temperature 

on the electrode stack. For these simulations, constant power 

losses were considered up to a time of 1000 s: 20 W on the 

electrode stack, 1 W on the aluminum tab and 0.8 W on the 

copper tab. The cell then cooled down over 1000 s. The 

results were very similar, with a temperature difference less 

than 0.1 °C, except that the computation time had been 

reduced: The simulation of the FEM model with 54342 nodes 

and a maximum time step of 1 s took 3859 s, while the 

reduced simulation took 8 s. The simulation time ratio is then 

482:1. With this reduced model, it is possible to make a 

coupled simulation with the electric model. 

The reduced model allows simulating the mean 

temperature over the electrode stack but does not give 

information about temperature gradients. This issue can be  

circumvented by using the transformation matrix: this matrix 

is used to transform the original system into the reduced 

system but this can also be used for the inverse 

transformation. To demonstrate this, the inverse 

transformation was applied to the reduced system for a time 

of t=1000 s. Fig. 9 shows the comparison between the 

temperature distribution obtained with the FEM and the 

inverse transformed reduced model, along with the 

temperature difference between both temperature 

distributions. The maximum difference is 0.03 °C, showing 

that the reconstructed temperature distribution is accurate 

compared to the FEM simulation and allows analysis of the 

temperature gradients. 

 

 

D. Coupling of the Electrical and Thermal Models 

 

 Once the electrical model and the reduced thermal model 

have been obtained, a coupled simulation can be made with 

the procedure shown in Fig. 10. The current profile is the 

input of the model, with the initial state-of-charge. For each 

time step, the evolution of the state of charge is calculated 

and the temperature of the electrode stack is obtained from 

the reduced thermal model. The dependence of the series 

resistance on state of charge and on temperature was 

determined in the part on the determination of the electrical 

model. With this data, the series resistance Rs of the batteries 

is determined. Using the current value I, the dissipation in the 

electrode stack is determined with Rs· I
2
. This dissipation 

value is fed into the reduced thermal model which returns the 

mean temperature of the battery stack for the next time step. 

The procedure is then repeated. 

A current profile with discharging at constant current was 

used as input for the coupled model. The evolution of the 

system was simulated and the temperature distribution was 

extracted at the end of the current profile. The result is shown 

in Fig. 11. In the next section, these simulation results will be 

compared with measurements. 

 

IV. EXPERIMENTAL RESULTS 

 

The measurement setup consists of a single pouch type 

battery cell of 45 Ah capacity, a high-current bidirectional 

 

Fig. 8: Comparison of the mean temperature of electrode stack simulated 

with FEM and with MOR: deviation is below 0.1 °C 

 

 
Fig. 10:  Principle of the coupled electro-thermal simulation. 

 

 

Fig. 9:  Comparison of the simulated temperature distribution obtained with 

the FEM simulation and MOR. 

 



source-sink, an infrared camera of type Flir E50 for image 

acquisition and 18 thermocouples of type K connected to a 

data logger. The thermocouples are placed in a grid pattern on 

the battery cell, whereby one side was left unpopulated for 

the recording of the infrared radiation. 

In order to provide the same ambient and cooling 

conditions for both, experimental measurements and 

simulations, a floating cell measurement setup was chosen, as 

shown in Fig. 12. Considering this setup, natural convection 

is expected to be the dominant mechanism for heat transfer 

between the cell and its environment. Measurements are 

performed with constant current of 45 A (1 C discharge rate) 

for discharging the battery cell. The measurements of thermal 

radiation (by the infrared camera) and local surface 

temperature (by the thermocouples and data logger) were 

recorded synchronously for better comparison. The 

thermocouples were used to check the temperatures measured 

by the infrared camera. The results shown in Fig. 11 were 

obtained by simulating with the same time and current used 

for the measurements and recovering the temperature 

distribution at the end of the discharge process. 

By comparing Fig. 11 and Fig. 12, it can be seen that the 

coupled simulation allows the behavior of the system to be 

described, as the simulated temperature distribution is very 

close to the measured one. A quantitative comparison 

between thermocouple (TC) and simulation at specific 

measurement locations is shown in Table I. 

TABLE I: 

COMPARISON OF TEMPERATURE MEASUREMENT AT SPECIFIC POINTS OF 

45AH CELL 
 

Thermocoule 

position 

Measurement TC 

[°C] 

Simulation 

[°C] 

∆ T 

[°C] 

Below neg. tab 37,9 38,8 0,8 

Center below tabs 35,5 36,6 1,1 

Below pos. tab 37,3 38,0 0,7 

 

V. CONCLUSION AND OUTLOOK 

 

In this paper a complete process of coupled electrothermal 

modeling and simulation was presented. A simplified process 

visualization is synthesized in Fig. 13. 

In this process the possibilities to determine the parameters 

of the electrical models were presented and it was shown that 

HPPC combined to appropriate optimization methods allowed 

the experimental results to be described. The benefits of 

model order reduction for the thermal model were shown. In 

contrary to FEM, it allows fast simulations to be carried out, 

is suited for electrothermal coupling, while enabling 

temperature gradients at desired time steps to be obtained. 

The coupled electrothermal simulation was then performed. 

This result was compared to measurements of a 45 Ah 

lithium-ion cell with LFP cell chemistry. Further, the 

measurement setup was presented. The simulation of the 

coupled electrothermal model presented in this paper shows a 

very good accordance with the experimental results. It was 

shown that the proposed method for electrothermal modeling 

allows simulating complex battery systems accurately and 

without requiring huge computational power, thus enabling 

improvements of cooling and heating systems in the 

conception phase of mobile and stationary battery powered 

applications, before costly fabrication and tests. 

 
Fig. 11:  Temperature distribution obtained after the coupled electrothermal 

simulation with the reduced thermal model. 

 

 

Fig. 12: Picture of the floating cell measurement setup (left) and infrared 

recording in the end of the discharging process (right). 

  

 

Fig. 13: Process description of electrothermal modeling and simulation 
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