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Abstract—This paper proposes an on-board Electric Vehicle 

(EV) battery charger with enhanced Vehicle-to-Home (V2H) 
operation mode. For such purpose was adapted an on-board 
bidirectional battery charger prototype to allow the 
Grid-to-Vehicle (G2V), Vehicle-to-Grid (V2G) and V2H 
operation modes. Along the paper are presented the hardware 
topology and the control algorithms of this battery charger. The 
idea underlying to this paper is the operation of the on-board 
bidirectional battery charger as an energy backup system when 
occurs a power outages. For detecting the power outage were 
compared two strategies, one based on the half-cycle rms 
calculation of the power grid voltage, and another in the 
determination of the rms value based in a Kalman filter. The 
experimental results were obtained considering the on-board EV 
battery charger under the G2V, V2G, and V2H operation modes. 
The results show that the power outage detection is faster using a 
Kalman filter, up to 90% than the other strategy. This also 
enables a faster transition between operation modes when a 
power outage occurs. 

Keywords—Backup Power Supply, Bidirectional Battery 
Charger, Electric Vehicles, Kalman Filter, Enhanced 
Vehicle-to-Home (V2H) 

I. INTRODUCTION 
Electric Vehicles (EVs) are being introduced as a new 

promising transport in different countries around the world [1–
3]. As example, for the US it is foreseeable that EVs will 
represent 64% of the light vehicles sales in 2030 [4]. As 
consequence of this new paradigm, new challenges and 
opportunities will arise. The main challenge is related with the 
regulation of the battery charging process from the power grid 
[1], [5]. This represents a challenge because will be required a 
significant amount of energy during the charging process and 
power quality problems cannot be neglected in such scenario 
[6–8]. On the other hand, the main opportunity that must be 
addressed is related with the capacity of these vehicles to store 
a significant amount of energy. Thereby, besides the battery 
charging process, identified as Grid-to-Vehicle (G2V) [9], the 
EVs can also be used to produce reactive power [10] and to 
deliver part of energy stored in the batteries back to the power 
grid. This process is identified as Vehicle-to-Grid (V2G) [11–
14]. These challenges and opportunities are more relevant 
considering the advances in smart grids and micro-grids [15], 
where these vehicles will be a key technology [16], [17]. In this 
scenario, also mobile information systems for EVs will be an 
important field to the electric mobility development [18]. 

This paper proposes an opportunity to the EVs operation 
that is associated with the Vehicle-to-Home (V2H) paradigm 
[19]. This opportunity consists in use the EVs as a home 
backup power supply. Therefore, is proposed an enhanced V2H 
operation mode. The operation of the EVs as voltage source 
was already proposed by NISSAN through the 
“LEAF-to-Home” system. This system uses a dedicated “EV 
Power Station” to supply home loads [20]. This type of 
opportunity for smart homes will be a key technology for the 
expansion of electric mobility sector in smart grids [21], [22]. 
According to NISSAN, this initiative is a contribution to a 
zero-emissions society. The main drawback of the 
“LEAF-to-Home” is that it can only be used in the place where 
the equipment is installed. In order to avoid this drawback, in 
[23] is presented an on-board bidirectional battery charger 
capable to operate as G2V, V2G and V2H in the place where 
the EV is parked. As presented, through the operation as V2H, 
the EV can provide energy to any load connected to the EV in 
island mode. However, it has not the capability to operate as 
backup power supply. This paper joins the main benefits of 
aforementioned systems, i.e., the EV can be used as backup 
power supply at home and supply loads in isolated mode. This 
opportunity is more relevant taking into account that private 
vehicles are parked at home between 9 p.m. and 6 a.m. [24]. 

The most common backup power supply is the 
Uninterruptible Power Supply (UPS), which can be on-line or 
off-line [25]. Despite the benefits of the on-line UPS in protect 
the loads continuously, in most of the situations, the off-line 
UPS is suitable to protect the loads during power outages. 
Therefore, this paper proposes the use of an on-board EV 
battery charger as backup power supply operating like an 

 
Fig. 1. Operation of an Electric Vehicle as backup power supply. 
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off-line UPS. The EV on-board battery charger are capable to 
perform a smooth transition between operation modes when a 
voltage sag or a power outage is detected. Fig. 1 shows the use 
of EVs as backup power supply.  

II. ON-BOARD EV BATTERY CHARGER PROTOTYPE 
Aiming to assess the operation of EVs as backup power 

supply it was adapted a bidirectional EV battery charger 
prototype to operate in accordance with the proposed enhanced 
V2H operation mode. The topology of this battery charger and 
the setup that was used to obtain the experimental results is 
presented in Fig. 2.  

The battery charger that was used is divided in two power 
stages: one ac-dc front-end power converter; and one dc-dc 
non-isolated power converter. During the operation as G2V the 
ac-dc converter operates as active rectifier with sinusoidal 
current and unitary power factor, and the dc-dc adjusts the 
current and voltage to charge the batteries. In the V2G the 
ac-dc converter operates as inverter with sinusoidal current, 
and the dc-dc converter discharge the batteries with constant 
current. During the V2H mode, the ac-dc converter operates as 
controlled voltage source and the dc-dc converter is used to 
maintain the dc-link regulated. In order to synchronize the 
ac-dc converter with the power grid fundamental voltage was 
used a single-phase Phase-Locked Loop (PLL) [26]. From this 
algorithm is obtained a sine-wave signal pll that corresponds to 
the fundamental component of the power grid voltage. This 
signal is used to obtain the current reference for the G2V and 
V2G operation modes. It can also be used to obtain the voltage 
reference in the V2H operation mode. Therefore, PLL is the 
first algorithm implement in the control. 

A. Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) 
The control of the ac-dc and dc-dc converters is similar 

during the G2V and V2G operation modes. In both of the 
modes, the dc-link is regulated by the ac-dc converter through a 
Proportional Integral (PI) controller. Also in both operation 
modes the current reference to the ac-dc converter is function 
of the power to charge (G2V) or discharge (V2G) the batteries. 
The digital current reference in discrete time, at each instant k, 
is expressed as: 

������� 	 
����
� � �����
�������
����
�� �����
� � (1) 

where, 
��� is the reference obtained from the PI to regulate 
the dc-link, �� is the rms value of the power grid voltage, ��� is 
the output of the PLL, and ����  and ����  are the current and 
voltage in the batteries, respectively. During the G2V operation 
mode the current ����  and the voltage ����  are positive, which 
results in a positive current reference. On the other side, during 
the V2G operation mode the current ����  is negative and the 
voltage ����  remains positive, which results in a current 
reference in phase opposition with the power grid voltage.  

In order to the ac-dc converter produce a voltage that 
results in the desired current (����) was used a predictive 
current control. Taking into account that the ac-dc converter 
has a full-bridge structure, the reference that is compared with 
the 20 kHz triangular carrier is expressed as: 

������
� 	 ���
� � � ! "#�����
� � �����
 � $�� ����
� � ���%�&&�&�
 � $�' � (2)

where, k denotes the actual sampling and k-1 the previous 
sampling. In this current control was used a unipolar PWM 
strategy. To mitigate the dead-time effects in the produced 
voltage was used a strategy that consists in add a constant value 
to the voltage reference (������
�) during the positive 
semi-cycle, and subtract the same value during the negative 
semi-cycle. This value is calculated in function of the carrier 
amplitude and the delay introduced by the dead-time. To 
charge the batteries (G2V operation mode) in accordance with 
the batteries manufacture recommendations, the dc-dc 
converter requires two control strategies. The first consist in 
charge the batteries with constant current according to (3). The 
second consist in charge the batteries with constant voltage 
according to (4). 

()*�+��
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In order to discharge the batteries (V2G operation mode) 
with constant current is required a single control strategy. In 
this case the dc-link voltage is regulated by the ac-dc converter 
and is injected a current with variable amplitude (that is 
function of the batteries discharging current) in the power grid. 
In order to maintain the battery discharging current constant, 
the duty-cycle for the dc-dc converter is expressed by: 

()��./��
� 	 $ � �����
��-��
� � 01� �"������
� � �����
�' , (5) 

B. Vehicle-to-Home (V2H) 
In the V2H operation mode the ac-dc converter is used to 

produce a voltage. The duty-cycle ((2�3-�) at each instant k is 
expressed as:  

Fig. 2. Topology of the battery charger and the setup that was used to obtain
the experimental results presented in the paper. 
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Also in this operation mode was used the aforementioned 
strategy to mitigate the effect of the dead-time in the produced 
voltage. In this mode the dc-dc converter is used to regulate the 
dc-link voltage, where the duty-cycle for the dc-dc converter is 
expressed by: 

()��./��
� 	 $ �������
��-���
� �, (7) 

III. ALGORITHMS TO DETECT POWER OUTAGES 
In order to detect power outages, several algorithms can be 

implemented. Nevertheless, in the scope of this paper were 
analyzed and obtained experimental results with two 
algorithms. The first is based on the traditional calculation of 
the rms value and the second is based on the determination of 
the rms value using a Kalman filter. For both modes it was 
defined that occurs a voltage sag when the rms value is below 
85% of its nominal value (standard EN 50160). These two 
control algorithms are described in detail. In the scope of this 
paper was assumed that when is detected a power outage the 
switch SW, represented in Fig. 2, is open and the home is 
disconnected from the power grid. When the voltage is restored 
the switch SW is closed, however, only after a delay necessary 
to the complete synchronization of the PLL with the power grid 
voltage. Both situations are illustrated in Fig. 3.  

A. Traditional RMS Value Calculation 
A simple algorithm to detect voltage sags is based in the 

traditional calculation of the rms value. This method consists in 
calculate the rms value during one cycle of the power grid 
voltage and detect when it falls beyond a predefined threshold. 
The rms value is calculated according to: 

56"789'":' 	 ;$!< ���"='�
> ?=�� (8) 

and the digital implementation is: 

56"789'�
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where, A is the number of samples used in each cycle of the 
power grid voltage. Aiming to speed up the detection of 
changes in the rms value, it can be calculated using only 
half-cycle of the power grid voltage and using a sliding average 
across the square values of the power grid instantaneous 
values. The sliding sum used in the sliding average is 
calculated using: EFG�
� 	 EFG�
 � $� �� �����
 � A� � ����
��� (10)

and the rms value of the power grid voltage (half-cycle) is 
calculated using: 

56"789'�
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Fig. 4 shows the power grid voltage (��), the output voltage 
of the ac-dc converter (�4), and the rms value (�6�"789'), using 
this method and the limit of 85% of the rms nominal value 
(230 V). As shown, the power outage occurs a little after the 
beginning of the negative semi-cycle, and were required 3.3 ms 
to detect the power outage. 

B. RMS Value Estimation Based on Kalman Filter 
The algorithm for estimating the rms values using the 

Kalman filter is more complex than the traditional method 
presented before, however in most of the situations is faster to 
detect variations in the rms value. The Kalman filter used in 
this paper is based in the estimation of the instantaneous 
amplitude of the fundamental component of the power grid 
voltage and its quadrature signal, denoted as E�
� and H�
�, 
respectively. The Kalman filter is based in two distinct set of 
equations: Prediction and Correction [27]. Assuming that there 
are only Additive White Gaussian Noise (AWGN) in the 
measured signal, it is possible establish the following 
estimation state model: IJ�
� 	 K IJ�� � $��� (12)

where, IJ�
� is the estimation state model that comprises the 
in-phase and quadrature signals, where I�
� is defined as: 

I�
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and A is the state transition matrix defined by: U 	 V RSE"Q!' E�P"Q!'�E�P"Q!' RSE"Q!'W�� (14)

where, Q is the angular frequency of the power grid voltage 
and T is the sampling period. The estimation of the process 
covariance is defined as: 
X�
� 	 U 
�
 � $��U� �� �Y�� (15)

 
Fig. 3. Experimental results: Synchronization of the PLL with the power grid
voltage before and after a power outage. 
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where, Q is the covariance matrix. Equations 10 and 13 are 
related with the set of Prediction equations. In the set of 
Correction equations the first step is determine the optimal 
Kalman gains, which improves the estimation at each sampling 
frequency. The optimal Kalman gain matrix is described by: 
�
� �	 �
X�
��Z��"Z�
X�
��Z� �� �['3 �� (16)

where, 
X�
� is the estimation of the process covariance, R is 
represented by a scalar, and Z is defined as: Z 	 �$ \��, (17)

With the information obtained from the equation above the 
state estimation can be updated by:  IJ�
� 	 IJ�
 � $� �� �]�"�4 � Z�IJ�
 � $�'�� (18)

and the covariance can be updated by: 


�
� 	 "� � ]Z'�
X�
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The estimation of the rms value of the power grid voltage is 
given by: 

��̂789�
� 	 ;E_�
�� � HJ�
��# �, (20)

In this method, after estimate the rms value of the power 
grid voltage, when is identified that this value is below 85% of 
its nominal value, it is assumed a power outage and the EV 
must operate in V2H. Fig. 5 shows the power grid voltage (��), 
the output voltage of the ac-dc converter (�4), and the rms 
value (�6�"789'). In this situation, the power outage occurs a 
little after the beginning of the positive semi cycle, and was 
required 0.4 ms to detect the power outage. It must be referred 
that, although the detection moments are different, the Kalman 
filter method is faster than the traditional method. 

IV. BATTERY CHARGER OPERATION MODES 
The battery charger prototype was submitted to a set of 

operation tests, mainly focusing the V2H operation mode as a 
backup power supply. These tests were performed with the 
battery charger connected to the power grid at 115 V. The 
dc-link voltage was regulated to 200 V, and was used a set of 
12 sealed 12 V 33 Ah Absorbed Glass Mat (AGM) batteries 
connected in series in order to perform 144 V. To simulate the 
home loads were used resistances with the total value of 52 �. 
The aforementioned digital control algorithms were 
implemented in a DSP TMS320F28335 using a sampling 
frequency of 40 kHz. Fig. 6 shows the laboratory workbench 
used to validate the proposed V2H operation mode and to 
obtain the experimental results, which were registered with a 
Yokogawa DL708E digital oscilloscope. 

A. Grid-to-Vehicle and Vehicle-to-Grid 
As aforementioned, during the G2V operation mode the 

energy flows from the power grid to the batteries and in the 
V2G in the opposite way. In both operation modes, in the ac 
side, the current is sinusoidal. Fig. 7 shows the power grid 
voltage and the EV battery charger current for the G2V 
(Fig. 7 (a)) and V2G (Fig. 7 (b)) operation modes. 

B. Vehicle-to-Home  
During the V2H operation mode the power flows from the 

batteries to the home loads. Besides the V2H operation mode, 
in which the EV battery charger is used as backup power 
supply, it can also be used to provide energy to any load 
connected to the EV in an island mode in the place where the 
EV is parked. 

C. Enhanced Vehicle-to-Home  

 
Fig. 4. Experimental results: Power grid voltage rms value estimation using a
traditional method. 

 
Fig. 5. Experimental results: Power grid voltage rms value calculation using a
Kalman filter. 
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During the enhanced V2H operation mode as backup power 
supply, the power flows from the batteries to the home loads. 
In this operation mode the ac-dc converter produces a 
sine-wave voltage and the current waveform is determined by 
the loads, and the dc-link voltage is regulated by the dc-dc 
converter. Considering that this operation mode can be 
triggered when the EV is only plugged in the home, or when it 
is plugged and in charge, this item is separated in these two 
distinct cases. 

1) Electric Vehicle Plugged but not in Charge 

In the enhanced V2H operation mode were obtained 
experimental results with the traditional rms voltage calculation 
and using a Kalman filter. Fig. 8 (a) shows the voltage in the 
loads and the current in the battery charger using the traditional 
rms voltage calculation. As shown, to detect when the rms 
value decreases above 85% of its nominal value were required 
3.8 ms. On the other hand, Fig. 8 (b) shows the voltage in the 
loads and the current in the battery charger when is used the 
Kalman filter to detect the power outage. In this case, to detect 
when the rms values decreases above 85% of its nominal value 
were required only 0.3 ms. 

2) Electric Vehicle Plugged and in Charge 

Also in the enhanced V2H operation mode were obtained 
experimental results, when the EV is charging, with the 
traditional RMS voltage calculation and using a Kalman filter 
to estimate the rms value. Fig. 9 shows the voltage in the loads 
and the current in the battery charger using the traditional rms 

voltage calculation and a Kalman filter, respectively. As 
shown, to detect when the rms values decreases above 85% of 
its nominal value were required 5.4 ms and 0.3 ms, 
respectively. As shown during the battery charging process the 
current is in phase with the voltage, and after the power outage 
detection is in phase opposition. 

V. CONCLUSIONS 
This paper presents a study conducted in order to assess the 

utilization of an on-board Electric Vehicle (EV) battery charger 
operating as a backup power supply. The hardware topology 
and the control algorithms of the developed bidirectional 
battery charger prototype are described along the paper. In the 
scope of this paper it was defined that a power outage occurs 
when the rms value of the power grid voltage is 85% of its 
nominal value. To determine the rms value were compared two 
strategies: one based on the traditional rms calculation of 
half-cycle of the power grid voltage, and another based on a 
Kalman filter. The experimental results obtained show that 
using a Kalman filter the rms value detection is faster (typically 
90%) than with the traditional method. The operation of the 
battery charger was demonstrated through experimental results 
in Grid-to-Vehicle (G2V), Vehicle-to-Grid (V2G), and 
enhanced Vehicle-to-Home (V2H) operation modes. For the 
transition to the V2H operation mode two distinct cases were 

 

 
Fig. 8. Voltage (50 V / div) in the load and current (5 A / divV) in the battery 
charger when the EV is plugged in but not in charge, when a power outage
occurs: (a) Using a traditional RMS value calculation; (b) Using a Kalman
filter do estimate the rms value. 
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Fig. 6. Laboratory setup used to obtain the experimental results. 

Fig. 7. Power grid voltage (50 V / div) and current (5 A / div) in the battery
charger: (a) During G2V operation mode; (b) During V2G operation mode. 
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considered: when the EV was only plugged in to the home, and 
when the EV was plugged in and in charge (operating in G2V 
mode). 
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