
Automatic Generation of Human Machine Interface Screens from Component-Based
Reconfigurable Virtual Manufacturing Cell

B.Ahmad, X.Kong, R.Harrison
WMG, University of Warwick

Coventry, United Kingdom
{b.ahmad, xiangjun.kong, robert.harrison}@warwick.ac.uk

J.Watermann, A.W.Colombo*
*University of Emden, Germany

*Schneider Electric, Germany
jwater@technik-emden.de

*Armando.colombo@schneider-electric.com

Abstract— Increasing complexity and decreasing time-to-

market require changes in the traditional way of building
automation systems. The paper describes a novel approach to
automatically generate the Human Machine Interface (HMI)
screens for component-based manufacturing cells based on their
corresponding virtual models. Manufacturing cells are first
prototyped and commissioned within a virtual engineering
environment to validate and optimise the control behaviour. A
framework for reusing the embedded control information in the
virtual models to automatically generate the HMI screens is
proposed. Finally, for proof of concept, the proposed solution is
implemented and tested on a test rig.

Keywords— virtual engineering, component-based automation,
human machine interface, programmable logic controllers, control
systems

I. INTRODUCTION

In recent years, the automotive industry has been
significantly affected by a number of challenges driven by the
globalisation, economic fluctuation, environmental awareness
and rapid technological developments. As a consequence, the
product lifecycles are shortening and the customer demands are
becoming more diverse. This drives automotive manufacturers
to introduce new innovative cars into the market frequently
with as many extras as possible. To survive in such a business
environment, manufacturers have to find a cost effective
solution for fast and efficient adaption of their resources to
satisfy the needs of changing markets and customer demands
without losses in production [1-3].

Production lines in the automotive industry are highly
automated and heavily rely on control systems. The
conventional engineering approach to build automotive
production systems, which consists of mechanical, electrical
and control engineering, in the exact sequence, occurs
independently and integrates only at the final stage during
commissioning. This often results in finding inconsistencies
only at a very final stage and leads to a prolonged ramp-up
time [4]. Not only this sequential engineering method, but also
the use of department specific tools and insufficient ways of
information handling further worsen the ramp-up time. As
industries are trying to increase the responsiveness, the
weaknesses of using department specific tools are becoming

more obvious. These include repeated work, loss of
information, use of different data structures, and lack of
integration between the engineering disciplines [5].

To save time during the development, so-called Virtual
Commissioning (VC) is now used more frequently within the
automotive industry. Virtual Commissioning refers to
modelling and simulating the production machine in a 3D
simulation environment [6, 7]. This allows control engineers to
start programming the control system at an early stage of the
machine development. These programs can then be tested
against the 3D simulation model to verify the control behaviour
before the physical build. However, programming is still
manual, which leads to error-prone code due to human
mistakes [8].

 To avoid manual programming, a new approach is to
generate the control software automatically from the 3D virtual
models of the machines. Virtual machine models used for
virtual commissioning have embedded control behaviour;
therefore, the same data can potentially be reused and
converted into the desired control code [9]. The goal of such an
approach is to make the programming of the control systems
intuitive as the control behaviour can be defined at a higher
level of abstraction in 3D virtual engineering tools removing
the need for complicated low-level programming [10].

The focus of this paper is the development of a self-
configurable HMI based on the reuse of information from
component-based 3D virtual models of manufacturing cells.
The HMI typically consists of a number of screens to provide a
graphical user interface to the operator to control and monitor a
manufacturing system. The generated screens are essentially
template-based, wherein the template is populated from
machine specific configuration data imported from the virtual
model of a manufacturing cell.

II. BACKGROUND

A. State-of-the-art Engineering Practice within Automotive
Industry

The design and build of automation systems is one of the
key competitive areas of the automotive manufacturing. The
lifecycle engineering of automation systems involves
geographically distributed teams of end-users, machine

builders and control vendors [11]. End-users are the
automotive production companies. Machine builders, also
known as Original Equipment Manufacturers (OEMs), are the
Tier-1 suppliers to the end-users. They are responsible for the
design and build of manufacturing systems. Control vendors
are the Tier-2 suppliers and provide control hardware to the
end-user [12]. Collectively all these partners are responsible
for the implementation and lifecycle support of the
manufacturing systems.

Typically, as witnessed in the automotive industry, the
existing approach of developing automation systems follows a
classical sequential engineering workflow. The development
stage starts with the overall production-line layout, which is
derived from the manufacturing process requirement, followed
by the mechanical design, electrical design, and lastly the
implementation of the control software for the individual
workstations. All these activities are carried out in a rigid
sequential order with very little concurrency. Once a machine
is assembled and integrated, the final stage is then the
commissioning [4, 5]. Each engineering discipline has very
individual requirements. For this reason, at each stage
customised and dedicated engineering tools are used, which
leads to heterogeneous tools landscape and different data
structures [13, 14]. As a consequence, the engineering
activities remain isolated and the integration is only carried
out with ad-hoc methods.

Writing control logic and developing the accompanying
operator interface is one of the most time-consuming and
complex portions of the machine build process. The control
programs for the PLC and the HMI are typically implemented
in vendor specific engineering tools using a set of vendor
specific and IEC languages. In order to have consistency and a
common look, the end-user creates a template of the structure
of the PLC program and design of HMI screens that must be
complied with by all of its machine builders. With this
approach, though reuse of some part of the program code is
possible but it is done via cut and paste method. However, this
is a very ad-hoc form of program reusability. It is difficult to
reuse programs widely with confidence and is open to human
errors. Furthermore, there is a little or no support for version
control and direct-integration between PLC and HMI. These
characteristics make changeability and future reuse of the
automation projects very difficult, error prone and expensive.
This eventually results in a prolonged commissioning, ramp-
up and maintenance times [15].

In addition, there is no industrially established way to
verify the control behaviour of machines at the time of writing
control logic. As the physical machine and the control system
design activities remain isolated, therefore, final verification
and validation of the control logic cannot be carried out until
the commissioning phase. This typically leads to the need for
changes in the control logic during commissioning, ramp-up
and production phase of a manufacturing system.

B. Virtual Engineering Approach

The recent trend in the manufacturing engineering domain
is the use of IT tools to support the verification and validation
of manufacturing systems in a 3D virtual environment, often
referred as virtual commissioning. Virtual commissioning
tools typically provide a digital collaborative engineering
environment in which mechanical design, process engineering
and control engineering can be integrated into a 3D dynamic
model of a manufacturing system [16]. The use of such
engineering tools makes the development process no longer
isolated activities and enables valuable collaboration across
engineering disciplines during the machine development.
Especially, it allows control engineers to work closely with
mechanical and process engineers to optimise the control
behaviour at an early stage [6].

Virtual commissioning allows the user to carry out
commissioning activities without having real production
facilities [17], thus providing a platform to improve the
performance of manufacturing systems even before it is
physically build. Once a machine is virtually built, the
verification of a system can be carried out via visual
inspection of a 3D CAD model of a machine [18]. A number
of designs, configurations, and “what-if?” scenarios can be
easily simulated that are otherwise difficult and time
consuming if performed on the shop-floor. This essentially
creates a new parallel process and removes much of time
pressure that exists in the classical sequential approach [6].
Hence, significant reduction in the ramp-up time can be
achieved by identifying structural defects and verifying the
control behaviour in the early stage of a machine build process
[19, 20].

In academia, virtual commissioning has been
acknowledged for more than a decade for identification of the
design flaws and inter-domain problems. Industry has also
recognised the potential significance of the virtual
engineering. Particularly, in the automotive sector virtual
commissioning is becoming more common in a number of
production areas, such as body-in-white and engine assembly.
One of the main hindrances of its wider acceptance in the
industry is the additional effort needed for creating the
simulation models. However, the use of pre-defined standard
library components can significantly reduce the model
development time.

III. A NEW INTEGRATED ENGINEERING APPROACH FOR

AUTOMATION SYSTEM DEPLOYMENT

Current industrial needs are motivating researchers to seek
integrated approaches to mechanical and control engineering.
New engineering tools and methods are required which can
quickly and robustly design and validate automation systems
and deploy the underlying associated runtime control systems.
To address this, an automation approach has been researched
at the University of Warwick, in which production machines
can be composed of independent and reconfigurable machine
components.

An Integrated Engineering Tool (IET), has been developed
to support the virtual construction of automation systems for
process validation, control behaviour definition,
commissioning, and direct deployment of runtime control
systems. This IET provides a number of functions to create 3D
machine components with embedded kinematic behaviour,
control logic and diagnostics. These components are then
assembled to build a required system. In this system, virtual
operator (known as V-Man) can also be simulated for the
cycle time calculation and generation of MODAPTS
(MODular Arrangement of Predetermined Time Standards)
sheet.

The IET is based on the component-based approach,
proposed by Harrison et al. [21], that decompose production
machines into independent and reusable components to build
and reconfigure production machines. The research objective
is to develop a practical and effective engineering tool to
provide a collaborative engineering environment that allows
construction of reusable machine components (consisting of
automation hardware and software) that could be easily
integrated, reconfigured and deployed to produce a desired
automation system. This engineering approach can potentially
offer a significant reduction in the machine development and
reconfiguration time over the conventional engineering
approach.

Fig. 1. Automatic Control Software Generation Framework

The framework for control software generation using the

IET is shown in Fig. 1. After virtual simulation and validation
of a manufacturing cell, the cell information is exported in
XML-based open data format to the PLC runtime installation
module. The runtime installation module, known as Mapper,
provides user interface for the configuration of the control
logic to define the I/O mapping of the physical addresses and
the mapping of resource specific standard function blocks with
the actuators and sensors of the manufacturing cell. Once all
actuators and sensors are configured, the Mapper processes the

information to generate Control Data Model. The Control Data
Model is then automatically integrated with the end-user
specific PLC program template to generate a deployable PLC
code. The detailed discussion of the generation of PLC code is
beyond the scope of this paper. However, some discussion of
the approach can be found in [8, 20].

IV. A NEW INTEGRATED ENGINEERING APPROACH FOR

AUTOMATION SYSTEM DEPLOYMENT

This section describes the proposed approach for the
automatic generation of HMI screens from the data derived
from the simulation models of a manufacturing cell developed
within the IET. Since the research is driven by industry
requirements, therefore, the authors have adopted a standard
template-based software development approach and design
guidelines from the automotive powertrain assembly domain.

Fig. 2. Control Software Architecture

A. Proposed Software Architecture

In order to facilitate the direct deployment of PLC control
software and HMI, control software architecture of the HMI
and PLC program is proposed, see Fig. 2. The right side of the
figure shows the HMI architecture while the left side shows
the PLC software architecture. The HMI sofware architecture
consists of two main system components: Screen Generator
and Alarm Handler. While the PLC software consists of three
main components: Logic Engine, Control Data Model, and
Runtime Components. A brief discussion of the system
components is given below.

Control Data Model (CDM) is a data structure that contains
the system specific control information derived from the
system model defined within IET tools.

Logic Engine (LE) works as a system orchestrator to execute
the manufacturing operations. It has a number of functions to
perform various system operations such as logic execution,
operating mode control and fault management.

Runtime Components (RCs) are pre-validated and ready to
use standard function blocks. RCs represent actuator or sensor
components of a machine cell in a PLC runtime environment.
It is embedded with the control behaviour of a family of
actuators or sensors with integrated diagnostic. RCs are
developed once and stored in a Library for future reuse.

Manual Screens Generator (MSG) generates screens for
manual mode control. MSG consists of functions that
communicate with the CDM to generate the manual rows for

each actuator according to the number of work positions of the
actuator.
Alarm Handler (AH) is responsible to report fault and
warning messages to the operator. The AH also provides a
function to access the fault history.

Fig. 3. HMI deployment approach

B. Implementation

This paper is mainly focused on the automatic generation
of the HMI screens. Therefore, the generation of the code
related to the HMI is elaborated further. The approach to
deploy the HMI of manufacturing cell based on its virtual
models is illustrated in Figure 3.

It is worth mentioning that the HMI consist of both
machine specific and standard screens. The standard screens
are pre-designed and embedded in the HMI software while the
machine specific screens are generated from the information
derived from the CDM of the cell via Manual Screen
Generator and Alarm Handler within the HMI software. Thus,
the HMI software remains the same for every machine cell.

To support the HMI functionality, the CDM is partitioned
into Automatic Control Model, Manual Control Model and
Fault Management Model. The Automatic Control Model is to
drive the machine in the automatic mode. The Manual Control
Model is to support generation of the manual screens and
control the movement of actuators in manual mode. The Fault
Management Model is to trigger the active faults on HMI
screen and archives the fault history.

The operator screens for manual mode control are system
specific, and thus unique for each manufacturing cell.
Typically, rows of two pushbuttons are provided on the
manual screens for each actuator. Using these pushbuttons,
operator can control the machine by driving the actuators
between their home and work positions.

The workflow for Manual Control Model generation is
shown in Fig. 4. As the manual control is only required for
actuator components; therefore, the code generator analyses
the state behaviour of actuator components only. Based on the
state behaviour of each component, which is described as

State Transition Diagram (STD), the static and dynamic states
are identified and the static position pairs are created. The
Manual Screen Generator within the HMI retrieves the data
from Manual Control Model to create manual movement rows
(pushbuttons) according to the static position pairs of
actuators.

Fig. 4. Workflow of Manual Control Model generation

The Fault Management Model consists of machine faults
and warning messages. The fault and warning messages are
arranged according to their priority. Critical process states are
triggered by the components and the logic engine, which are
reported to the Fault Management Model. The Alarm Handler
continually scans the Fault Management Model for active
faults. In case of any active fault, the relevant text message is
displayed on the operator screen.

The code generator exports the generated source code of
the PLC software as a text file or XML format. The format of
which should conform to the requirements of specific platform
so that it can be directly imported into the vendor-specific
engineering tools. The generation of the machine specific HMI
is actually performed by the code generator within the PLC
control program. Once the HMI software is downloaded to the
HMI device then upon connection with the PLC the relevant
data from the CDM within the PLC are retrieved to generate
the resource specific screens and display diagnostic
information. Any change in the Data Model is automatically
tracked and the relevant functions dynamically update the
operator screens, thus makes the HMI self-reconfigurable.

V. USE CASE

As a suitable use-case, a Festo test rig is used (as shown in
Fig. 5). The test rig represents a transport and production line.
The combination of an ejector, conveyor and a stopper
presents products for processing. At the centre of the machine
is indexing table, where the products are checked and
processed. A gantry then delivers the finished products to the

storage. For the use case, Siemens SIMATIC S7-300 and
SIMATIC MP 277 HMI device were selected as the targeted
hardware platform. The screen layouts were designed
according to the ThyssenKrupp Krause System Engineering
(TKSE) standards.

The test rig was modelled and commissioned within the
IET. The modelling consists of component assembly,
definition of control behaviour of components, and finally the
process logic to define the sequence of operations. The virtual
prototype of the Festo test rig is shown in Figure 5. As an
example, the respective state behaviour of a sensor component
and an actuator component are also illustrated in the Fig. 5.

Fig. 5. Virtual prototype of the Festo rig and the state behaviour of its

components modelled using IET

After virtual modelling and validation, the PLC code is
generated and downloaded into the PLC. A generic SIMATIC
WinCC project, designed according to the architecture
described in the previous section is created and downloaded to
the HMI device. Upon connection with the PLC, the HMI
screens are automatically generated.

Fig. 6 shows the example screens created, consisting of
home screen, manual movement screen and the fault
diagnostic screen. The home screen is used to control the
modes of operations of machine and navigate to other screens.
The home screen is a generic screen and is essentially a
manually created rather than automatically generated. This
screen stays same for all machines.

Fig. 6. Generated HMI screens

The pushbuttons in the manual movement rows are created
according to the static states within STD of the actuators
defined within the IET. The number of rows on the HMI for
controlling a specific component is determined by the static
positions of a component. An example of two components – a
pusher and a gantry, is shown in Fig. 7. For the component
pusher, which has two positions, a HMI row is generated based
on its state behaviour. The six states of the component gantry,
three of which are dynamic states, are translated into two
manual rows of the HMI.

Fig. 7. Generating the manual mode screen based on the state behaviour of

the corresponding components

Fig. 8. Workflow of HMI control

Fig. 8 demonstrates the runtime behaviours of the HMI and
the PLC programs taking the actuator component Pusher as an
example. When the pushbutton “WorkPosition” of the actuator
pusher is pressed, the command is sent from the HMI to the
corresponding Manual Control Model, which communicates
with the RC “Act_Pusher”. Consequently, the RC processes the
received command and writes the command to the connected
output variable to drive the Pusher to move to its work
position. The RC monitors the actuator and reports the current
status of the actuator to the data model.

All HMI screens are dynamically updated from the CDM.
Thus, if any change is required in a system then reconfiguration
is only required at the virtual model level. Once a system is

reconfigured within IET then the cell information are re-
imported in the Mapper. After necessary I/O configuration and
Runtime Component mapping, the CDM for the reconfigured
system is automatically updated. As the HMI software is
generic therefore no changes are required in the HMI software.
Upon connection with the PLC, the changes in the CDM
inherently update the HMI screens.

VI. USE CASE

In this paper, an innovative approach to the development of
HMI screens for component-based automation systems has
been discussed. A component-based automation system was
first virtually prototyped and commissioned in a 3D
environment. Based on its validated virtual model, the screens
are automatically generated and executed without any manual
modifications.

The case study shows, that the dynamic approach to HMI
creation offers advantages over the conventional static
approach. It is more open to different platforms and easier to
realise. It is envisaged that such an approach to develop the
control software of an automation system can help to maximise
the benefit of virtual commissioning by reducing the software
development time. Furthermore, it will lead to enhanced
agility, flexibility and reusability, and hence is potentially able
to meet the user requirements in this current business context.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the TSB
and EPSRC through the 3Deployment and KDCM R&D
projects and all the collaborators (in particular Ford Motor
Company and ThyssenKrupp System Engineering) in carrying
out this research.

REFERENCES
[1] I. Haq, T. Masood, B. Ahmad, R. Harrison, B. Raza, and R.

Monfared, "Product to process lifecycle management in assembly
automation systems," in 7th CIRP international conference on
digital enterprise technology, Athens, Greece, 2011, pp. 476-486.

[2] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G.
Ulsoy, et al., "Reconfigurable Manufacturing Systems," CIRP
Annals - Manufacturing Technology, vol. 48, pp. 527-540, 1999.

[3] M. G. Mehrabi, A. G. Ulsoy, and Y. Koren, "Reconfigurable
manufacturing systems: Key to future manufacturing," Journal of
Intelligent Manufacturing, vol. 11, pp. 403-419, 2000.

[4] S. M. Lee, "A component-based distributed control paradigm for
manufacturing automation system," PhD, Wolfson School of
Mechanical and Manufacturing Engineering, Loughborough
University, Leicestershire, 2004.

[5] M. Bergert, C. Diedrich, J. Kiefer, and T. Bar, "Automated PLC
software generation based on standardized digital process
information," in Emerging Technologies and Factory Automation,
2007. ETFA. IEEE Conference on, 2007, pp. 352-359.

[6] K. David, "Virtual commissioning of factory floor automation: the
new paradigm in vehicle manufacturing," presented at the SAE
2010 world congress & exhibition, Detroit, USA, 2010.

[7] R. Harrison, D. Vera, S. McLeod, and A. Jain, "Virtual
commissioning methods and tools," Loughborough University and
Airbus, Internal Report2012.

[8] X. Kong, B. Ahmad, R. Harrison, Y. Park, and L. J. Lee, "Direct
deployment of component-based automation systems," in
Emerging Technologies & Factory Automation (ETFA), 2012
IEEE 17th Conference on, 2012, pp. 1-4.

[9] K. Andersson, J. Richardsson, B. Lennartson, and M. Fabian,
"Coordination of Operations by Relation Extraction for
Manufacturing Cell Controllers," Control Systems Technology,
IEEE Transactions on, vol. 18, pp. 414-429, 2010.

[10] S. Lee, M. A. Ang, J. Lee, L. Lee, and D. M. Tilbury, "Automatic
generation of logic control," Loughborough University, University
of Michigan and Ford Motor Company2006.

[11] A. W. Colombo, F. Jammes, H. Smit, R. Harrison, J. L. M. Lastra,
and I. M. Delamer, "Service-oriented architectures for
collaborative automation," in Industrial Electronics Society, 2005.
IECON 2005. 31st Annual Conference of IEEE, 2005, p. 6 pp.

[12] M. H. Ong, "Evaluating the impact of adopting the component-
based system within the automotive domain," PhD, Wolfson
School of Mechanical and Manufacturing Engineering,
Loughborough University, Leicestershire, 2004.

[13] R. Drath and M. Barth, "Concept for interoperability between
independent engineering tools of heterogeneous disciplines," in
Emerging Technologies & Factory Automation (ETFA), 2011
IEEE 16th Conference on, 2011, pp. 1-8.

[14] B. Bohm, N. Gewald, A. Kohlein, and J. Elger, "Mechatronic
models as a driver for digital plant engineering," in Emerging
Technologies & Factory Automation (ETFA), 2011 IEEE 16th
Conference on, 2011, pp. 1-8.

[15] L. J. Lee, "A next generation manufacturing control system for a
lean production environment," PhD, Wolfson school of mechanical
and manufacturing engineering, Loughborough University,
Leicestershire, 2004.

[16] A. Jain, D. Vera, and R. Harrison, "Virtual commissioning of
modular automation systems," presented at the 10th IFAC
workshop on intelligent manufacturing systems, Lisbon, Portugal,
2010.

[17] M. Bergert and J. Kiefer, "Mechatronic data models in production
engineering," presented at the 10th IFAC Workshop on Intelligent
Manufacturing System, Lisbon, Portugal, 2010.

[18] J. Richardsson and M. Fabian, "Automatic generation of PLC
programs for control of flexible manufacturing cells," in Emerging
Technologies and Factory Automation, 2003. Proceedings. ETFA
'03. IEEE Conference, 2003, pp. 337-344 vol.2.

[19] R. Drath, P. Weber, and N. Mauser, "An evolutionary approach for
the industrial introduction of virtual commissioning," in Emerging
Technologies and Factory Automation, 2008. ETFA 2008. IEEE
International Conference on, 2008, pp. 5-8.

[20] X. Kong, B. Ahmad, R. Harrison, A. Jain, Y. Park, and L. J. Lee,
"Realising the open virtual commissioning of modular automation
systems," in 7th CIRP International Conference on Digital
Enterprise Technology, Athens, Greece, 2011.

[21] R. Harrison, A. Colombo, A. West, and S. Lee, "Reconfigurable
modular automation systems for automotive power-train
manufacture," International Journal of Flexible Manufacturing
Systems, vol. 18, pp. 175-190, 2006.

