
 

 

AUTOMOTIVE LEAD-ACID BATTERY  

STATE-OF-HEALTH MONITORING SYSTEM 

 

Ross Kerley 

 

 

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in 

partial fulfillment of the requirements for the degree of  

Master of Science  

In 

Electrical Engineering 

 

 

 

 

 

 

Chair: Dong S. Ha 

Kwan-Jin Koh 

Qiang Li 

 

July 30, 2014 

Blacksburg, Virginia 

 

Keywords: Lead Acid Battery, State of Charge, State of Health 

 

 

 

 

 

 

 

©2014 Ross Kerley 

  



 

 

Automotive Lead-Acid Battery State-of-Health Monitoring System 

Ross Kerley 

ABSTRACT 

This thesis describes the development of a system to continuously monitor the battery in a car 

and warn the user of an upcoming battery failure. An automotive battery endures enormous 

strain when it starts the engine, and when it supplies loads without the engine running. Note that 

the current during a cranking event often exceeds 500 Amperes. Despite the strains, a car battery 

still typically lasts 4-6 years before requiring replacement. There is often no warning of when a 

battery should be replaced and there is never a good time for a battery failure.  

All currently available lead-acid battery monitoring systems use voltage and current sensing to 

monitor battery impedance and estimate battery health. However, such a system is costly due to 

the current sensor and typically requires an expert to operate the system. This thesis describes a 

prototype system to monitor battery state of health and provide advance warning of an upcoming 

battery failure using only voltage sensing. The prototype measures the voltage during a cranking 

event and determines if the battery is healthy or not. The voltage of an unhealthy battery will 

drop lower than a healthy one, and it will not recover as quickly.  

The major contributions of the proposed research to the field are an algorithm to predict 

automotive battery state-of-health that is temperature-dependent and a prototype implementation 

of the algorithm on an ARM processor development board.  
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1 INTRODUCTION 

This thesis explores existing methods of automobile starting, lighting, and ignition (SLI) battery 

state of health (SOH) estimation. Additionally, it presents and tests a novel technique to estimate 

SOH. SLI batteries wear out after several years, but there is never a convenient time for them to 

expire. No advance warning is available in modern cars for an impending battery failure. SLI 

battery SOH monitoring would warn the driver that their battery has little life remaining, and that 

they should have their battery tested by a professional or replaced.  

The strain applied to car batteries is increasing every year. Electrical loads in vehicles, such as 

entertainment systems and active suspension can require significant amounts of power that must 

be instantaneously supplied by the battery. As our cars become more advanced, these loads 

increase. Additionally, numerous cars that turn off the engine automatically instead of idling 

when stopped, such as at a red light, are coming to market. These are referred to as ‘micro-

hybrid’ or ‘stop-start’ vehicles. This technology requires that the battery sustains all electrical 

loads frequently when the alternator is not supplying power, and it increases the frequency of 

engine starting. Starting the engine is still the most strenuous role for a car battery. During the 

cranking event, currents are on the order of several hundred amperes, greater than 1 kA for some 

vehicles [1]. 

Lead acid batteries are common and are used in automobiles for starting the engine and for 

running the lights and various electronics. They are also used in some electric vehicles such as 

golf carts and boats. In addition to mobile applications, they are used in battery backup systems 

for security systems, computers, and telephones. Additionally they are also found in alternative 



2 

 

energy systems for off-grid applications. Lead acid batteries are so prevalent because they use 

cheap and common materials and are easy to produce and recycle [2]. 

Lead acid batteries are a chemical system that stores energy. Discharging the battery converts the 

stored chemical energy into electrical energy that can be used to perform work. Two electrodes, 

Pb (Lead) and PbO2 (Lead Oxide) are submerged in a solution of H2SO4 (Sulfuric Acid). PbSO4 

(Lead Sulfate) forms on both electrodes when discharging. When charging, lead sulfate is 

reduced to lead and lead oxide. This reaction is shown in (1) and Figure 1. The sulfuric acid 

solution is most concentrated when the battery is fully charged [2]. 

 
                           

      Charged                     Discharged 
(1) 

 

 
 

Figure 1: Simplified Chemical Reactions in a Lead Acid Battery 

The cranking ability, or maximum discharging current of a battery, is directly proportional to the 

area of the lead plates, or electrodes, inside the battery. To maximize this current, which is 

needed to start a car, battery designs use gridded electrodes and thin electrodes in parallel. 

Batteries that require a high capacity generally have thicker plates to give more capacity. To 
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compensate for the reduced capacity due to the parallel thin plates, car starter batteries frequently 

have higher concentration acid solutions [1]. 

Electrical models of batteries have a wide range of complexity.  The least complex models are 

merely an ideal voltage source, while the most complex consist of voltage sources and dozens of 

complex impedances. When simulating and predicting battery performance, the most simple 

model should be used to reduce complexity, but a minimum amount of accuracy is needed. For 

many purposes, a Thevenin-discharge model can be used. This model is shown in Figure 2. It 

requires four parameters: Ep, Rp, C, and Ro [3]. These parameters vary with the state of charge 

(SOC) of the battery, and also with the SOH. This model is quite simple, but for this work an 

even less sophisticated model is appropriate [3].  

 
Figure 2:Thevenin-discharge battery model [3]. 

Grube presented that the impedance of a healthy battery during cranking is almost purely ohmic 

[4]. This was tested by taking the voltage and current waveforms during a cranking event, and 

plotting voltage versus current. These points and the resulting regression are shown in Figure 3. 

The open circuit voltage (OCV) or no-load voltage is indicated by V0 (intercept voltage). It is 

apparent that as various currents are drawn from the battery, the voltage is the result of almost 
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purely ohmic impedance. Therefore, the Thevenin-discharge battery model can be simplified as 

only Ep and Rp for a healthy battery [4]. In Figure 3, the battery resistance is approximately 0.004 

Ω. With a 500 A load, the voltage drops by approximately 2 V.  

 
Figure 3: Extracted current and voltage waveforms as V-I plot [4] 

There are several aging mechanisms that contribute to performance degradation and end of 

service life. These include anodic corrosion, positive active mass degradation, irreversible 

formation of lead sulfate, short-circuits, and loss of water. Of these five mechanisms, two are 

common in automotive starter batteries. The first, grid corrosion, is considered the most 

“natural” death for a lead acid battery. It is an expected failure mode when the battery is 

overcharged or held at a high State-of-Charge (SOC) for extended periods of time, such as when 

driving a long distance. The second common aging mechanism, positive active mass 

degradation, is accelerated by numerous shallow discharge cycles [5].  
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2 BACKGROUND 

Lead acid batteries have been used in automobiles for many decades to start the internal 

combustion engine. A typical car battery lasts about five years before requiring replacement. 

However, they can wear out in as little as two years or last as many as ten years under ideal 

conditions. When a battery does reach the end of its service life, it is not at an ideal time and 

there is often no warning. Therefore, it is advantageous to monitor the battery health and warn 

the vehicle operator when a battery is near the end of its life [5], [6].  

2.1 Quantifying State of Health in Lead Acid Batteries 

Battery SOH is a quantification of a battery’s electrical ability with regards to storing and 

delivering energy [7]. In batteries typically used for storage and slow delivery of energy, SOH is 

based on their capacity. This is a relatively simple quantification, which is simply the ratio of the 

current capacity and the designed capacity. This common method of determining SOH can be 

found in modern laptops and phones.  

             
                

                 
 (2) 

SOH for car starter batteries is more complicated. Car batteries degrade in both capacity and 

current delivering ability. A battery could be discharged slowly and still release enough energy 

to be considered healthy according to (2). However, the battery is unhealthy if it cannot supply 

enough current to start the car.  
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2.2 Existing Methods Applicable to Car Battery SOH 

There are several existing methods or systems which can be applicable to car battery SOH. The 

most relevant methods are described in this section.  

2.2.1 Coup de Fouet SOH Estimation 

Since 1964, a phenomenon known as coup de fouet has been identified and studied in lead acid 

batteries [8]. The term, French for whiplash, identifies the recovery of battery voltage after a load 

transient. This trait is easily seen when the battery is subject to a large and constant load. The 

voltage makes a sudden drop to a trough voltage when the load is first applied, and then it 

recovers to a plateau voltage after some amount of time, typically on the order of several 

minutes [9]. A measurement of this phenomenon and the Plateau and Trough voltages are shown 

in Figure 4.  

 
Figure 4: Coup de fouet of a Oldham 2HI275 cell discharged at 275A [9] 

This trait has been studied in depth for many decades. In 1999, a method was proposed to relate 

coup de fouet to remaining battery capacity [9]. Pascoe and Anbuky provided experimental 

results that the parameters extracted from this region are useful in estimating battery capacity. 
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However, they explain that two minutes of constant discharge is necessary to determine the 

parameters. Additional work has been performed to extend this concept to State-of-Health and 

expanding its applications to battery capacity [10]–[12].  

Due to the long measurement period, this technology is best applied to batteries that will 

experience constant loads for long periods of time, not the starting of a car. The starting of a car 

is over a period of a few seconds at most, and the current varies. Therefore, this technology is not 

applicable to car starter batteries.  

2.2.2 Impedance Based SOH Estimation 

There is a correlation between the impedance of a battery and SOH. One technique that exploits 

this correlation is called Impedance Spectroscopy. This technique measures battery impedance 

across a spectrum of frequencies. Battery impedance exhibits a strong correlation with age and 

wear. Numerous researchers have determined that impedance is worthwhile for battery SOH 

analysis [13]–[16]. 

Blanke et al present an approach to determine SOC, cranking ability, aging and modeling 

parameters using impedance spectroscopy [15], [16]. Their method measures the voltage and 

current of the battery during normal use. They utilize current and voltage ripples due to the loads 

and alternator instead of costly active excitation. The measured current and voltage ripples are 

processed to obtain the impedance at various frequencies. They determined that the most useful 

period of time for estimating SOH is during cranking and they have built a SOH monitor to do 

this. Vehicle testing of the monitor showed satisfactory results predicting SOH. The device must 



8 

 

have 10 mA current resolution over a range from 0.1 to 1000 A [15], [16]. This stringent 

requirement drives up the cost of a SOH monitor.  

2.2.3 Battery Cranking Voltage Based SOH Monitoring Method 

Grube investigated a voltage-only measurement to determine if a car starter battery needs 

replacement, needs charging, or is sufficient for use [4].  

This work focused on observing the first two valleys present in the voltage waveform during a 

cranking event. As shown in Figure 5, the voltage of a healthy battery (top) increases from the 

first valley to the next. In contrast, an unhealthy battery’s voltage decreases. This difference is 

due to the battery chemistry not keeping up with the required amount of current to start a car. As 

a result, even as the current required decreases, the voltage continues to fall for an unhealthy 

battery. In a healthy battery, the relationship between voltage and current is practically ohmic, 

and the battery could be modeled as a voltage source with a series resistor. An unhealthy battery 

has a more complex relationship as the voltage continues to drop even when the load is reduced.  

 

 
Figure 5: Typical Battery Voltage Waveforms During Cranking  for a Healthy Battery (top) and an Unhealthy 

Battery (Bottom) [4] 
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Grube measured voltage and current and derived battery impedance during cranking of healthy 

and unhealthy batteries. These waveforms are shown in Figure 6. The healthy battery is on the 

left. Its voltage waveform, top-left, exhibits an initial valley, and then a much higher second 

valley.  The current waveform, mid-left, exhibits similar valleys. The bottom-left graph shows 

the relationship between the voltage and current. The linear relationship enables one to obtain the 

voltage at the battery terminals by measuring the current, multiplying by a constant series 

resistance, and adding the initial OCV. The resistance derived from this graph is near 3 mΩ. The 

unhealthy battery has a different relationship. Its current waveform, mid-right, looks similar to 

the healthy battery with a second valley higher than the first. However, the voltage waveform, 

top-right, has a second valley which is lower than the first. The resulting plot of voltage against 

current, bottom-right, is no longer a linear relationship and the battery impedance can no longer 

be approximated as a resistor. It is concluded that if the second valley is higher than the first one, 

the battery is healthy. If the second valley is lower, it is a sign that the battery is weak and should 

be replaced [4].  

Grube’s proposed algorithm for estimating SOH compares the battery voltage when the starter is 

engaged (first valley) to the next local minimum voltage (second valley). SOH is inferred by 

comparing the difference between the two valleys (ΔV) with a threshold value from a lookup 

table. The voltage thresholds should be a function of temperature. Due to complexity, Grube 

used a fixed threshold of 0.7 V [4].  

 



10 

 

  

  
Figure 6: Voltage and Current Waveforms of healthy (left) and unhealthy (right) batteries [4] 

In his results, Grube identified that this algorithm did provide a timely warning. However, he 

states that further improvements are needed to make it more reliable. Particularly, the lookup 

table of threshold voltages as a function of temperature should be populated. With the fixed 

threshold, a battery that is close to failure but is only tested when hot might not give any warning 

and then fail to start the car if the next crank occurs when it is cold [4].  

2.2.4 Parity-Relation Based SOH Monitoring 

To improve the previous SOH estimation algorithm, Grube also investigated a method that uses 

both voltage and current sensing. The method, called parity-relation, is based on the relationship 

between the voltage and current of healthy batteries which is obtained by measuring the terminal 
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voltage under various battery currents. One can estimate the voltage waveform of a healthy 

battery from a measured current waveform during cranking. The difference between the 

estimated and measured voltages is used to infer SOH. If the measurement differs greatly from 

the expectation of a healthy battery, the SOH of the battery is poor. An extensive part of the 

work in this method is characterizing healthy batteries. It employs V-I plots of cranking data, 

like those in Figure 6. Similarly, Figure 7 shows V-I data for a battery at various states of health 

[4], [17].  

 
Figure 7: V-I plot of cranking data collected during battery 

aging process [4]. 

 
Figure 8: Battery model during cranking [4]. 

 

Figure 8 shows an approximate circuit model used by Grube. The parameters Vloss and Rb can be 

used to estimate the terminal voltage given a measurement of current. The data in Figure 7 was 

processed to extract Vloss and Rb for each battery test case. The extracted values are shown in 

Figure 9. After ten aging periods, there is a sharp increase in both parameters, Vloss and Rb. This 

sharp increase is related to the decrease in voltage near end of life in Figure 7 [4], [17]. 
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Figure 9: Battery model parameters as battery ages. Left: Rb, Right: Vloss [4]. 

 

2.2.5 Commercial In-car SOH Monitoring 

Commercial solutions for battery SOH estimation rely on voltage, current, and temperature 

sensors. Numerous manufacturers have made all-in-one battery sensors available to car 

manufacturers. A car manufacturer can then implement a SOH estimation algorithm within the 

car’s ECU (Engine Control Unit). A current sensor should be able to measure upwards of 1 kA 

(1000 A) and still have fine precision at low current levels.  Battery current, voltage and 

temperature sensors are available from Bosch, Hella, Delphi and more [18]–[21].  

The Battery Monitoring Device from Delphi shown in Figure 10 is interesting because it 

performs both SOC and SOH estimation. It is rated to measure currents as high as 1500 A using 

a 100 µΩ shunt. This monitoring device is able to reduce fuel consumption and extend battery 

usable life [21].  
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Figure 10: Delphi Battery Monitoring Device [21]. 

 

2.2.6 Commercial Out-of-car SOH Estimation 

Commercial products exist for testing batteries with high precision.  These testers are commonly 

used by repair technicians to assess the health of a battery to determine if an old battery has 

reached its end of life. Midtronics, a reputable producer of these testers, uses conductance testing 

to determine health [22].  

Conductance is the real part of the complex admittance of a battery. This is essentially defining 

the ohmic behavior or a battery. Conductance decreases as a battery ages, and is directly related 

to the Cold-Cranking-Amp (CCA) rating of a starter battery. When the measured CCA has 

dropped to less than 75% of its rated value, the battery is considered to be at the end of its usable 

life. The Midtronics battery testers are considered the industry standard in determining battery 

condition. A Midtronics MDX-600 is shown in Figure 11 [22].  
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Figure 11: Midtronics MDX-600 Battery Analyzer [22] 

 

2.3 Proposed Research and Contributions 

There are several existing methods in the field of lead acid SOH estimation. The most accurate 

solutions require both battery current and voltage sensing to determine battery impedance [13]–

[17], [21]. Utilizing current measurements allows simple and highly accurate SOH estimation. A 

voltage-only SOH estimation method was proposed in a previous work, but the method was not 

explored fully to achieve the desired performance [4]. This thesis research investigates a SOH 

estimation method for car batteries based on voltage measurements, which intends to improve 

the performance of the existing one [4] substantially. The objective of the proposed algorithm is 

to monitor an automotive battery’s SOH and inform an operator of deteriorating health.  
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The major contributions of the proposed research to the field are: 

 Completion of the algorithm presented in [4] by incorporating temperature-dependent 

thresholds. They were proposed in that work, but not completed.  

 Enhancement of the algorithm presented in [4] by analyzing more points in the voltage 

waveform. Analyzing the initial voltage drop helps to more accurately predict battery 

end-of-life.  

 A prototype implementation of the algorithm using an ARM processor development 

board. This prototype is capable of analyzing a battery’s voltage during a cranking event 

and reporting to the driver whether the battery is healthy or not. It also serves as a data 

collection device that can record ambient temperature and voltage waveforms for later 

review.   
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3 PROTOTYPE STATE OF HEALTH MONITORING SYSTEM 

This chapter describes the proposed algorithm for SOH estimation for car batteries and the 

prototype of the system. Determination of design parameters and hardware building blocks of the 

prototype are also described. 

3.1 State of Health Estimation Algorithm 

The proposed algorithm was built upon the voltage-only approach presented by Grube in [4]. 

The algorithm was originally prototyped in Matlab and tested using recorded voltage data 

obtained from a real car cranking. Once enhancements to the algorithm were made to improve its 

versatility and reliability, the algorithm was ported over to a microcontroller. After real-world 

testing, additional modifications and calibrations were performed. The algorithm presented here 

is the final algorithm that is implemented on a microcontroller.  

3.1.1 Algorithm Overview 

A block diagram of the algorithm is shown in Figure 12. It begins by waiting until the battery 

voltage has settled so that SOC can be estimated accurately. Once the battery voltage is settled, 

typically 30-60 minutes after stopping the car, the voltage becomes its OCV assuming the power 

dissipation while off is negligible. The SOC is estimated from a lookup table based on the OCV 

and the ambient temperature. Evaluation of the SOH proceeds only if the SOC level is above 

60%. If SOC is below 60%, the user may be warned that they should drive more or charge their 

battery.  
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If the SOC is above 60%, the algorithm waits for a cranking event. If the SOC drops below 60% 

while waiting for a crank, the algorithm returns to the beginning. A cranking event is identified 

by the steep down-slope when the starter motor first engages. After the start of the cranking 

event, the algorithm identifies the first two local minima (valley voltages). Once identified, the 

algorithm waits to see if the car starts within several seconds. This is signified by the battery 

voltage rising above 13 V. Once successfully started, it determines the SOH based on OCV, 

SOC, the two valley voltages and ambient temperature. If the battery is unhealthy, the user 

(driver) will be notified to get their battery tested or replaced.  

 
Figure 12: Decision Path for SOH Algorithm 

The SOH estimation algorithm consists of several components. The algorithm includes voltage 

sampling, state of charge estimation, valley detection, real time clock Interfacing, SD card data 

logging, temperature measurement, and SOH estimation. For the sake of brevity, only the most 

relevant components will be discussed in detail in the following subsections.  
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3.1.2 State of Charge Estimation 

The SOC estimation method chosen for the proposed algorithm relies on the battery OCV. It is 

important to note that the battery terminal voltage of a car may never reach its OCV as some 

amount of current is perpetually drawn from or pushed to the battery. A true OCV requires the 

current in or out of the battery to be zero for an extended amount of time, on the order of hours. 

Despite this, the terminal voltage of the battery is practically the OCV. For example, the 

maximum current to be expected when the car is not in operation is 50 mA [23]. The battery 

resistance derived from Figure 6 is approximately 3 mΩ. The voltage drop with a 50 mA load is 

only 150 µV. The SOC error is then much lower than 0.1%.  

The minimum settling time for OCV is thirty minutes at 25 °C. At lower temperatures, that 

minimum time increases. For this algorithm, the battery voltage is considered settled when there 

is no more than a 0.1 V change within 60 minutes. This is calculated by comparing the maximum 

voltage within 60 minutes to the minimum voltage in the same period.  

In lead-acid battery chemistry, the OCV relates directly to the acid concentration of the 

electrolyte. This relationship is well established and agreed upon, as shown in Figure 13. This 

figure shows three sets of OCV vs relative density measurements and two sets of calculations at 

25 °C [2]. Table 1 is constructed from the values extracted from Figure 13. These values are used 

in the algorithm for SOC estimation. Note that a car battery has six cells connected in series and 

the OCV of a battery is six times that of a cell.  
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Figure 13: Lead-acid cell voltage at 25 °C as a function of H2SO4 relative density [2] 

Table 1: Lead-Acid Cell Voltage vs Specific Gravity of H2SO4 Electrolyte [2] 

S.G. Vcell 

1.030 1.876 

1.051 1.907 

1.068 1.932 

1.081 1.951 

1.089 1.963 

1.104 1.976 

1.119 1.989 

1.137 2.004 

1.152 2.016 

1.169 2.030 

1.186 2.045 

1.202 2.058 

1.216 2.071 

1.232 2.083 

1.248 2.097 

1.262 2.110 

1.278 2.122 

1.293 2.135 

 

The battery OCV is not only a function of relative density (also known as specific gravity), but 

also of temperature. The temperature coefficient of OCV as a function of relative density is 

shown in Figure 14 [1]. At a given electrolyte relative density, the OCV can be calculated with 

the following equation.  

                                          (3) 
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Due to the nonlinearity of the temperature coefficient curve, a recursive approach is used to 

calculate battery electrolyte relative density. First, OCV is used to look up an approximate 

relative density from Table 1. Then, the approximate relative density is used to determine the 

temperature coefficient. The product of the ambient temperature and the temperature coefficient 

is subtracted from the measured OCV to determine what the OCV would be, if the battery was at 

25 °C. This new OCV is used with Table 1 to determine the electrolyte relative density. 

 
Figure 14: Temperature Coefficient of Open-Circuit Voltage of Lead-Acid Cell as a Function of Electrolyte Specific 

Gravity [1] 

Though the relationship of OCV to relative density, also known as specific gravity, is highly 

agreed upon, this does not necessarily translate to simple SOC estimation.  

Lead acid batteries are specifically designed for various applications. The most obvious 

difference between the types of batteries is their designed acid concentration which is 

proportional to relative density. Linden’s Handbook of Batteries includes a table of common lead 

acid battery chemistries. It is reproduced in Table 2 [1]. Automotive SLI batteries have a 

moderate acid concentrations. Deep cycle batteries for electric vehicles have the highest 

concentration while deep cycle batteries for stationary applications have the lowest 

concentration. Column C, SLI battery, is used in this research.  
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Table 2: State of Charge vs Specific Gravity of Lead-Acid Batteries [1] 

 Specific Gravity 

State of Charge A 

EV battery 

B 

Traction battery 

C 

SLI battery 

D 

Stationary battery 

100% 1.330 1.280 1.265 1.225 

75% 1.300 1.250 1.225 1.185 

50% 1.270 1.220 1.190 1.150 

25% 1.240 1.190 1.155 1.115 

0% 1.210 1.160 1.120 1.000 

The precise SOC is linearly interpolated using the estimated specific gravity and column C, SLI 

battery, of Table 2.  

3.1.3 Voltage Sampling 

The battery terminal voltage is sampled at 200 Hz with a 12-bit analog to digital converter 

(ADC). The resolution and the sampling rate are sufficient to correctly identify cranking 

waveforms. Ten seconds of data totaling 28 KB is stored in RAM.  

If the battery voltage is settled and the car is off, the algorithm continuously samples and 

processes data. Every five seconds, the prototype processes the previous ten seconds of data. In 

this manner, every crank (that takes less than five seconds to complete) will be processed.  This 

has been found to be sufficient for all batteries and vehicles tested. This may need to be 

increased in the future to accommodate a wider variety of cranking waveforms, or it could be 

reduced to utilize less memory space.  

When data is processed, it copies the samples to a new array, so that this data is not disturbed 

while the microcontroller continuously samples. Then, a running average of four measurements 

is performed to filter out noise, which effectively eliminates false valleys. The prototype also 

stores the sampled time for each data point, which aids in examination of the data later. The 
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timestamps could be removed in future adaptations of this algorithm when most data logging will 

be unnecessary. Table 3 shows a summary of memory usage by the large arrays. The total 

memory usage by these arrays is 28 KB, which could be reduced to only 12 KB by eliminating 

the timestamps.  

Table 3: Estimates of memory usage. 

Variable Size Size Notes 

Voltage Sample 2000*16 bits 32  kbits  

Copied Voltage Sample 2000*16 bits 32  kbits  

Average Voltage Sample 2000*16 bits 32  kbits  

Sample Timestamp 2000*32 bits 64  kbits Only for data logging 

Copied Sample Timestamp 2000*32 bits 64  kbits Only for data logging 

Total Size  224 kbits 28 Kbytes 

 

3.1.4 Slope Detection 

The algorithm identifies the beginning of a cranking event by looking at the difference between 

two consecutive samples which are the rolling average of four samples. If the difference between 

two consecutive samples is greater than 0.25 V, a crank is detected and the algorithm will move 

on to valley detection. The samples are taken at 200 Hz, so 0.25 V equates to 50 V/s. Typical 

cranking waveforms exhibit a voltage slope in excess of 100 V/s. Figure 15 shows a voltage 

waveform during a typical crank. Example measurements and their slopes are shown in Table 4. 

These measurements are taken at the 12 V socket inside the passenger compartment of the car by 

the MCU, through a first-order RC filter. The filter is discussed in Section 3.1.7.  
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Figure 15: Typical cranking waveform 

 

Table 4: Individual voltage samples during crank from the circled region of Figure 15. 

Voltage (V) ΔV (V) Slope (V/s) 

12.22925 -0.06719 -13.4387 

12.14229 -0.08696 -17.3913 

11.97233 -0.16996 -33.9921 

11.39526 -0.57708 -115.415 

10.74308 -0.65217 -130.435 

10.11858 -0.62451 -124.901 

9.616601 -0.50198 -100.395 

9.537549 -0.07905 -15.8103 

 

3.1.5 Valley Detection 

Once a cranking event has been identified, the next step is Valley Detection. Valley Detection 

identifies the local minima in the voltage waveform. The algorithm identifies these by locating a 

sequence of 5 samples V1, V2, … V5, which satisfy the following conditions. 
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Two examples are shown in Figure 16. The left plot, the first valley, has a much steeper slope 

than the second valley (right plot) but both satisfy the conditions.  

 
Figure 16: First and second valleys from the waveform given in Figure 15. 

Once the first valley has been identified, the algorithm continues to process data to identify a 

second valley. Once found, the algorithm continues to the State-of-Health (SOH) Estimator.  

3.1.6 State of Health Estimation 

The proposed SOH Estimator uses the OCV, SOC, first valley voltage (V1), second valley 

voltage (V2) and temperature (T). The difference between the OCV and V1 is denoted as ΔV1. 

Note that ΔV1 is the large voltage drop due to the starter motor of the engine engaging. V2 minus 

V1 is denoted as ΔV2. These are indicated in Figure 17.  
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Figure 17: Typical Cranking Waveform for SOH Estimation 

Grube’s method estimates SOH using only ΔV2 [4]. The method presented in this thesis takes 

into account temperature, ΔV2, and ΔV1.  

3.1.6.1 Temperature Consideration 

First, a threshold for ΔV2 is retrieved from a lookup table using temperature. The value is 

linearly interpolated between table breakpoints and it defines the minimum ΔV2 for a battery to 

be considered healthy. This temperature variance allows for the slower chemical reactions when 

a battery is cold. Setting the threshold higher when the battery is hot prevents a battery from 

passing consistently at high temperatures but then failing if it is operated in cold weather. 

Thresholds are listed in Table 5. These thresholds were developed experimentally by comparing 

the performance of the aged batteries. The values below 0 °C are estimated.  

Table 5: Vth1 across temperature. 

Temperature (°C) -30 -20 -10 0 10 20 30 40 50 

Vth1 (mV) 0 50 100 200 300 400 400 400 400 

OCV 

ΔV
1
 

V1 

V2 
ΔV

2
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3.1.6.2 ΔV1 Consideration 

The next step is to consider ΔV1. If ΔV1 is very small, it is okay for ΔV2 to also be small. 

Similarly, if ΔV1 is excessive, the battery is likely unhealthy regardless of ΔV2. Typical cranking 

performance showed a ΔV1 of approximately 3 V. With this table, a Vth component is introduced 

that will raise or lower the threshold voltage to correct for ΔV1. Values for Vth2 are shown in 

Table 6. The values were developed experimentally by examining data from battery tests.  

Table 6: Vth2 with various ΔV1 

ΔV1 (V) 1 1.5 2 2.5 3 3.5 4 4.5 5 

Vth2 (mV) -160 -125 -90 -55 -20 15 50 85 120 

 

3.1.6.3 ΔV2 Consideration 

Vth1 and Vth2 are added together to obtain Vth. Equation (4) shows the computation of Vth.  

                                 (4) 

This complete threshold is compared to the measured ΔV2. If ΔV2 exceeds Vth, the battery is 

considered healthy. If ΔV2 is less than Vth, the battery is considered unhealthy. 

3.1.7 Example SOH Estimation 

The procedure to obtain the SOH Metric is illustrated using example data shown in Table 7.  

First, measurements are taken of temperature, OCV, V1 and V2. Then, ΔV1 and ΔV2 are 

calculated from the voltage measurements. Vth1 is obtained from the temperature value and the 

lookup table given in Table 5. The precise value is determined through linear interpolation of the 
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table breakpoints. Then, Vth2 is obtained using ΔV1 and a linear interpolation of Table 6. Vth is 

the sum of Vth1 and Vth2. ΔV2 minus Vth is considered our SOH Metric. If this metric is positive, 

the battery is healthy. Otherwise, the battery is unhealthy.  

Table 7: Example SOH calculations. (Subset of Table 8) 

Measurements ΔV Calculated Thresholds 
SOH 

Metric 

Date °C OCV Valley 1 Valley 2 ΔV1 ΔV2 Vth1 Vth2 Vth ΔV2 – Vth 

June 22 30 12.80 8.72 9.29 4.08 0.56 0.37 0.06 0.42 0.14 

July 2 37 13.00 8.52 8.96 4.48 0.44 0.41 0.08 0.50 -0.05 

 

3.2 Hardware Prototype 

The prototype consists of a software algorithm and various components that come together to 

make a functional State of Health estimation system. This standalone system can indicate if a 

battery is near failure through the use of indicator LEDs.  

To aid in performance assessment, much of the sampled data should be stored for review. A SD 

card reader has been built into the prototype to enable data logging. To aid in identifying and 

storing data, a Real-Time-Clock (RTC) module is also integrated with the prototype. The 

algorithm requires battery voltage measurement and temperature, so an ADC and a temperature 

sensor are also required.  

The prototype is shown in Figure 18. The (red) carrier board is a TI Launchpad with a TI 

TM4C1294NCPDT ARM Cortex M4 microcontroller [24]. This has 256 KB of RAM and runs at 
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120 MHz. With this algorithm, the microcontroller is significantly more powerful than required. 

The RTC, SD card, temperature sensor, and DC input header are identified in Figure 18.  

The DC input header is found in Figure 18 at circle “A”, which also includes a voltage divider 

and low pass filter. The divider is composed of 10 KΩ and 39 KΩ resistors for a divider ratio of 

approximately 1/5. A 0.47 µF capacitor is in parallel with the 10 KΩ resistor to create the low 

pass filter.  

Circle “B” of Figure 18 is an SD memory card for data logging. Though not necessary for a final 

design, data logging was paramount for testing the algorithm. Circle “C” is a Real-Time-Clock 

module. This module supports a DS1307 I
2
C Real-Time-Clock module and incorporates a 

backup battery to maintain the clock for years [25]. A RTC module is not necessary for the 

algorithm itself, because it should always have power. However, it is integral to data logging 

when power is disconnected. One modification had to be performed on the module. The DS1307 

requires 5 V for operation, but the MCU only has a 3.3 V I
2
C bus. The I

2
C pull-up resistors on 

the RTC module are connected to 3.3 V, while the DS1307 still receives 5 V power.  

Circle “D” of Figure 18 is an analog temperature sensor. The LM34 Fahrenheit Temperature 

sensor requires a 5 V supply and outputs an analog signal proportional to the ambient 

temperature [26]. This analog signal is directly connected to an ADC of the MCU which does 

not allow negative temperature operation. A different configuration or sensor is necessary to 

facilitate negative temperatures. In addition, locating the temperature sensor on the prototype in 

the passenger compartment is not ideal. It would be more helpful to have the temperature sensor 

at the battery, or at least in the engine compartment.  
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Circle “E” of Figure 18 contains the indicator LEDs. These four LEDs indicate when the OCV is 

being checked, when the OCV is stable and SOC has been measured, when a successful crank 

has been detected, and if the crank passed.  

 
Figure 18: ARM development board with daughterboard.  

A: DC input and LPF, B: SD card, C: RTC Module, D: Temperature Sensor, E: Indicator LEDs 
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4 TESTING PROCEDURE AND EXPERIMENTAL RESULTS 

This chapter describes the procedure and the hardware for testing batteries and the prototype. It 

also describes the results obtained through testing.  

4.1 Testing Procedure 

Data from many batteries at various states of health is necessary to develop accurate thresholds 

and to verify correctness of the algorithm. To obtain this data, many batteries need to be aged 

and tested occasionally until they fail to start a car. To conserve time, an accelerated aging 

procedure is used. A widely accepted procedure known as “J240: Life Test for Automotive 

Storage Batteries” was published by the Society of Automotive Engineers [27]. For this research, 

a modified version of the procedure was used.  

The specification recommends that the batteries are held at 75° C for the duration of the aging 

and testing. It recommends a ten minute charging period, and then a four minute discharge 

period. No more than a ten second delay is allowed between the charging and discharging 

phases. The procedure repeats for 100 hours between testing which consists of drawing the 

battery’s rated current and verifying that the voltage does not drop too low. If battery passes the 

test, it repeats the 100 hours of aging and the test. The purpose of the whole procedure is to 

determine if a battery meets its specifications [27].  

In order to accommodate a delay of less than ten seconds and to use a minimal amount of 

resources, the procedure was modified to include a five minute discharge period, along with the 

ten minute discharge period. This means that three batteries can share one load. At any point in 
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time, two batteries are charging while the third is discharging. After a complete 100 hour aging 

cycle, each battery was installed in a passenger car and a voltage waveform was recorded while 

starting the engine. In this manner, the testing could be used to verify the battery’s health and to 

obtain voltage waveforms to fine-tune pass/fail thresholds.  

4.2 Battery Aging Testbench 

Ten batteries were aged and tested for this research. This section discusses the testbench to age 

the batteries.  

4.2.1 Requirements 

The requirements of the testbench to age the batteries in this thesis research were derived from 

SAE J240 [27]. The adapted requirements are: 

 Maintain batteries at 75° C for the duration of the test.  

 Repeatedly charge batteries to 14.8 V with no more than 25 A for 10 minutes at a time.  

 Repeatedly discharge batteries with no more than 25 A for 5 minutes at a time.  

 Charge and discharge ten batteries in 15 minute cycles for up to 100 hours.  

 Record the current and voltage from each battery for later processing.  

4.2.2 Hot Water Bath 

J240 suggests using a hot water bath at 75° C to accelerate battery aging. A colder bath, 41° C, 

could be used but the number of cycles before failure would increase. Therefore, 75° C is used in 

this research.  
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A large stock tank was used to contain all 10 batteries and water [28]. Small bricks were used to 

lift the batteries off the floor of the tank and increase the water volume. This increase in volume 

helps temperature stability and water circulation. In addition, the bricks allowed some variance 

in battery height. Shorter batteries were raised up to be closer to the height of taller batteries. An 

off-the-shelf temperature controller and a thermocouple were used with a 1.2 kW plug-in heater 

to keep the water at 75° C. Foam insulation was crucial in maintaining the temperature and a lid 

reduces evaporation and more heat loss. The stock tank, insulation, and batteries can be seen in 

Figure 19 and Figure 20.  

 
Figure 19: Stock tank with foam insulation. 

 
Figure 20: Open stock tank with nine batteries and large heater. 
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4.2.3 Battery Charging and Discharging 

A custom made load controller performs charging and discharging of three batteries 

simultaneously. A load controller is composed of a DC power supply, a 0.5 Ω 300 W resistor, 

and a controller to charge and discharge three batteries. The DC power supply for charging and 

the resistor for discharging are shared among the three batteries. Figure 21 shows the circuit 

board, power supply and resistor. Four of these setups are required for ten batteries because each 

one ages at most three batteries.  

 
Figure 21: Slave load controller with cooling fan, power supply, and power resistor. 

The custom PCB contains a TI MSP430G2553 microcontroller, indicator LEDs, and six STM 

VN5E010MH-E [29] load switch. The microcontroller actuates the load switches in sequence to 

charge or discharge each battery. It should be noted that two batteries are charging and one 

battery is discharging at any point in time. I
2
C bus connectors are on each PCB so that they can 
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be networked for data logging. A block diagram of the load controller is given in Figure 22. This 

diagram shows the central microcontroller which actuates load switches to either charge each 

battery from 14.8 V or discharge it through a 0.5 Ω resistor. Voltage and current sensing for each 

battery are measured by the ADC on the microcontroller. An RGB LED gives user feedback, 

while a mode switch allows the user to start or stop the aging process.  

 
 

Figure 22: Block diagram of load controller 

The master load controller, pictured in Figure 23, is responsible for I
2
C communications with 

each load controller and serial communication over USB with the host PC.  
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Figure 23: Master load controller. 

A diagram of the connectivity between various components of the system is shown in Figure 24. 

The master load controller is connected to a computer through a USB to serial converter. The 

master controller polls each load controller through I
2
C and requests current and voltage 

measurements. The values are stored on the host PC by a serial terminal program for later 

review. Software configurations for all the load controllers were developed in the Energia 

environment. The current system has one master load controller and four load controllers, which 

age ten batteries simultaneously. 

 
Figure 24: Block diagram of battery aging testbench 
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4.2.4 Data Logging 

The master load controller receives current and voltage measurements from associated load 

controllers and send them to the host PC, which stores them later review.  Example data, i.e., the 

battery voltage and current measurements, is shown in Figure 25. When the battery is charging, 

the voltage (top graph) is about 14 V, and the current (bottom graph colored green) flows into the 

battery. When the battery is discharging through the 0.5 Ω resistor, the voltage drops to about 8 

V, and the current (colored red) flows out of the battery. 

 
Figure 25: Graphed data log of charging and discharging a battery 

 

4.3 Test Cranking 

After each 100 hours of aging a battery, the battery is fully charged and then installed on a car 

and tested by starting the car. During testing, a USB oscilloscope (Digilent Analog Discovery) 

was used to measure and record the voltage waveforms in addition to the SOH estimator 
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prototype’s own data logging. The USB oscilloscope is configured to sample at 10 kHz to allow 

sufficient resolution for post-processing of data. The sampling rate of 10 kHz is the maximum 

that does not cause a buffer overflow during recording. In addition to the USB oscilloscope, a 

laptop and thermometer are required for recording data and measuring temperatures. This 

equipment can be seen with a car in Figure 26. 

 
Figure 26: Testing the battery of a car 

The proposed SOH estimator is connected inside the car’s passenger compartment for 

monitoring voltage and measuring the temperature while cranking. This can introduce slight 

voltage loss between the battery terminals and a 12 V socket inside the car. Figure 27 shows a 

comparison of these two voltages. The MCU measured cranking waveform exhibits a 0.15 V 

difference from the terminal voltage measurement. It is largely due to resistance in cabling, and 

current drawn by car peripherals such as lighting, stereo, fans, and the SOH estimator itself. 

Resistance can be found in fuses, relays and the wiring. The voltage disparity causes a 15-20 % 

reduction in estimated SOC. To minimize this error, voltage should be sensed as close to the 
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battery as possible. Ideally, the SOH estimator system would be located inside the engine 

compartment directly connected to the battery.  

Although this measurement error is apparent, its effects are insignificant. SOC is only used to 

determine if the SOH estimation can be performed. Voltage measurements used by the SOH 

estimator are relative, so the near-constant difference has no effect on ΔV1 or ΔV2. This can be 

observed in Figure 27. A slight offset could be incorporated to simply correct the error for SOC 

estimation if necessary.  

 
Figure 27: Comparison of battery terminal and MCU measurements 

 

4.4 Results 

The objective of this algorithm is to predict battery failure without sensing battery current during 

cranking. Collected waveforms from each crank test are analyzed to extract the relevant data 

points, and post-processing was used to calculate the battery SOH. Example cranking voltage 
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waveforms for battery #6 over about 40 days are shown in Figure 28. The general trends of 

battery aging can be observed in the figure. The July 12 and June 14 cranks are much longer 

because of a problem with the car engine, not the battery. Though the initial voltage is similar for 

each test, the valley voltages become lower as the aging proceeds. The second valley voltage is 

lower than the first valley for the final test on July 12. This means a negative ΔV2, and a very 

low SOH. The extracted data for all batteries is in Appendix A: Battery Measurements.  

 
Figure 28: Crank voltage waveforms for battery #6 

Table 8 shows the measured data for the waveforms given in Figure 28 and the battery 

temperature when the data was collected. OCV is dependent on how charged the battery is at the 

time of testing. On average, Valley 1 voltages become worse as the aging proceeds. In addition, 

Valley 2 voltages decrease. However, more striking than both of these, ΔV1 increases and ΔV2 
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decreases with age. This particular battery was very close to failure for the second test (June 8) 

and third test (June 14), and past failure for the fifth and sixth. For the July 2 and July 12 cranks, 

a warning would be given to the user that they should have their battery replaced or tested. This 

would allow two test-periods of warning before the failure on July 27. 

Table 8: Battery #6 data extracted from crank waveforms (Year: 2014) 

Measurements ΔV Calculated Thresholds 
SOH 

Metric 

Date °C OCV Valley 1 Valley 2 ΔV1 ΔV2 Vth1 Vth2 Vth ΔV2 – Vth 

June 3 36 12.98 9.29 10.21 3.69 0.92 0.41 0.03 0.44 0.49 

June 8 49 12.93 9.18 9.76 3.75 0.58 0.49 0.03 0.53 0.05 

June 14 55 12.79 8.56 9.20 4.23 0.65 0.53 0.07 0.60 0.05 

June 22 30 12.80 8.72 9.29 4.08 0.56 0.37 0.06 0.42 0.14 

July 2 37 13.00 8.52 8.96 4.48 0.44 0.41 0.08 0.50 -0.05 

July 12 27 12.85 8.36 8.22 4.49 -0.14 0.35 0.08 0.43 -0.57 

July 27 25 12.56        failed 

The final metrics for the ten batteries are shown in Table 9. Non-sequential battery numbers are 

due to batteries that were obtained for testing but were incapable of passing an initial crank test. 

The “ΔV2 (Grube)” column shows the measured ΔV2 from each battery test. The “SOH Metric” 

column shows the computed SOH metric from this work. Cells are highlighted green if their 

respective algorithm judged them passing, and red for failure. Though both algorithms were able 

to predict most battery failures, the algorithm in this work gave a better failure prediction for 

batteries 4, 5, and 6. A prediction is better if it is closer to the actual time of failure. The failure 

of Battery #13 was not predicted by either algorithm due to low SOC before its second test. All 

of the extracted data is in Appendix A: Battery Measurements. 
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Table 9: Results from ten batteries 

 Battery #1 Battery #4 Battery #5 

Test # ΔV2 

(Grube) 

SOH 

Metric 

ΔV2 

(Grube) 

SOH 

Metric 

ΔV2 

(Grube) 

SOH 

Metric 

1 0.93 0.55 0.51 0.00 1.03 0.53 

2 0.98 0.46 1.19 0.64 0.90 0.22 

3 0.36 -0.03 0.61 0.18  failed 

4 0.63 0.22 0.11 -0.36   

5  failed  failed   

       

 Battery #6 Battery #7 Battery #8 

Test # ΔV2 

(Grube) 

SOH 

Metric 

ΔV2 

(Grube) 

SOH 

Metric 

ΔV2 

(Grube) 

SOH 

Metric 

1 0.92 0.49 0.91 0.77 0.99 0.76 

2 0.58 0.05 0.86 0.39 0.43 -0.01 

3 0.65 0.05 0.09 -0.31  failed 

4 0.56 0.14 0.06 -0.28   

5 0.44 -0.05 0.20 -0.14   

6 -0.14 -0.57     

7  failed     

       

 Battery #9 Battery #11 Battery #12 

Test # ΔV2 

(Grube) 

SOH 

Metric 

ΔV2 

(Grube) 

SOH 

Metric 

ΔV2 

(Grube) 

SOH 

Metric 

1 0.44 -0.07 0.84 0.28 0.37 -0.06 

2 0.54 0.16  failed 0.33 -0.16 

3 0.52 0.10   0.06 -0.27 

4 0.08 -0.28    failed 

       

 Battery #13 

Test # ΔV2 

(Grube) 

SOH 

Metric 

1 0.81 0.33 

2  failed 
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4.5 Service Life Estimate 

It is an interesting and legitimate question for a driver to ask the period between the first warning 

from the proposed SOH monitoring system and the actual failure of the battery. The period 

depends on many parameters such as how often the car is driven, how long it is driven for, the 

weather, and through what chemical or mechanical mechanism the battery is aging. Furthermore, 

a battery failure is not deterministic; a battery that failed to start a car one day may be able to 

start the car the next day due to reasons such as temperature and engine characteristics. 

Therefore, it is impractical to predict the remaining battery service life accurately. So, a practical 

performance metric for a SOH estimator is that a battery evaluated as a failure by the estimator is 

also evaluated as the same when the battery is checked at a battery service center. Then, the 

battery should be replaced based on the warning from the SOH estimator.  

Having stated the intrinsic limitation of SOH estimators above, a rough estimation of the battery 

life in this thesis is described as follows. Grube tested batteries with an accelerated aging 

technique, and his results show that a new battery failed after 12 weeks of aging [4]. Given that 

batteries will typically last 4-6 years, each week of aging is considered 4-6 months of real usage. 

In this research, the length of aging between tests was 50 to 100 hours, or approximately half that 

of [4]. Therefore, each period in this research can be considered two to three months. Batteries 

#4 and #8 gave the least amount of warning when tested, only one testing period or two to three 

months. Battery #7 gave three test periods of warning, and did not fail at the conclusion of 

testing.  
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5 CONCLUSION 

This thesis presents a method of battery state of health monitoring which does not require current 

sensing. A previous method measured the difference between the first two valley voltages during 

a cranking event, V2 in this thesis, and compares it to a fixed threshold to determine battery 

health [4]. Improvements are needed to make this algorithm more reliable. Particularly, the 

threshold voltage should be a function of temperature. With only a fixed threshold, a battery that 

is close to failure but is only tested at high SOC might not give ample warning if the next crank 

occurs with a low SOC [4].  

To mitigate the shortcomings, the proposed SOH Estimator uses the open circuit voltage, state of 

charge, first valley voltage (V1), second valley voltage (V2) and temperature (T). Consideration 

of temperature prevents a battery from passing consistently at high temperatures but then failing 

if it is operated in cold weather. The difference between the open circuit voltage and V1 is 

denoted as V1 in this thesis. If ΔV1 is very small, it is okay for ΔV2 to also be small. Similarly, 

if ΔV1 is excessive, the battery is likely unhealthy regardless of ΔV2. When the SOC of the 

battery is low, both the proposed method and the existing previous method become unreliable. 

The proposed method avoids such a situation by performing the SOH estimation only when the 

SOC (which is obtained from the terminal voltage) is above 60%. 

A prototype was developed that implements the proposed algorithm using an ARM processor 

development board. This prototype is capable of analyzing a battery’s voltage during a cranking 

event and reporting to the driver whether the battery is healthy or not. It also serves as a data 

collection device that can record ambient temperature and voltage waveforms for later review.   
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The SOH estimation method was developed by measuring the voltage of batteries during vehicle 

cranking, and assessing the results. Then, additional cranks were used to validate the approach. 

In addition, the algorithm was implemented on a microcontroller which can be installed in a 

vehicle and provides feedback after each crank.  

Ten batteries were used in this research to develop the algorithm thresholds and test the 

prototype. The batteries were held at 75° C for the duration of the aging. The aging consisted of a 

ten minute charging period, and then a five minute discharge period. The procedure repeated for 

100 hours between testing which consists of installing the battery in a passenger car and 

recording a voltage waveform while starting the engine. 

Both the proposed and previous algorithms were able to predict most battery failures. The 

algorithm in this work gave a more timely failure prediction for 30% of the batteries 4, 5, and 6. 

The proposed algorithm gave a failure prediction later, so the owner would get more useful time 

out of their battery. The other seven batteries were equally assessed.  

These results confirm that the augmented algorithm is more effective at predicting battery 

failure. Completion of the algorithm presented in [4] by incorporating temperature-dependent 

thresholds was able to help avoid failure due to temperature variance. In addition, Enhancement 

of the algorithm presented in [4] by analyzing more points in the voltage waveform helps to 

more accurately predict battery end-of-life. With these two additions, the algorithm developed in 

this research is more strict with its thresholds and able to more finely predict when a battery will 

reach the end of its service life.  
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5.1 Future Improvements 

There are numerous improvements that could be made if the SOH algorithm tracked the 

degradation of the battery. One such improvement is that the algorithm could measure how 

quickly the battery is deteriorating and then apply that same rate to predict the end of service life. 

Historical data will allow the SOH estimator to predict usage and environmental patterns which 

could then allow more accurate aging prediction.  

An additional method of improving the algorithm performance would be to incorporate SOC 

dependent thresholds. When a battery is fully charged, its cranking waveform is closer to a 

healthy battery. As its SOC is lowered, the cranking waveforms are closer to that of a failing 

battery. Currently this is addressed by only checking the SOH if the battery has a SOC above 

60%, so the thresholds are set for the case of a fully charged battery.  

The algorithm performance rests completely on the detection of valley voltages in a cranking 

waveform. The current method analyzes the measured data with a rolling average of five data 

points. These averaged values should be in a “u” arrangement. The combination of a hardware 

low pass filter, low sampling rate, and the rolling average have reduced the chance of false 

detection, but relatively flat valley voltages could be missed. Though the current method worked 

for all tests, further investigation is recommended on this topic.   

A low-SOC warning would benefit a consumer. If this warning was given, the battery should be 

charged by driving the vehicle frequently or through the use of an external charger. This would 

be immensely useful if the warning could be given remotely.  
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APPENDIX A: BATTERY MEASUREMENTS 

IS # Test # date °C OCV 
Valley 

1 

Valley 

2 
ΔV1 ΔV2 Vth1 Vth2 Vth 

SOH 

Metric 

1 1 June 3 32 12.76 9.52 10.45 3.24 0.93 0.38 0.00 0.38 0.55 

 
2 June 8 52 12.74 9.27 10.25 3.47 0.98 0.51 0.01 0.53 0.46 

 
3 June 22 30 12.47 8.77 9.14 3.70 0.36 0.37 0.03 0.40 -0.03 

 
4 July 2 35 12.64 9.28 9.91 3.36 0.63 0.40 0.01 0.41 0.22 

 
5 July 12 

        
 

failed 

             
4 1 June 8 50 12.98 9.66 10.17 3.32 0.51 0.50 0.00 0.50 0.00 

 
2 June 14 54 12.99 9.49 10.67 3.51 1.19 0.53 0.02 0.54 0.64 

 
3 June 22 30 12.45 8.28 8.89 4.17 0.61 0.37 0.06 0.43 0.18 

 
4 July 2 35 12.54 8.34 8.44 4.20 0.11 0.40 0.06 0.46 -0.36 

 
5 July 12 

        
 

failed 

           
 

 
5 1 June 8 50 12.76 9.42 10.45 3.34 1.03 0.50 0.00 0.50 0.53 

 
2 June 14 50 10.77 4.96 5.86 5.81 0.90 0.50 0.18 0.68 0.22 

 
3 June 22 30 10.16 

       
failed 

 
4 July 2 

         
failed 

             
6 1 June 3 36 12.98 9.29 10.21 3.69 0.92 0.41 0.03 0.44 0.49 

 
2 June 8 49 12.93 9.18 9.76 3.75 0.58 0.49 0.03 0.53 0.05 

 
3 June 14 55 12.79 8.56 9.20 4.23 0.65 0.53 0.07 0.60 0.05 

 
4 June 22 30 12.80 8.72 9.29 4.08 0.56 0.37 0.06 0.42 0.14 

 
5 July 2 37 13.00 8.52 8.96 4.48 0.44 0.41 0.08 0.50 -0.05 

 
6 July 12 27 12.85 8.36 8.22 4.49 -0.14 0.35 0.08 0.43 -0.57 

 7 July 27 25 12.56        failed 

             
7 1 April 6 

 
12.67 9.70 10.61 2.98 0.91 0.17 -0.02 0.14 0.77 

 
2 June 8 50 12.83 10.03 10.89 2.80 0.86 0.50 -0.03 0.47 0.39 

 
3 June 14 40 12.80 10.04 10.13 2.76 0.09 0.43 -0.04 0.40 -0.31 

 
4 June 22 30 12.89 10.01 10.07 2.88 0.06 0.37 -0.03 0.34 -0.28 

 
5 July 12 28 13.00 9.97 10.16 3.04 0.20 0.35 -0.02 0.34 -0.14 

             
8 1 April 1 20 12.80 8.61 9.60 4.19 0.99 0.30 0.06 0.36 0.62 

 
2 June 1 27 12.85 8.24 8.67 4.61 0.43 0.35 0.09 0.44 -0.01 

 
3 June 8 

        
 

failed 

             
9 1 June 8 50 12.83 9.48 9.92 3.35 0.44 0.50 0.00 0.50 -0.07 



50 

 

 
2 June 22 30 12.76 9.28 9.81 3.49 0.54 0.37 0.01 0.38 0.16 

 
3 July 2 33 12.81 9.00 9.52 3.81 0.52 0.39 0.04 0.42 0.10 

 
4 July 12 27 13.02 9.50 9.58 3.52 0.08 0.35 0.02 0.36 -0.28 

             
11 1 June 8 50 12.75 8.58 9.42 4.17 0.84 0.50 0.06 0.56 0.28 

 
2 June 14 40 12.70 

    
0.43 

  
failed 

 
3 June 22 30 12.68 

       
failed 

             
12 1 June 8 45 12.91 10.21 10.58 2.70 0.37 0.47 -0.04 0.43 -0.06 

 
2 June 14 53 13.02 10.22 10.55 2.80 0.33 0.52 -0.03 0.49 -0.16 

 
3 June 22 30 12.88 10.08 10.14 2.80 0.06 0.37 -0.03 0.33 -0.27 

 
4 July 2 

        
 

failed 

             
13 1 June 8 50 12.81 9.769 10.58 3.04 0.81 0.50 -0.02 0.48 0.33 

 

2 June 14 45 10.84 

  
     

failed 

 

3 June 22 30 12.47 

  
     

failed 
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APPENDIX B: BATTERY IDENTIFICATION 

Battery Identifier Battery Source Battery Description Performance 

CA 1 
Campus 

Automotive 
Rayovac 

Borrowed for limited time, 

returned after one test 

CA 2 
Campus 

Automotive 
Interstate 

Borrowed for limited time, 

returned after one test 

CA 3 
Campus 

Automotive 
Duralast Did not hold a charge, untested. 

IS 01 
Interstate 

Batteries 

Batteries Plus 

75 
Failed after 4 successful cranks. 

IS 02 
Interstate 

Batteries 

Interstate 

MT-35 
Did not hold a charge, untested. 

IS 03 
Interstate 

Batteries 

Interstate 

MT-34 
Did not hold a charge, untested. 

IS 04 
Interstate 

Batteries 

Interstate 

MT-34 
Failed after 4 successful cranks. 

IS 05 
Interstate 

Batteries 

Autocraft 

34-2 

Tested, died early and did not 

provide significant data. 

IS 06 
Interstate 

Batteries 

Econo Power 

Group 75 

Provided 6 successful cranks, 

didn’t die. 

IS 07 
Interstate 

Batteries 

EverStart 

Group 34N 

Provided 5 successful cranks, 

didn’t die. 

IS 08 
Interstate 

Batteries 

AAA 

24F-C 

Tested, died early and did not 

provide significant data. 

IS 09 
Interstate 

Batteries 

Interstate 

MT-35 

Provided 4 successful cranks, 

didn’t die. 

IS 10 
Interstate 

Batteries 

Autocraft 

MT-35 
Did not hold a charge, untested. 

IS 11 
Interstate 

Batteries 

Exide 

Group 24R 

Tested, died early and did not 

provide significant data. 

IS 12 
Interstate 

Batteries 

Duralast 

34-DLG 
Failed after 3 successful cranks. 

IS 13 
Interstate 

Batteries 

Interstate 

MT-34 

Tested, died early and did not 

provide significant data. 

IS 14 
Interstate 

Batteries 

Interstate 

MT-35 
Did not hold a charge, untested. 
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