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Abstract—Non-intrusive load monitoring (NILM) is an im- 4

portant topic in smart-grid and smart-home. Many energy
disaggregation algorithms have been proposed to detect viaus
individual appliances from one aggregated signal observain.
However, few works studied the energy disaggregation of ply
in electric vehicle (EV) charging in the residential enviramment
since EVs charging at home has emerged only recently. Recent
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studies showed that EV charging has a large impact on smart- % o el 20030000 300 1600 1200 1400
rid especially in summer. Therefore, EV charging monitorng has ' X '
g ) ’ (a) EV Power Signal (b) AC Power Signal

become a more important and urgent missing piece in energy

d!saggregation. In this.pape.r, we present a novel method to Fig. 1. (a) An EV power signal. (b) An AC power signal exhibii two
disaggregate EV charging signals from aggregated real powe inds of waveform patterns, i.e. spike trains and lumps.
signals. The proposed method can effectively mitigate inteerence

coming from air-conditioner (AC), enabling accurate EV chaging
detection and energy estimation under the presence of AC p@  charging. This monthly feedback information can help house
signals. Besides, the proposed algorithm requires no traing,  qgyners in bill-management and travel-managementin thesam

demands a light computational load, delivers high estimatin ; ; .
accuracy, and works well for data recorded at the low samplig \éviﬁy[s monthly gas bill and conventional monthly elecyicit

rate 1/60 Hz. When the algorithm is tested on real-world data
recorded from 11 houses over about a whole year (total 125 There are many algorithms available for the energy disag-
months Wprth of data), the .aver'aged error in estimating enegy gregation of various residential appliances [T]-[3], [AH],
consumption dOf EV charging is 15'7f kév\?/mr?nth_ (whﬂezgées such as hidden Markov model(HMM) algorithris [10], [11]
true averaged energy consumption o charging is . H . i L
; . However, these algorithms were not specifically d
!(WQ-/ month), and tEh\? ahvera}gedl nc()jrmahzeld_mgalng Square efror E?] EV charging, and thgy require extensivearaining gnc?;;ga
In disaggregatin cnarging load signals Is U.19. N ! N ) 3
goregating ) ] gng g ) . ) computational load. Therefore, for practical implemenotat

Keywords—Non-intrusive load monitoring (NILM); Electric  where simultaneously monitoring tens of thousands houses i

Vehide (EV); Smart Grid, Energy Disaggregation required, those algorithms may not be an attractive saiutio

. INTRODUCTION In this paper, a novel algorithm for energy disaggregation
. . o . . of EV charging is presented. It has several desired advastag
Non-intrusive load monitoring (NILM) or non-intrusive 1y it can mitigate the interference coming from air-coruier
apphan_ce load monitoring (NIALM) is an important solution AC) power signals. Thus, it could be very helpful for smart
to realize smart-grid and smart-home energy managemeyfiq joad analysis and management during peak load time in
benefits. It aims to estimate operation status and energy,mmer, (2) It does not require training, which is an highly
consumption of individual electronic appliances by monilg  ,¢ractive feature toward practical implementation. (Gylé-
aggregated current/voltage/power signals in the mainutirc man4s 4 light computational load, thus suitable for momigr
panel of a house or a building![1}{3]. tens of thousands residual houses in large scale. (4) Itsvork
Electric vehicle (EV) charging is becoming an importantwe" for data sampled at 1/60 Hz, which aligns with the data
load element for smart grid analysis| [4]-[6] although homeprovision capability of many smart-meters. Experimentscoa
charging EVs recently entered the market. Due to the growin@n real-world power data showed that it exhibits far better
number of the EV customers, a utility might start to expereen performance than state-of-the-art algorithms.
non-marginal impacts on parts of its distribution system.
Particularly, the gravity of this impact will depend on atath Il. CHALLENGES
time, for how long, with what utility rate, and in what season
these EVs are being charged [7]. Therefore, it is necessary ?ro
solicit the importance and urgency of monitoring EV chaggin
load via energy disaggregation.

One big challenge of disaggregating an EV charging load

m aggregated power signals is mitigating interferemoenf

AC. As shown in Fid.lL(a), an EV charging load signal can be

characterized as a square wave of a high amplitude (higher
Another usage of monitoring EV charging load is tothan 3 kW) and a long duration (longer than 30 minutes but

provide house owners the monthly energy consumption of E\enerally shorter than 200 minute$) [5]. AC power signals
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usually exhibit two kinds of waveform patterns. One pattern '
resembles aspike train with very short durations (e.g. the _ Aggregated Signal

train of waves from the 1st to 700-th minutes in Fig.1(b)). _< 10&

Another waveform pattern resembles a rectangular waveform “% z T ‘ ! ‘ ‘ [
of a high and slowly fluctuating amplitude and a long duration 200 400 ~ 600 800 1000 1200 1400
(e.g. the two lumps from the 700-th to 1200-th minutes in 6 ‘ _ Ground=Truth of AC

Fig(b)). This waveform pattern can seriously affect gisa
gregation performance of EV charging load signals due to
the difficulty of distinguishing the AC waveform pattern ifino 200 400 600 800 1000 1200 1400
EV charging load signals, especially in the presence ofrothe _ Ground~Truth of BV (12.0 kwh)
appliances’ power signals and highly fluctuating residuwésd@. r| ’_‘
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For notational convenience, this kind of AC waveforms will

be called aAC Iumps 200 200 600 800 1000 1200 1400
Estimated EV (12.7 kwh)

Another challenge lies with the aggregated data themselves %z
of being real power signals sampled at 1/60 Hz. At this =t W
sampling rate, many useful appliance signaturels [L5]-$ui¢h =0 200 400 600 800 1000 1200 1400

as transient characteristics available from high samplatigs Time Index (min.)
no longer exist, which limits pattern recognition tools émder

accurate disaggregation results. Fig. 2. Energy disaggregation by the proposed algorithinAteaggregated

. . signal of one day. (b) The ground-truth of AC. (c) The groundh of
The third challenge is the lack of ground-truth of EV gy (energy consumption is 12.0 kwh). (d) The estimated EV grosignal

charging load signals for each house and its large variatiofestimated energy consumption is 12.7 kwh). The energynetitn error
across different houses. To obtain the ground-truth of EMdefined in Sectiofi V) is5.8%, and the MSE i9.178.

charging load signals in a given house, it requires to ihstal

sub-meter sensors to record these signals. However, it is

unpractical to install such sub-meter sensors in every dous Signal After Thresholding in Step 1

Thus, when disaggregating EV charging load from aggregated ‘ ‘ ‘ | ‘
power signals in a given house, there is no training set, (i.e.
a collection of ground-truth of EV charging load signals in 200 400 600 800 1000 1200 1400
the house) available to train an algorithm. On the other,side | _ Ground-Truth of V.
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EV charging load signals have large variation across dffer 3% 101

houses. For example, EV charging load signals could have ~3 Z ‘ 1. 1. ‘ ‘

different amplitudes (although always higher than 3 kWj; di & 200 400 600 800 1000 1200 1400

ferent width (i.e., charging duration), and different apace < Result After Spike-Train Fiter ‘

time from house to house. As a result, an algorithm working ;< 1‘;: M mﬁ |

well for a given house may perform poorly for another house. ~ % , ‘ ‘ ‘ ‘ ‘ I,
o 200 400 600 800 1000 1200 1400

In summary, a practical algorithm should work well for Result After Using Large Fixed Value (20)

various houses and every season (especially the summdr), an _£ 1| ‘ ‘ ‘ L ‘ B
should not require training sets. But due to the above issues =2 3 ‘ M 0 ﬂ?\ e oy i
to achieve high disaggregation accuracy of EV charging load * 200 400 600 800 1000 1200 1400
is truly challenging Result After Using Large Fixed Value (90)
’ £ 10f ‘ ‘ ‘ ‘ L ‘
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This section will describe the proposed algorithm in detail Time Index (min.)

A one-day aggregated power signal (taken from the Pecan

Street Databasé [18]) is chosen for illustration purpose (s Fig. 3. Results after using the spike-train filter and theviilue thresholding

Fig D(a)) method. (a) The aggregated signal after thresholding ip $téb) The ground-

truth of EV power signal, which has two waves. (c) The resititrausing
our spike-train filter. (d) The result after thresholdingingsa small fixed
value (20). There were many short AC spikes unremoved. (e)rébult after
thresholding using a large fixed value (90). Note that the k¢ wave (from
ahe 510-th to 550-th minute) was also removed.

A. Step 1: Thresholding the Aggregated Signal

For a given aggregated signalt), first, a thresholdlj,y,
is applied to obtain a rough estimate of the EV charging loa
signal:
L0 (1) 2(t) > Thow " zggggﬁ:he locations of a start-point and an end-point df eac
= 0 2(t) < Tow
B. Step 2: Filtering the Spike-Train
where Tioy = max {2.5, spysar Sg, o()>2 (k) }, and P " P | -
|z(k) > 2| counts the number of sampling points whose am- Many AC spikes are present in the thresholding result

plitude is larger than 2 kW. After the initial thresholdingeeé  (Fig[3(a)), which need to be removed. One may consider
Fig[3(a)), the segments information oft) can be obtained setting a threshold to remove all spikes whose duration is



shorter than the threshold. However, it is not easy to find @&. Step 4: Classifying the Type of Each Segment
suitable duration threshold to remove all these spikes due t

the varying nature of an AC spike duration (see[Big.2(b)). At this point, there are only a few remaining segments

in the filtered aggregated signal. And every segment can be
Note that the duration of AC spikes gradually increasestlassified into one of three types.

from morning to later afternoon and gradually decreasas fro

later afternoon to midnight. Based on this observation, the Type 0: The segment belongs to a dryer/oven waveform,

following filter is designed to remove these spikes. or belongs to an EV waveform fully overlapping
S ) ) with a dryer/oven waveform which has almost the
Itfirst finds segments with duration shorter th&g.q = 20 same duration as the EV waveform. For the former
(minutes), which are called ‘seeds’ and labeled ssikes to case, the segment can be simply removed since it
remove. Then, from each ‘seed’, the filter searches the nearest is not an EV waveform. For the latter case, the
segmentforwardly, checking whether the segment’s duration segment should have very high amplitude since a
is shorter tharmD = (1 +7) D, and whether the gap between dryer/oven waveform has high amplitude like an
the ‘seed’ and the nearest segment is no more than,,, EV waveform (generally higher than 5 kW).
where D, is the duration of the current ‘seed’ andis a Type 1: The segment belongs to an EV waveform, or an
duration extension parameter£ 1.2 in our algorithm). If this AC lump, or an EV waveform overlapping with
search condition meets, this nearest segment will be ldizde waveforms of non-AC appliances with relatively
‘spikes to removeand will be set as a new ‘seed’. Now, using shorter durations, or an AC lump overlapping with
this new ‘seed’, the filter repeats the safioeward segment waveforms of other appliances. One can calculate
searching to the nearest segment, checking its condititimein the approximate width and height of the segment,
same prescribed manner. If the search condition is not met, decide whether it is an EV waveform, and then
then jump to another ‘seed’ and check its nearest segment reconstruct the EV waveform.
forwardly as before. Slmllarly, the filter Searcrm(:kwardly Type 2: The Segment be|ongs to an EV waveform over-
as well. In the end, after completing the whole search range, lapping with an AC waveform, which is probably
all segments labeled aspikes to removeare removed from also overlapping with other appliances’ wave-
z(t). forms. For example, the first two segments shown

in Fig[3(c) are respectively an EV waveform
overlapping with an AC spike train and an EV
waveform overlapping with an AC lump and a
dryer waveform.

To prevent from removing a segment with a very large
duration, one can adjust a threshdld,. such that all
removed segments have duration no more thgg... For the
proposed algorithm, it is set &pike = 90(minutes).

Note that the filter does not remowdl segments which To classify a given segmeni(t) after Step 3, the following
have duration no more thail,,.. It removes a segment cumulative counting function is calculated:
only if its duration does not increase sharply compared to
its surrounding segments’ duration. If a segment with a long fle) =(5(t) > ¢) (2)

duration is surrounded by very short segments, even if thi§nere is an amplitude threshold from 0 taax(S(t)), and
long segment has duration shorter thag, it will not be — he gperatorS(t) > ¢) counts the number of sampling points
_removed. The reason is that this segment could_ poten_ual% S(t) with an amplitude greater thanFor example, it: = 0
indicate a waveform of EV, dryer, or oven. So, it requireSihen f(c) is the total number of all nonzero samples in the
further examination. segment. Ifc = max(S(t)), then f(c) = 0.

Figld shows one example that the proposed spike-train \yhen calculating the gradient of the cumulative function

filter removed all AC spikes. While using a_fixed th_resholdlf(c)’ one can find that there are typoominentpeaks for Type
value to remove these AC spikes, several single spikes We seqments. This is because both an AC waveform and an EV

unremoved due to a small threshold (Eig.3(d)), or a part 0éaveform can be approximated as square waves, and a square
an EV power signal was removed mistakenly due to a largg,ave can result in sharp drop if(c) whenc is equal to the

threshold (Fid.B(e)). height of the square wave. Similarly, there is gmeminent
peak in the gradient off(¢) for Type 1 segments and no

C. Step 3: Removing Residual Noise prominentpeak for Type 0 segments. Thus, the number of

prominent peaks in the gradient of the function suggestshvhi

Residual noise refers to the mixture of errors from fluctu-type an observing segment belongs to.

ation of power signals, loss in power lines, and power sgnal
of appliances with a low amplitude. With location infornaati To find prominentpeaks, we search peaks with mutual dis-
of each segment obtained in Step 1, the amplitude of residughnce larger than 2 kW and peak height larger th&max(g)

noise can be estimated around each segment. For each segmaritereg is the gradient off. The Matlab commanéindpeaks
using the minimum value aV, points immediately before the can finish this task easily. If there is one peak, the segment
segment and the minimum value of, points immediately is classified as Type 1 (Fid.5). If there are at least two
after the segment, the amplitude of the local residual noispeaks, further calculate the area under the normalizedegrad
can be estimated by averaging the two minimum values. Th&unction g, £ g/ max(g). If the area is larger than 35% of
residual noise removal can be obtained by subtracting ththe square area with the same width and heighy,age.g.
segment by its associated local residual noise amplitutle. Ithe green square area in [Elg.4 and[Big.6), then the segment is
our algorithmN, = N, = 5. classified as Type 0 (FIg.4); otherwise, it is classified aseTy
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Fig. 4. Two typical segments of Type 0. (a) shows a dryer wéveshows
an EV wave completely overlapped by a dryer wave which hasstirae
duration as the EV wave. For each segment, the gradient @uitsulative
function (shown in the middle plot in (a) and (b)) does notveh@ominent
peaks (see the right plot in (a) and (b)).
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Fig. 5. Two typical segments of Type 1. (a) shows an EV wavelapped
by a dryer wave with short duration. (b) shows an EV wave cuirtated by
fluctuation of residual noise. For each segment, the gradieits cumulative
function shows one prominent peak (shown in the right plotainand (b)).
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Fig. 6. Two typical segments of Type 2. (a) shows an EV wavelapped
by an AC spike train, where the EV wave is the bottom part ofsbgment.
(b) shows an EV wave overlapped by an AC lump and a dryer waherev
the EV wave is in the top part of the segment. The two segmeattha first
two segments in Figl3(c). For each segment, the gradientsofumulative
function shows two prominent peaks (shown in the right pfota) and (b)).

2 (Fig[@). Examples of segments of Type 0, Type 1, and Type

2 are given in Fig}, Figl5, and Fig.6, respectively.

E. Step 5: Energy Disaggregation

Let us first introduce definitions of the effective width

and the effective height of a segment. Téféective widthis
defined as the width of a segment at bottom. Hifective
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Fig. 7. (a) Calculation of the effective width and heightrfr@a segment. (b)

Calculation of the actual height of sub-segments of the segrim (a). The
sub-segments are obtained by thresholding the segmentiyitih = 6(kw).

becomes only 80% of the bottom width. [Fig.7(a) illustratess t
calculation of the effective height and width.

If a segment belongs tdype 0, then we first determine
its effective height. If its effective height is smaller th&.5
kW, this segment is classified as a wave of dryer/oven (e.g.
Figl4(a)). If larger than 5.5 kW, the segment is classifiec as
fully overlapping waveform of an EV and a dryer/oven (e.g.
Fig[4(b)). For the latter case, it is impossible to accuyate
estimate EV waveform’s height. However, considering tha fa
that an EV waveform has constant and very stable amplitude
from day to day, the EV waveform height can be assigned with
a height estimate at another time of the same day or another
day. Thus an EV square wave is reconstructed using the height
and the calculated effective width.

If a segment belongs tdype 1, the effective height and
width can be simply calculated, and then its square waveform
can be reconstructed accordingly. However, if the width is
very large, e.g. larger than 250 (minutes), the segmenthaill
removed since an EV waveform generally exhibits a constant
amplitude for no more than 2-3 houfs [5]. More likely, these
long waveforms could be AC lumps (see Elg.2(b)) or other
appliances’ waveforms. Besides, if a candidate waveform ha
an effective height lower than 3 kw or is surrounded by a
number of AC spikes, then it is treated as an AC lump as
well.

If a segment belongs tdype 2, this segment can be
considered to include both an EV waveform and an AC
waveform (see the definition of Type 2 Segments). Thus it
needs to be determined whether an EV waveform occupies the
top part or the bottom part of the segment. For the illugirati
see Fid.b. In order to identify and separate two overlapped
waveforms, first an additional threshdld;., will be used to
obtain the sub-segment information of the top part. For the
proposed algorithmilyign = Tiow + 2.5(kW) is set. Similar to
Step 1, using this threshold a number of sub-segments in the
top part can be obtained as shown in [Hig.7(b).

Next, the effective width of the segment is calculated. & th
width is larger than 250 (minutes), then the bottom part isemo
likely to be an AC lump due to the EV duration characteristic
mentioned before. Thus, EV waveforms belong to the top part.
Subsequently, the effective width and thetual height] of

1The actual heightof a sub-segment is calculated as the effective height of
the sub-segment subtracted by the effective height of thecated segment.

heightis defined as the height at which the segment’s widthsee Fidgy(b) for illustration.



each sub-segment (with duration longer than 20 minutes) are The eleven houses are listed in Tafle |. Note that some
calculated to reconstruct an EV square waveform. houses have wrong ground-truth of EV power signals or bad
. . . recordings of aggregated signals in some months. Thus we
If the width is less than 250 (minutes), then the Sub-omqye the data of these monflisThe remained data have
segments are analyzed. The proposed spike-train filtereid us

. total 125 months. The sampling rate is 1/60 Hz.
to remove the sub-segments. As a result, the following two

cases are considered. (1) If the filter can remove all sub- Since the HMM algorithm requires training, for each house
segments, then the top part is an AC spike train, while théts ground-truth power signals of EV and AC of two weeks
bottom part is an EV waveforrl. We can calculate the were used as the training set. Note that our proposed digorit

effective height and width of the bottom part to reconstructdoes not need this training period.

the EV waveform. (2) If the spike-train filter cannot remove Th f ind d. Oneis th d
all sub-segments, then each remained sub-segment needs t ree periormance indexes were used. One is the average

be analyzed one by one. Thetual heightof each remained estimation error of monthly energy consumption, defined as

sub-segment and the effective height of the segment need 1 |Ei’j _ R

to be calculated. Whichever (sub-segment’s actual height o Errl = N Z “uelije“ x 100% 3)
the segment’s effective height) is closer to an estimated EV P Eite

height at another time of non-overlapping observation,iit w . .

be identified as an EV waveforfh where E;’_ is energy consumption of the ground-truth EV

power signal in thej-th month of thei-th year, andE"]
is energy consumption of the estimated EV power signal in
the same month, andv is the total month number in the

Admittedly, the proposed algorithm uses a number ofc@lculation.
default values such as the amplitude and width of EV charging A related performance index is the averaged estimation

load signals. However, it is worthy emphasizing that the?’%rror of monthly energy consumption in kwh, defined as
default values are based on general knowledge of EV charging

load characteristics, and do not rely on a specific type of 1 ij i
Err2 = Z ZJ: |E, E,

F. Remarks

EV. For example, although the amplitude of EV charging true — Fest| - (kwh) “)

load signals is changing from house to house, the amplitude
is always larger than 3 kW. The proposed algorithm utilizes
the amplitude range information, but not any exact ampétud
number.

The third performance index is the averaged normalized
mean square error (MSE) in estimating EV charging load
signals, defined as

In the next section the proposed algorithm will be applied i iiva
to a number of houses with robust performance across ditfere MSE — 1 Z Z (Xire - Xeit) (5)
houses and different seasons. This indicates the defdukts/a N &~ & (X2 o)?
used in the algorithm do not affect practical use. !

where X7 is the ground-truth EV charging load signal in

IV. EXPERIMENTAL RESULTS thEJ-th month of thei-th year, andX;;i is the estimated EV

) _ charging load signal in the same month.
An experiment was carried out to test performance of our

proposed algorithnfl. For comparison, the HMM algorithm  The results are presented in Talle I, which shows that
proposed in[[10] was used. the proposed algorithm significantly outperforms the HMM

algorithm. For the proposed algorithm, the averaged etitma

The data came from the Pecan Street Database [18rror of monthly energy consumption is only 7.5%. Or put in
which collects raw power signals recorded from hundreds o&nother way, the error is only 15.7 kwh/month in average.
residual houses in Austin, Texas. Eleven houses using E¥ weln this experiment, the averaged monthly energy consumptio
randomly chosen from the database. Each house data contaifi EV charging load is 208.5 kwh/month, and the averaged
aggregated power signals of about one year. Each aggregatemnthly total energy consumption of a house is 1109.9
power signal is generally a combination of about twenty powe kwh/month. Therefore, the estimation error of the proposed
signals of various appliances, such as EV, AC, furnace,rdryealgorithm is well acceptable.

oven, range, dishwasher, cloth-washer, refrigeraton,oniave, ) . o )
bedroom-lighting, and bathroom-lighting. The groundtiru Using the average US electricity price in 2013][19], i.e.

power signals of these appliances are also available in the0-117/kwh, the difference between the estimated monthly

database. Thus the database is very suitable to test algstit ©€nergy consumption and the ground-truth is only $1.83/mont
performance in practice. which is a small error, since the monthly energy consumption

of EV charging is $24.39/month in average and the monthly
2The bottom part cannot be an AC lump since an AC lump and an ACtOtaI energy consumption of a house is $129.86/month in

spike train cannot be overlapped. average.
30f course, this cannot ensure the correct location of the Eveform,
considering errors in estimating the effective height ahe actual height. 5The removed data are: House 545 in June 2013, House 1782yirtalul

However, in most cases, an EV waveform with satisfactoryuamy can be  September of 2012 and June to July of 2013, House 1801 in dudelyt of

reconstructed since an EV waveform height is generallyirgnfom 3 kW 2013, House 3036 in September to October of 2012 and Junéytofl2013,

to 4 kW while the height of an AC lump is generally smaller tH&akW. House 3367 in June of 2013, House 7863 in June of 2013, andeHRGR9
4Matlab codes are available|at https://sites.google.dtefsearchbyzhang/nilin June of 2013.


https://sites.google.com/site/researchbyzhang/nilm

TABLE I.

PERFORMANCE COMPARISON OF OUR PROPOSED ALGORITHM AND THEMM ALGORITHM IN . THE LAST ROW OF THE TABLE GIVES

THE PERFORMANCE(MEAN 4 STANDARD VARIANCE) AVERAGED OVER ALL MONTHS AND ALL HOUSES.

House Month Range Errl (new) Err2 (new) MSE (new) Errl Err2 MSE
370 2012-10 to 2013-09 8.0% 11.7 (kwh) 0.31 135.5% 192.2 (kwh) 1.51
545 2012-09 to 2013-09 5.6% 10.8 (kwh) 0.13 89.1% 156.8 (kwh) 1.06
1782 2012-05 to 2013-09 7.0% 13.9 (kwh) 0.17 28.8% 79.3 (kwh) 0.42
1801 2012-07 to 2013-08 11.7% 24.5 (kwh) 0.29 76.2% 156.5 (kwh) 0.96
2335 2012-06 to 2013-05 9.6% 20.3 (kwh) 0.30 26.0% 58.0 (kwh) 0.47
3036 2012-08 to 2013-09 5.9% 20.3 (kwh) 0.12 3.9% 12.9 (kwh) 0.17
3367 2012-11 to 2013-10 5.9% 9.9 (kwh) 0.16 47.6% 81.3 (kwh) 0.63
6139 2012-10 to 2012-05 10.1% 20.9 (kwh) 0.05 2.5% 5.0 (kwh) 0.09
7863 2012-09 to 2013-09 9.2% 21.1 (kwh) 0.08 101.2% 236.0 (kwh) 1.02
8669 2012-09 to 2013-08 3.1% 8.6 (kwh) 0.15 26.7% 78.4 (kwh) 0.30
9934 2012-10 to 2013-10 7.0% 12.3 (kwh) 0.27 38.8% 73.1 (kwh) 0.46
Total | 125 months | 7.5% & 6.2% | 15.7 + 13.3(kwh) | 0.19F 0.15 | 55.6%F 86.9% | 107.4F 163.5 (kwh) | 0.68+ 0.97

TABLE II. PERFORMANCE(MEAN £ STANDARD VARIANCE) OF THE
PROPOSED ALGORITHM AND THEHMM ALGORITHM IN AVERAGED
OVER ALL HOUSES AND THE SUMMER MONTHS(JUNE, JULY, AUGUST,
AND SEPTEMBER).

Errl Er2 MSE
New Algorithm | 7.4% L 6.6 % 16.1L 15.7(kwh) | 0.28 L 0.19
HMM [L0] 152.7%=L 114.4% | 291.5L 2135 (kwhy | 1.81 & 1.21

In contrast, for the HMM algorithm, the averaged esti-
mation error of monthly energy consumption is 55.6%, or
$12.56/month.

In fact, the poor performance of the HMM algorithm is
mainly due to the estimation error in summer, when AC
becomes the strongest interference. To clearly see thide Ta
M shows the performance averaged over all houses and the
four summer months, namely June to September. From the
results, one can see the HMM algorithm does not provide
any meaningful estimation for these four months; the awstag
estimation error of monthly energy consumption of EV charg-
ing is 152.7%, or $34.11/month, and the averaged normalized
MSE is 1.81. (A meaningful disaggregation result shouldehav
normalized MSE much smaller than 1.)

Fig. 8.
algorithm and the HMM algorithm in_[10]. From top to down, theare an

Aggregated Signal in One Day
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One example showing the estimation performance ofpooposed

FigIE shows an example of the estimated EV Chargir’]\%ggregated power signal of one day, the ground-truth of A@epaignal, the

load signals by the two algorithms. One can see the HM

round-truth of EV charging load signal, the estimated E¥rging load signal
y our proposed algorithm (in red color), and the estimate@dckarging load

algorithm treats some AC lumps as parts of the EV signal, anélignal by the HMM algorithm. It is seen that the HMM algorittireats some
thus makes large errors. In contrast, the proposed algorith AC lumps as parts of the EV charging load signal. In contrtie, proposed
correctly identifies and disaggregates the EV charging loag9°'ithm correctly disaggregates the EV signal.

signals from the aggregated signals.

V. CONCLUSIONS 3]
In this paper, a new algorithm was proposed for non-

intrusive energy disaggregation of electric vehicle chrayg 4]
given a real aggregated power signal. The new algorithm does
not require training, demands a light computational loadi a 5]
renders a high energy estimation accuracy. These adva;ntagé
were illustrated by experiments on the real world data with a
low sampling rate (1/60 Hz) delivering superior performanc
even under the presence of air-conditioners. [6]
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