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Abstract — This paper presents an eigenvalue-based harmonic 

stability analysis method for inverter-fed power systems. A full-

order small-signal model for a droop-controlled Distributed 

Generation (DG) inverter is built first, including the time delay of 

digital control system, inner current and voltage control loops, 

and outer droop-based power control loop. Based on the inverter 

model, an overall small-signal model of a two-inverter-fed system 

is then established, and the eigenvalue-based stability analysis is 

subsequently performed to assess the influence of controller 

parameters on the harmonic resonance and instability in the 

power system. Eigenvalues associated with time delay of inverter 

and inner controller parameters is obtained, which shows the 

time delay has an important effect on harmonic instability of 

inverter-fed power systems. Simulation results are given for 

validating the proposed harmonic stability analysis method.  

    Keywords—Harmonic Stability; Eigenvalue; Time Delay; Small 

Signal model; Inverter-Interfaced Power System 

I. INTRODUCTION 

   The proportion of renewable energy in power systems has 
been increasing in recent years [1].  Inverter-fed power systems 
are playing a significant role in modern electric grid [2]. 
Various forms of distributed generators such as wind farm [3], 
PV plant [4], and microgrids [5] are interfaced to power grid by 
power converters. These small scale power systems can 
provide reliability and sustainability for electricity services [6]-
[7]. 

    One of the important concerns in inverter-fed power systems 
is stability issue. A large number of previous stability studies 
focus on low-frequency oscillations resulting from droop-based 
power controller [7], constant power load [8] as well as phase-
locked loop (PLL) [9]. In addition to low frequency stability, 
harmonic frequency oscillations have recently been reported in 
[10]-[11]. The harmonic instability phenomena result from 
interaction among voltage, current loops of converter, and 
passive components [6], where oscillations happen from 
hundreds of hertz to several kilohertz. This harmonic-
frequency oscillation would propagate into the whole power 
system and worsen system power quality [6], [11].  

     Hence, it is necessary to develop modeling and analysis 
method for the harmonic stability phenomena. A common tool 
for assessing small signal stability is to linearize system models 
in operating point and form state space models. Then, stability 
could be investigated by means of analyzing eigenvalues in 

state matrix. The small signal model of a multi-bus islanded 
microgrid considering network voltages response were 
developed in [5], where the voltage control input is embedded 
and integrated to the small signal model. A small signal model 
of inverter-interfaced microgrid was built in [7], where the 
oscillatory modes and mode shapes based on eigenvalues and 
eigenvectors are identified. Small signal stability for islanded 
microgrids with active loads is investigated in [8], where the 
influence of voltage controller on system stability is studied. 
However, harmonic-frequency stability was not analyzed yet in 
aforementioned references.  

   To deal with harmonic stability issue, an impedance-based 
analytical approach was developed for an inverter-interfaced 
power system including multiple current- and voltage-
controlled inverters with LCL- and LC-filters [6]. The 
impedance-based approaches were introduced in [12], which is 
able to assess locally system stability based on the ratio of the 
output impedance of the component or the equivalent system 
impedance [12]. However, it is difficult to reveal harmonic-
frequency damping characteristic for the impedance-based 
approach.  

The aim of this paper is to assess harmonic instability of the 
system. The eigenvalue analysis is performed based on small 
signal model of inverters considering time delay of inverter. 
The main contributions of this paper are: (1) Time delay of 
inverter is modeled by pade approximation; (2) The effect of 
inverter time delay and inner controller parameters on 
harmonic instability is analyzed.  

II. SMALL SIGNAL MODELLING OF INVERTER-FED POWER 

SYSTEMS 

This section first describes an inverter-fed power system 

configuration in this study. And small signal model of single 

DG unit is built, including current loop, voltage loop, power 

loop and time delay of inverter. Moreover, the overall small 

signal model of the system is established. 

A. System Description 

Fig. 1 shows the exemplified three-phase inverter-interfaced 

power system, where two voltage-controlled inverters are 

connected to network with three load buses. This work focuses 

on the harmonic instability caused by the dynamic interactions 

of inner control loops.  



 

Fig. 1 The studied system configuration 

 

Fig. 2 DG unit block diagram with multi-loop control approach.  

B. Small Signal Modelling of DG Unit 

   The previous small signal model have been intensively 

reported in [1],[3],[9], where inner current controller, voltage 

controller, power controller and loads are modeled in details. 

However, time delay of inverter is commonly ignored. A small 

signal model considering time delay of inverter will be 

established in this section. Fig. 2 shows the components of DG 

unit, which is composed of inverter time delay, voltage 

controller, current controller, power controller, LC filter and 

coupling inductance.  

1) Time Delay of Inverter 

   Time delay of inverter is ignored assuming inverter produces 

ideal demanded voltage in previous work. Time delay depicts 

the influence of the digital computation delay and pulse width 

modulation (PWM) delay [13]. In fact, time delay of inverter 

maybe has an important influence on harmonic-frequency 

stability [5], which can be modelled as (1) 
*

i

s

i vev                                    (1) 

,where *

iv  and 
iv are demanded voltage and inverter output 

voltage, respectively. 
sT5.1 is delay time resulting from 

digital computation delay (Ts) and the pulse width modulation 

(PWM) delay (0.5 Ts) [13], Ts is inverter sampling period.  

   To assess the influence of inverter delay, Pade 

approximation is employed to equivalent time delay of 

inverter. Pade approximation is a technique approximating 

delay plant, where the exponential term can be approximated 

as transfer function form (2).  
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    Pade approximation (2) could be converted into state space 

form (3) 
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l  and k are the order of pade approximation. In this work, 

the order is chosen as 3 kl . Mathematical computation 

for pade approximation could be implemented in MATLAB. 

dix  is inverter delay states. Eigenvalues of the state matrix 

Ad in (3) indicates harmonic-frequency dynamic associated 

with time delay. The influence from time delay on eigenvalue 

trace will be shown and discussed later.    

   The small signal model of time delay will be integrated to 

the overall small signal model.   

2) Voltage Controller and Current Controller 

In this work, voltage and current control loops are 

performed by classical PI controllers [7]. The modeling 

procedure of DG unit can be referred in [7]. Fig. 3 shows the 

block diagram of voltage controller and current controller 

respectively.  

The state equations and output equations of voltage 

controller can be represented according to control diagram 

shown in Fig. 3(a) as (4) - (6): 

ododd vv 


* ,     
oqoqq vv 


*                   (4) 

divododpvoqfld KvvKvCi   )( **                (5) 

qivoqoqpvodflq KvvKvCi   )( **              (6)     

   State space form of voltage controller can be represented by 

linearizing (4)-(6) as (7) and (8): 
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Fig. 4 The power controller of DG unit.  

    As shown in Fig. 3(b), the state equations and output 

equations of current controller can be represented as (9)-(11)  

ldldd ii 
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
*                          (9) 

dicldldpclqfid KiiKiLv   )( **                (10) 

qiclqlqpcldfiq KiiKiLv   )( **                (11) 

   State space form of current controller can be represented by 

linearizing (9)-(11) as (12) and (13): 
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    (a) 

    
   (b) 

Fig. 3 The block diagram of double loop controller. (a)  Voltage controller. (b) 

Current controller.  

3) Power Controller 

 Power controller is responsible for perform power control 

among paralleled DG units. Droop control strategy is an 

attractive method to implement power sharing without 

communication devices. As shown in Fig. 4, the power 

controller is composed of power calculation block, filter and 

droop controller. The instantaneous active and reactive power 

can be computed by power calculation block. The average 

power is obtained from instantaneous power passing low pass 

filter.  To share the active and reactive power among 

paralleled inverters, artificial frequency and voltage droop is 

introduced to perform power sharing according to droop 

characteristic. 
odqiV  and 

odqii are output voltage and current of 

ith DG unit on individual frame (d-q). 
ip  and 

iq are 

instantaneous active and reactive power. 
iP  and 

iQ are average 

active and reactive power. 
c is cut-off frequency of low-pass 

filter. 
pim ,

qin are droop coefficients of ith DG unit. Small 

signal modeling of the power controller could be seen in [2], 

[5] and [7].  

(4) LC filters and coupling inductance 

Small signal model of LC filter can be represented on dq 

frame by following state equations according to Fig. 2.  
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Small signal state equations of LC filter and coupling 

inductance could be represented by combining and linearizing 

(14)-(19) as (20) 
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Then, a complete small signal model of an individual 

inverter are founded by combining small signal models of the 

current controller, voltage controller, power controller, 

inverter delay, LC filter and coupling inductance as (21).  

comcombDQiinviinvi BvBxAx 


11
            (21) 
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C. Small Signal Modeling of Overall System 

   To formulate small signal model of overall system shown in 

Fig. 1, the linearized equations of line currents and load 

currents should be built on the common reference frame (D-Q), 

which can be referred in [5] and [7].  

    Finally, the overall small signal model combining DG units, 

network, loads can be obtained as (22) 

xAx 


                                  (22) 

    x  is the overall microgrid state vector. A is system state 

matrix.  3212121 ,,,,, loadloadloadlinelineinvinv iiiiixxx  .  

III. EIGENVALUE-BASED ANALYSIS FOR HARMONIC STABILITY 

    Eigenvalue analysis is a general method to investigate linear 

system stability, which is able to reveal different frequency 

components and their damping in the system. To analyze 

harmonic instability phenomenon, the eigenvalue traces of 

system state matrix are computed to assess harmonic-

frequency characteristic when parameters vary.  

A. Harmonic Stability Analysis for Single Inverter 

                -1500 -1000 -500 0 500 1000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

4

 
Fig. 5 Eigenvalue trajectory of high frequency modes as a function of the 

proportional gain of voltage controller (0.01<Kpv<0.09) 
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Fig. 6 Eigenvalue trajectory of high frequency modes as a function of the 

proportional gain of current controller (0.4<Kpc<12) 

     Fig. 5 depicts the eigenvalue trajectory of single inverter 

model with loads, where high frequency modes as a function 

of the proportional gain of voltage controller are shown. It can 

be seen that two conjugate pairs move towards right-half plane 

(unstable region) as increase of Kpv from 0.01 to 0.09. The 

system would be critical stable when Kpv is equal to 0.06.  

     Fig. 6 shows the eigenvalue trace of high frequency modes 

as a function of the proportional gain of current controller. It 

can be seen that the two conjugate pairs move towards right-

half plane as decrease of Kpc from 6 to 0.4. Also, the two 

conjugate pairs move towards right-half plane as increase of 

Kpc from 6 to 12. The analysis results show that harmonic-

frequency instability will happen if the proportional parameter 

is lower than 1.2 or higher than 9.6. 

B. Harmonic Stability Analysis for Paralleled Inverter 
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Fig. 7 Eigenvalue trajectory of high frequency modes as a function of the 

proportional gain of voltage controller (0<Kpv<0.07) 

Fig. 7 shows that the eigenvalue traces of small signal 

model (22) as increase of voltage controller proportional gain. 

It can be seen that four complex-conjugate pairs dominate 

harmonic frequency eigenvalues. These eigenvalues are highly 

sensitive to the proportional gain of voltage controller, where 

the modes represent dynamics of harmonic frequency range. 

Eigenvalues analysis shows that the modes move towards 

right-half plane (unstable region) as Kpv increases.  

Fig. 8 shows eigenvalue trace of high frequency modes 

when the proportional gain of current controller is range from 

2 to 12, where the high frequency modes move toward right-

half plane as Kpc increases. The system would be instability 

eventually if Kpc is larger than 10.  
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Fig. 8 Eigenvalue trajectory of high frequency modes as a function of the 

proportional gain of current controller (2<Kpc<12) 

IV. SIMULATION VERIFICATION 

   To validate the proposed eigenvalue-based harmonic 

stability method, the simulations are performed in 

MATLAB/SIMULINK. The test system parameters are given 

in Table I.  

Kpv=0.06 Kpv=0.06 Kpv=0.06 

Kpv=0.06 

Kpc=1.2 

Kpc=9.6 

Kpv=0.05 

Kpv=0.04 

Kpc=10 



Table I Test System Parameters 
Parameters Value Parameters Value 

Lf1/Lf2 1.5mH/1.5mH LLine1/RLine1 2mH/0.2Ω 

Cf1/Cf2 25µF/25µF LLine2/RLine2 2mH/0.2Ω 

Lc1/Lc2 1.8mH/1.8mH mp1/mp2 2.5e-5/1e-4 

Ts 100us nq1/nq2 1e-3/1e-3 

LLoad1/RLoad1 155mH/64.5Ω LLoad2/RLoad2 156mH/64Ω 

LLoad3/RLoad3 245mH/80Ω   

A. Simulation Verification for Single Inverter 
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                              (a)                                                              (b) 

Fig. 9 Simulation results in unstable case. (a) Simulated output current. (b) 

Simulated output voltage when the proportional gain of voltage controller 

(Kpv) is 0.074.  
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                               (a)                                                           (b)  

Fig. 10 Simulation results in stable case. (a) Simulated output current. (b) 

Simulation output voltage after decreasing proportional gain of voltage 

controller (Kpv=0.05) 
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    (a)                                                                (b) 

Fig. 11 Simulation results in unstable case. (a) Simulated output voltage 

(Kpc=0.97). (b) Simulated output voltage (Kpc=12). 

Fig. 9 shows that the simulated results for single inverter in 

unstable case when the proportional gain of voltage controller 

(Kpv) increase. It can be seen that output voltage will be 

unstable once the proportional gain is beyond 0.06. In contrast, 

the output current and output voltage would be stable after 

reducing the proportional gain of voltage controller (Kpv=0.05) 

as shown in Fig. 10. The analysis results obtained from Fig. 5 

agree with the simulation results. 

Fig. 11 depicts that the simulation results for single inverter 

in unstable case when the proportional gain of voltage 

controller (Kpc) is 0.97 or 12. It can be seen that the output 

voltage would be unstable if the proportional parameter is in 

the unstable region as shown in Fig. 6. As depicted in Fig. 12, 

the output voltage would be stable when the proportional gain 

range from 1.2 to 9.6. The simulation results almost agree with 

the analysis results depicted in Fig.5. 
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Fig. 12 Simulated output voltage in stable case (Kpc=9) 

B. Simulation Verification for Paralleled Inverter 

   Fig. 13 shows that the simulated results for paralleled 

inverters in unstable case when the proportional gains (Kpv) 

of voltage controller vary. The output current of DG units and 

network voltages are depicted in Fig. 13(a)-(b) and Fig. 13(c)-

(d), respectively. It can be seen that harmonic-frequency 

oscillation happens when the proportional gains (Kpv) of 

voltage controller are set as 0.053.  
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 (c)                                                  (d) 

Fig. 13 Simulated results in unstable case when proportional gains of voltage 

controller (Kpv) is beyond 0.05. (a) DG1 output current. (b) DG2 output 

current. (c) Bus1 voltage. (d) Bus2 voltage.  

Fig. 14 depicts that the simulated results in unstable case 

when the proportional gains (Kpc) of current controller. The 

output current of DG units and network voltages are depicted 

in Fig. 14(a)-(b) and Fig. 14(c)-(d), respectively. It can be seen 

that harmonic-frequency oscillation still happens when the 

proportional gains (Kpc) of current controller are set as 12. On 

the contrary, the output current of DG units and network 



voltages are stablized shown in Fig. 15(a)-(b) and Fig. 15(c)-

(d) after decreasing the proportional gains of controllers 

(Kpv=0.035, Kpc=9). The simulation results, together with 

analysis results shown in Fig. 7 and Fig. 8, indicate that 

harmonic oscillation happens as the proportional gains of 

voltage loop and current loop vary. 
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Fig. 14 Simulated results in unstable case when the proportional gain of 

current controller (Kpc) is in unstable region. (a) DG1 output current. (b) DG2 

output current. (c) Bus1 voltage. (d) Bus2 voltage.  
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Fig. 15 Simulated results in stable case when the proportional gain of voltage 

controller (Kpv) is in stable region. (a) DG1 output current. (b) DG2 output 

current. (c) Bus1 voltage. (d) Bus2 voltage. 

CONCLUSIONS 

   This paper addresses a modeling and analysis method for 

harmonic stability in inverter-interfaced power systems. An 

eigenvalue-based analysis method is proposed to assess 

harmonic instability. First, the small signal model of DG unit 

including current controller, voltage controller, power 

controller and inverter delay is built. And the overall small 

signal model combining DG units, network and loads is 

developed. Finally, an eigenvalue-based approach is proposed 

to assess harmonic stability, where the influence of controller 

parameters on harmonic stability can be assessed through 

eigenvalue trace diagram. The analytical results show that the 

proportional gains of inner current controller and voltage 

controller have an essential effect on harmonic instability in 

inverter-interfaced power systems. Simulation results are 

given for validating the proposed harmonic stability analysis 

method. 
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