
Towards Robustness and Self-Organization of ESB-
based Solutions using Service Life-cycle

Management

Paulo Leitão1,2, José Barbosa1, Arnaldo Pereira1
1 Polytechnic Institute of Bragança, Campus Sta Apolónia, Apartado 1134, 5301-857 Bragança, Portugal

{pleitao, jbarbosa, arnaldo}@ipb.pt
2 Artificial Intelligence and Computer Science Laboratory, Rua Campo Alegre 102, 4169-007 Porto, Portugal

Abstract- Enterprise Service Bus (ESB) is a middleware infra-
structure that provides a way to integrate loosely-coupled
heterogeneous software applications based on the services
principles. The life-cycle management of services in such
environments is a critical issue for the component’s reuse,
maintenance and operation. This paper introduces a service life-
cycle management module that extends the traditional
functionalities with advanced monitoring and data analytics to
contribute for the robustness, reliability and self-organization of
networks of clusters based on ESB platforms. The realization of
this module was embedded in the JBoss ESB, considering a
sniffer mechanism to collect the service messages crossing the
bus and a Liferay portal to display relevant information related
to the services’ health.

I. INTRODUCTION

The conceptualization of Internet of Things paradigm and
the implementation of computational distributed systems
reinforce the importance of the integration of heterogeneous
software applications across the enterprise IT infrastructures.
In fact, according to a prediction report from Gartner on
Application Integration [1], by 2016, midsize to large
companies will spend 33% more on application integration
than in 2013, and by 2018, more than 50% of the cost of
implementing 90% of new large systems will be spent on
integration.

The advent of service-oriented architecture (SOA) [2] as a
software paradigm for distributed systems to integrate the
enterprise IT infrastructures brought the concept of Enterprise
Service Bus (ESB). An ESB is a software architecture model
used for designing and implementing the communication
between interacting software applications in a SOA
environment. It is based on the idea to have a standard and
structured middleware that offers a way to connect and
integrate loosely-coupled heterogeneous software
components, named services, reducing the complexity of
application interfaces. In 2003, Gartner Inc. predicted that the
majority of large enterprises will have an ESB running to
integrate their IT infrastructures by the end of 2006 [3].
However this prediction has proved to be too much
optimistic, since nowadays heterogeneous systems may also

use web services interfaces. Several ESB products are
available, in the form of commercial and open source
products, namely Oracle Service Bus, Mule ESB, Fuse ESB,
Talent ESB and JBoss ESB.

The ESB solutions provide a distributed, modular and
pluggable architecture, supporting intelligent and dynamic
routing and mediation of services’ discovery, request and
execution. The main benefits of using an ESB platform is the
increased flexibility and scalability, the interoperability
transparency and the existence of configuration rather
integration coding. In fact, large-scale distributed systems can
benefit from an ESB middleware acting as a broker between
the numerous heterogeneous service providers/requesters,
avoiding a potentially huge number of point to point
connections. However, the increased overhead and the
possible slower communication speed are the main
disadvantages.

One of the main functionalities of an ESB is to monitor and
control the routing of messages exchanged between services.
The life-cycle management of deployed services, e.g.
including functions of monitoring and data analytics, is a
crucial issue for the component reusing, maintenance and
monitoring [4], and in the context of ESBs, contributes to
increase the system robustness, reliability and fault-tolerance.
In fact, the possibility to monitor the performance of
registered services and analyse the evolution of its behaviour,
allows to detect in advance possible degradation or risk
propagation, being possible to generate warnings to
implement proper corrective actions to mitigate the problem.

Currently, and related to the life-cycle management, the
ESB platforms only provide basic functions associated to the
service registry and completely misses these kind of advanced
functionalities, leading to the need to have a life-cycle
management functionality embedded in the ESB that provides
monitoring and data analytics of the registered services. For
this purpose, the objective of this work is to develop a life-
cycle management module that will be embedded in the
traditional ESBs to provide monitoring and data analytics of
the registered and deployed services, contributing to achieve
more robust, reliable and fault-tolerant distributed SOA-based

systems. Additionally, this functionality will also play an
important role in the self-organization of the network of
software applications organized as clusters of ESBs, in a
dynamic and on-the-fly manner.

The rest of the paper is organized as follows: Section II
discusses the architecture of the intelligent enterprise service
bus (iESB) developed under the ARUM project, and Section
III presents the specification of the life-cycle management
module as part of the iESB. Section IV discusses how this
module contributes to achieve robustness, reliability and self-
organization and Section V presents the technical details
related to its implementation. At last, Section VI rounds up
the paper with the conclusions.

II. INTELLIGENT ENTERPRISE SERVICE BUS

The ARUM (Adaptive Production Management) project [5]
addresses the development of novel Information
Communication Technology (ICT) solutions to handle new
challenges in production and ramp-up of complex and highly
customized products, such as aircraft and shipbuilding
industries. The focus is on the development of mitigation
strategies to respond faster to unexpected events and the
implementation of systems and tools for the decision support
in planning and operation. For this purpose, the ARUM
platform comprises an intelligent ESB, which enriches the
traditional ESBs with a plethora of advanced modules, and
provides a common infrastructure for the integration of
heterogeneous planning and scheduling tools (e.g. using the
MAS - Multi-agent Systems principles) and legacy systems,
as illustrated in Fig. 1. The main modules deployed in the
iESB are the Ontology service, Data Transformation Service,
Sniffer, Node Management and Life-Cycle Management.

The Ontology service module is responsible to gather the
pieces of data from various legacy systems, e.g. MES
(Manufacturing Execution System) and ERP (Enterprise
Resource Planning), via the data transformation service,

aggregate and store it in the local triple store and then provide
it on request to other services. Aiming to provide a common
and explicitly defined semantics of data, it was developed a
set of OWL (Web Ontology Language)-based ontologies for
the description of production processes, shop floor
topologies, resources and their availability, scheduling
strategies, disruption events, etc. [6].

The Data transformation service module is responsible for
gathering data from legacy systems. The raw data, received
from gateways using the legacy system specific interfaces and
communication protocols, is transformed into the ontological
format (RDF - Resource Description Framework) using the
OWL-based ontologies provided in the Ontology service.

The Sniffer module is responsible for capturing the flow of
messages across the ESB and related to the registered
services, to support the monitoring and understanding of the
overall state of the system especially in a distributed
environment with multiple interacting services [7].

The Node Management module supports the distributed
management of iESB instances, allowing the inter-connection
among several ESBs.

The Life-cycle management module performs the life-cycle
monitoring and analysis of the health of the services that are
deployed within the iESB, supporting the dynamic, online
and on-the-fly actions to mitigate the degradation of their
performance. This module will be deeply analysed during the
rest of this paper.

The Dashboard acts as a user interface (UI), providing the
user with the means for administration and monitoring of the
overall ARUM solution (including all deployed tools). It
means for example the deployment of services, monitoring
their parameters and health, visualizing the message flow and
statistics. The dashboard leverages the web portal technology,
which is a specially designed web page on which the
information is displayed within dedicated user interface
components – the portlets.

Enterprise Service Bus

Life-cycle
Management

Ontology
service

Data
transformation

SC
AD

A
ER

P

M
ES

Legacy data
sources

Node
managementSniffer

ARUM
database

(triple store)

iESB (Intelligent Enterprise Service Bus)

Gateways

Strategic
Planner

Operational
scheduler

Factory Network /
Scenario Designer Dashboard

Fig. 1. ARUM platform high level architecture.

III. LIFE-CYCLE MANAGEMENT MODULE

The Life-cycle Management Module (LCMM) performs
the continuous monitoring and data analytics of the services
that are deployed within the iESB, allowing to dynamically
be aware of the current state and health of the services and to
perform on-the-fly actions to increase the services’
performance. In particular, the main features provided by the
LCMM module are:

• Monitoring of the registered services’ health,
providing on-line information related to different KPI
(Key Performance Indicators), such as the response
time, the failure rate and the occupancy.

• Detection of the registered services/tools that are not
operating properly and analysis of trend and patterns
on the services’ performance, e.g. the detection of the
degradation in the service quality.

• Analysis of the risk propagation in case of service
quality degradation.

• Suggestion of actions to maintain the system’s
robustness and stability.

The LCMM module interacts with the Sniffer module to
get data related to the exchanged messages and the UI
Dashboard to support the interaction with the user and
particularly to display the monitored info related to the health
of registered services according to pre-defined KPIs, as
illustrated in Fig. 2. Internally, the module comprises the
Event Monitoring, Data Analysis and local database.

Fig. 2. Architecture of the life-cycle management module.

The interaction between the Event Monitoring and Data

Analysis components allows to trigger a more detailed data
analytics and also to provide feedback regarding the
adjustment of the pooling rate for a specific service.

A. Event Monitoring Component
The Event Monitoring component performs mainly the

collection of the data related to the exchanged messages
across the bus and the monitoring of the services’ health.
Since the Sniffer module is continuously sniffing the
messages crossing the ESB and feeding its database with the
gathered information, the Event Monitoring component can
request this data using a proper and dynamic polling
mechanism that is parameterized according to the service
frequency and priority. In fact, the polling time is adjusted
according to the service usage frequency, i.e. short polling
time if the service is usually requested or larger time if rarely

requested. Also, an event-driven mechanism can be used to
collect the data from the Sniffer module, but this alternative
can only be used if the Sniffer module provides the
subscription functionally.

The reasoning engine, embedded in this component,
processes the gathered and historical information in order to
support the health monitoring of registered services by
calculating several pre-defined KPIs, namely in terms of
performance and status, that will be exposed as monitoring
services to the user, namely through the UI dashboard.
Examples are the detection if the registered services are not
alive by identifying not answered messages and behaviours
that not follows the service patterns.

Considering that 𝑇𝑇 = {𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖: 𝑖𝑖 = 1, … ,𝑀𝑀} is the set of tools
connected to the ESB and each tool offers a set of services
𝑆𝑆𝑖𝑖 = {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ij: 𝑗𝑗 = 1, …𝑁𝑁𝑖𝑖}, the LCMM module provides a
plethora of services aiming to monitor several KPIs, as
detailed as follows (also illustrated in Fig. 3):

Fig. 3. Services provided by LCMM and also the requested services.

• getFailureRate: provides the failure rate of a service,

calculated as follows, where fij is the number of
failures of the serviceij with reference to the last n
requests of this service:

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 =
𝑓𝑓𝑖𝑖𝑖𝑖
𝑛𝑛

 (1)

• getDegradation: provides the information related to
the degradation of the response time of a service j of
the tool i (δij). The degradation is the comparison of
the response time of the last two events.

𝐷𝐷𝑖𝑖𝑖𝑖 =
𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡−1)

𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡−1)
 (2)

• getServiceOccupancy: provides the information related
to the occupancy of a service. The Service Occupancy
(SOij) of a service j running in the tool i is defined as
the ratio of the overall time tij that the service is being
used with the overall time Δi of the software tool
deployed on the system:

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 =
𝑡𝑡𝑖𝑖𝑖𝑖
𝛥𝛥𝑖𝑖

 (3)

• getToolOccupancy: provides the information related to
the occupancy of a tool. The Tool Occupancy (TOi) is
defined has the ratio of the time ti that a given tool i is
being used (independent of the overlapping of services
in the tool) with the overall time Δi of the tool

Sniffer

ESB

Life-cycle Monitoring
Module

getDataEvent()

action()

Event
Monitoring

Data analysis

feedback

Registry
Service

trigger

Dashboard

deployment on the system, as illustrated as follows:

𝑇𝑇𝑇𝑇𝑖𝑖 =
𝑡𝑡𝑖𝑖
𝛥𝛥𝑖𝑖

 (4)

• getToolOverallDemand: provides the information
related to the load of a tool within the overall ESB
load. This load is the ratio of the number ri of requests
to the services running in tool i and the total number of
requests to all tools, represented as follows:

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 =
𝑟𝑟𝑖𝑖

∑ 𝑟𝑟𝑘𝑘𝑀𝑀
𝑘𝑘=1

 (5)

• overallStatus: provides the overall service status
considering all evaluation parameters, namely the
failure, degradation and occupancy, weighted
according to pre-defined values. This will be defined
as a health scale, where 0 means “good”, 1 means a
potential “risk” or “problem”.

This component can also implement a pre risk analysis
allowing to determine potential situations of service/tool
failure. In this way, when a set of conditions are met, such as
the presence of historical problematic tools or the warnings
coming from the evolution of service KPIs, the component
can signalize the critical service(s) and take more pro-active
measures, such as changing the warning threshold values.
Beside this action enabling the early signalling of potential
hazardous situations, it additionally allows an anticipated
taking of known actions that permit to overcome the potential
situation.

B. Data Analysis Component
The Data Analysis component aims to perform advanced

reasoning, and particularly data analytics, over the historical
and current collected information related to the deployed
services. In fact, the functions provided by this component
include:

• Analysis of trends to detect deviations or patterns in
the quality and performance of the service.

• Analysis of correlation among the execution of
different services (also including the correlation
considering services deployed in other ESBs
belonging to the same network).

• Analysis of the impact and risk propagation related to
the degradation of a service.

The implementation of these functionalities may consider
the use of data mining techniques [8], namely clustering.
Clustering is a technic used to find, in an automatized way,
hidden patterns in big quantities of data. Based on the k-
means clustering algorithm presented in [9], Fig. 4 illustrates
a strategy integrated in LCMM to perform data analytics to
discover the set of services that presents more risk of
abnormal behaviour.

A periodic or trigger event causes the Data Analysis
component to start reading the values collected by the Event
Monitoring component in local database. The algorithm
prescribes choosing k arbitrary readings as the cluster centres.
All readings are assigned to the most similar centre based on

the calculation of Euclidean distance between the read values.
A next step is related to the calculation of the most central
point for each cluster (not necessarily equal to the initial
choice for the centre). Then, it is performed a new reassigning
of all values in conformity with the new centres. Finally, the
services in the cluster with the worst centre are signalized as
services with possible degraded performance, and in this way
will require a close monitoring.

Read values Choose k objects as
initial cluster centers

Assign each object to
the most similar center

Update the cluster
means

Reassign points closest
to the different new

cluster center

Monitor the services of
the cluster with worst

center

trigger

Data Analysis
Service: s1
Tool: t1
Time: 14:02:00
Error: #Z6X
...

Service: s5
Tool: t4
Time: 14:18:32
Error: #D6X
...

Service: s1
Tool: t2
Time: 14:58:32
Error: #A6A
...

Fig. 4. Algorithm for detecting patterns in the data analysis.

The output of these functions is the generation of warnings

to the user, e.g. providing useful information about the state
and risk of a specific service and also suggesting the
execution of proper actions, such as unregistering the service
(e.g. when the service is not being used), re-starting of a tool
(e.g. when the service is degraded or not responding) or
creating one clone (e.g., when the service/tool is too busy).
These actions can also be performed automatically, under
well controlled conditions. In this case, as also illustrated in
Fig. 3, and aiming to support the operation of the LCMM
module, several services provided by other modules in the
iESB may be requested, namely amIAlive (to verify if the
service is alive), unregister (to unregister services by
accessing the ESB Register Service), relaunch (to restart the
service provided by the tool) and clone (to clone a
service/tool, e.g. when a service/tool is too busy). Note that
the use of these services may require some kind of privilege
access to external tools.

Learning is an important piece of the LCMM module,
supporting the discovery in advance of potential problems
and the definition of the actions to be implemented when a
risk is detected (as well as in the adaptation of the warning
threshold values). The LCMM module should also consider
self-monitoring and self-analysis in order to avoid its chaotic
behaviour, e.g. acting as a “cancer” deploying very rapidly
services/tools and consequently overloading the system.

IV. ROBUSTNESS AND SELF-ORGANIZATION PROVIDED BY
LCMM MODULE

The implementation of the LCMM functionalities is a step
forward to achieve intelligence in the ESB platform and in
this way to achieve an iESB. More concretely, this module

may contribute to achieve robustness, reliability, fault-
tolerance and self-organization in this kind of distributed
systems, i.e. those based on the ESB middleware.

Robustness can be defined as the capability of a control
system to remain working correctly and relatively stable,
even in presence of disturbances. Additionally, an important
issue is the system fault-tolerance, i.e. the capability to detect
and tolerate internal failures, in order to continue performing
their operations without the need for an immediate
intervention. Being more tolerant, the downtime is reduced,
and being able to detect and diagnosis, the repair process is
speed-up, increasing the robustness and productivity of
manufacturing systems [10].

In such kind of distributed systems, based on offering and
requesting services, the inexistence of central nodes makes
these systems more robust than the traditional centralized
systems, by eliminating the single point of failure problem. In
fact, more decentralization provides additional reliability due
to the implicit redundancy and diversity and the non-
dependency of central control nodes [11]. However, the
existence of a middleware infra-structure to integrate the IT
software applications based on services can somehow restrict
the robustness and reliability of such systems. Note that
reliability is the ability of a system or component to perform
its required functions under stated conditions for a specified
period of time. In this way, the LCMM module ensures the
increase of robustness and reliability by permitting an
automatic discovery of problematic services, e.g. the ones
that may be failing, not responding properly or overloaded,
and take/suggest appropriate actions, such as launching a
parallel service of the one that is identified to be near of
failure, to mitigate the possible problems.

Additionally, the LCCM module can greatly contribute as
an underlying mechanism to support self-organization at two
levels: at service level or at ESB level. On the first case, the
LCCM module can act as a referee, issuing warning signals
for the deployed services, preventing erratic behaviour (e.g.
when a tool is sending over the limit service requests). In this
case, and if the appropriate behaviour actions are
implemented in the affected tool, the tool can change its
internal behaviour accordingly. A second example can be
found in a tool that has reduced utilization. In this case, and if
a redundant tool is present, the LCMM can advise the less
used tool to change into low profile mode or to, at the limit,
un-plug itself from the system, as seen in Fig. 5 (hexagonal
service).

At the ESB level, the information mined by the LCMM can
be used by the self-organization mechanism as the way to
internally (re)arrange structurally the ESB, by adding, modifying
or removing services (ellipse service in Fig. 5), or (re)arranging
the relations and constitution of clusters in an inter-ESB
perspective. This structural self-organization level allows the
dynamic clustering of ESBs, arranging themselves accordingly,
aiming a uniform service performance distribution where the
performance of each individual ESB is increased by the
decrease of individual service/tool overload and failure rate.

ESBA

ESBB

ESB <-> ESB

ESBA

ESBB

ESB <-> ESB

request

requestrequest

request Self-organization

New tool in ESBB

Less used tool
removed in ESBA

Fig. 5. Structural self-organization in a network of ESB clusters.

The aforementioned insights are drawn from the

ADACOR2 control architecture. In the proposed architecture,
the individual behaviour of the entities [12] are dynamically
changed, aiming a smooth evolution of the system, while a
more drastic evolution is achieved through the change of the
entities relations [13]. Similarly to what is achieved in the
ADACOR2 approach, by combining these two self-
organization levels, the LCMM module will enable the
achievement of a self-organized and evolvable ESB system,
once the overall system is able to adapt itself internally and
structurally to system demand fluctuations, internal services
disruption or to ESB node change.

Additionally, and also as indicated in the ADACOR2
control architecture, the LCMM must undergo with a
nervousness controller in order to avoid entering in a chaotic
process when taking decisions. This stabilization mechanism
will prevent intermittent service/tool stop or launch as also
the constant (re)arrangement of the ESB clustering.

V. IMPLEMENTATION AND OPERATION OF LCMM MODULE

The proposed LCMM was developed and deployed as a
JBoss ESB service, encapsulating its business logic into a set
of Java classes. JBoss ESB [14] is an ESB solution
maintained under the umbrella of JBoss Community [15] and
intends to provide an open source option for the construction
of systems based on SOA principles.

The main constitutive part of the LCMM service is a chain
of “Actions”. Basically, in the JBoss ESB framework, an
“Action” is a Java class that allows the ESB services to carry
out their tasks. These tasks are realized after the processing of
the data referring to the exchange of messages between the
registered services in the ESB. To accomplish that, it was
implemented a connection to the Sniffer’s database, which is
implemented using a MySQL database.

The user interface, supporting the visualization of the data
resulting from the processing operation of the LCMM
service, was developed as a web-based application that can be
accessed via web browser. This web-based application was
built on the Liferay Portal [16] [17] as a portlet. One of the
central pieces used to construct the portlet was the Highcharts
3.0 [18], which is a charting library written in HTML5 and
JavaScript, allowing, among others, to build dynamic charts.

The communication between the LCMM service and the

Liferay portlet is achieved by using the Java Message Service
(JMS). The JMS specification describes the exchange of
messages between Java programs, in particular for the use in
publish-subscribe solutions. Going into details, it is used a JMS
topic, allowing the delivery of messages to multiple subscribers.

Fig. 6 illustrates a screenshot showing the evolution of two
KPIs related to the evolution of two services, namely the
failure rate and the degradation.

Fig. 6. Screenshot of the LCMM user interface

As showed in the screenshot, the failure rate of Service 1

converges to 20% stabilizing around this value. Observing the
evolution of the failure rate curve of Service 2, it is possible
to verify that, between 16:31 and 16:32, the failure rate is
increased from 10% to 15%. In parallel (seeing the chart on
the right), it is possible to observe a degradation of the
response time of the Service 1 and Service 2 after 16:31,
which may be explained by a peak on the demand using the
bus. However, both services recover after a while as shown
by the negative values in the chart. The continuous
monitoring of these KPIs allows to detect these problems and
to trigger warnings for the implementation of proper actions
that will mitigate their negative impact.

VI. CONCLUSIONS

The use of ESB middleware allows to implement
distributed systems that integrate loosely-coupled heterogeneous
IT infra-structures. ESB provides several functionalities,
namely the monitor and control of the routing of messages
exchanged between software applications that expose their
functionalities using services. Related to the life-cycle
management of services, the ESB usually only provides basic
functions associated to the service registry and completely
misses advanced functionalities regarding e.g. data analytics.

This paper describes a service life-cycle management
module that is embedded in the traditional ESB to provide
advanced monitoring capabilities and data analytics to the
registered services, contributing to achieve more robust,
reliable and self-organized SOA-based systems.

The proposed module was implemented as a JBoss ESB
service, using Java, and the user interface was developed as a
web-based application built on the Liferay Portal. Several
functions were implemented allowing to monitor the health of
services according to pre-defined KPIs and also to detect
trend and patterns in the service performance. The
experimental implementation allowed a proof the concept and
the future work is related to the implementation of data
mining techniques supporting the data analytics, and also its
installation in real IT infra-structures.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
FP7 ARUM project, under grant agreement n° 314056.

REFERENCES
[1] Gartner Inc., “Predicts 2013: Application Integration”, 14 November,

2012.
[2] T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology,

and Design, Prentice-Hall, 2005.
[3] Gartner, Inc., “Predicts 2003: Enterprise Service Buses Emerge”, 9

December, 2002.
[4] B. Wang, X. Zhou, G. Yang, Y. Lou, “Service Lifecycle Management

in Distributed JBI Environment”, Web Information Systems and
Mining, Lecture Notes in Computer Science Volume 7529, pp 431-
438, 2012.

[5] ARUM - Adaptive Production Management, http://www.arum-
project.eu/ (accessed on 8th April 2014).

[6] U. Inden, N. Mehandjiev, L. Mönch, P. Vrba, “ Towards an Ontology
for Small Series Production”, Mařík, V., Martinez Lastra, J. L.,
Skobelev P. (eds): Industrial Applications of Holonic and Multi-Agent
Systems, Springer Verlag Berlin-Heidelberg, LNCS 8062, pp. 128-139,
2013.

[7] P. Vrba, P. Kadera, M. Myslík, M. Klíma, “JBoss ESB Sniffer -
Message Flow Visualization for Enterprise Service Bus”, Proceedings
of the IEEE International Symposium on Industrial Electronics
(ISIE’14), 2014.

[8] H. Witten, Eibe Frank, and Mark A. Hall, Data Mining: Practical
Machine Learning Tools and Techniques (3rd ed.), Morgan Kaufmann
Publishers, San Francisco, 2011.

[9] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman,
A.Y. Wu, “An Efficient k-means Clustering Algorithm: Analysis and
Implementation”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol.24, n.7, pp. 881-892, 2002.

[10] P. Leitão, “A Holonic Disturbance Management Architecture for
Flexible Manufacturing Systems”, International Journal of Production
Research, vol. 49, n.5, pp 1269-1284, 2011.

[11] A. Pereira, N. Rodrigues, J. Barbosa, P. Leitão, “Trust and Risk
Management Towards Resilient Large-scale Cyber-Physical Systems”,
Proceedings of the IEEE International Symposium on Industrial
Electronics (ISIE’13), May 28-31, Taipei, Taiwan, 2013.

[12] J. Barbosa, P. Leitão, E. Adam, D. Trentesaux, “Self-Organized
Holonic Multi-agent Manufacturing System: The Behavioural
Perspective”, Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics (SMC’13), pp.3829-3834, 2013.

[13] J. Barbosa, P. Leitão, E. Adam, D. Trentesaux, “Structural Self-
organized Holonic Multi-Agent Manufacturing Systems”, Industrial
Applications of Holonic and Multi-Agent Systems (HoloMAS’13),
Lecture Notes in Computer Science, vol. 8062, Springer pp. 59-70, 2013.

[14] L. DiMaggio, K. Conner, M.B. Kumar and T. Cunningham, “JBoss
ESB Beginner's Guide”, Packt Publishing, 2012.

[15] JBoss Community, https://www.jboss.org/ (accessed on 8th April 2014).
[16] P. Sarang, Practical Liferay: Java-based Portal Applications

Development, Apress, 2009.
[17] Liferay, http://www.liferay.com/ (accessed on 8th April 2014).
[18] Highcharts JS, http://www.highcharts.com/ (accessed on 8th April

2014).

	A. Event Monitoring Component
	B. Data Analysis Component

