
Hardware and Software Framework for an Open

Battery Management System in Safety-Critical

Applications

M. Akdere, M. Giegerich, M. Wenger, R. Schwarz, S. Koffel, T. Fühner, S. Waldhör, J. Wachtler

V.R.H. Lorentz, M. März

Fraunhofer IISB, Erlangen, Germany

Vincent.Lorentz@iisb.fraunhofer.de

Abstract – Lithium ion batteries are a common choice for many
use cases, ranging from medical devices to automotive and

airborne applications. Despite their widespread application,
lithium ion batteries still remain an expensive, yet sensitive
component within these systems. In order to maintain the

operability of the battery system over its designated service life
an appropriate battery management system (BMS) is required.
The development of such a BMS is a challenging task, as various

technological, environmental and application-specific aspects
have to be considered. Especially safe and reliable operation of
the battery system is an important and critical issue in this

context. Besides these safety critical aspects, the BMS also
includes extensive non safety related components and functions.
Therefore, in order to fulfill safety-critical requirements, it is

mandatory to keep the respective hardware and software
components isolated. Redundancy, partitioning and the
implementation of diagnostic functions at several software layers

and different hardware partitions are the mechanisms for
ensuring the integrity of the system. For performance and
economical reasons, these techniques have to be tailored to the

application. Based on a real-time operation system, a flexible
and extensible strategy for a software framework with minimal
code size, lean interfaces and few dependencies is introduced.

The use of a dedicated BMS-Engine with a partitioned database
enables the implementation of a stringent safety concept, which
is discussed and demonstrated to be feasible.

I. INTRODUCTION

A battery management system (BMS) serves a multitude of

purposes for which it is comprised of various functions and

sub-modules. While some of these objectives such as

extending the lifetime of the battery pack or the improvement

of the overall system performance are not related to safety

[1], many others are directly targeting the safe operation of

battery cells and must be classified as safety-relevant.

Moreover, the determination of cell parameters, the

prediction of the battery behavior as well as the

implementation of the according algorithms on an embedded

system still pose quite a challenge. However, the required

accuracy, rate and reliability of measured and estimated

signals have to comply with the safety goals. Furthermore,

the development of battery chemistries is rapidly proceeding.

Consequently, not only the cell characterization and

parameter identification are still in the focus of research, also

their evaluation methods for the battery state are subject to

constant change. On the hardware side, the available

integrated electric circuits for cell monitoring and balancing

are also proceeding and especially advances in the data

communication interface require adaptions on BMS hardware

and software. Consequently, the development of battery

management systems goes with a continuous change of

requirements or, at least, reappraisal of safety-relevant

aspects.

All of these issues hinder the predetermination of generic

battery management system architectures and currently a

change in the application requirements often causes

considerable effort for system adaption or even redesign.

Proprietary commercial-of-the-shelf BMS hardware and

software sytems are mostly complex and large systems that

often can not be adapted to meet the individual requirements.

For developing, testing, evaluation and benchmarking of

battery system components, an easy-to-use, adaptable and

extensible platform facilitates the revelation of critical issues

in a timely manner and so helps to reduce costs.

The Fraunhofer IISB has developed a free, open and

flexible research and development platform, foxBMS, for

battery management systems. The general features of

foxBMS are introduced in [2]. It includes all hardware and

software components that are required for mobile and

stationary applications using modern rechargeable

electrochemical energy storage systems (e.g., lithium-ion

batteries, redox-flow batteries, super capacitors). The

foxBMS comprises two microcontrollers and duplicated

peripheral hardware for the adaption of redundant

components. The hardware and software architecture

simplifies the development of BMS components in a live

environment. This paper focuses on the safety aspects and

features provided by foxBMS. It demonstrates the flexibility

and extensibility of the platform in adapting error handling

and safety-critical components to different hardware and

software concepts.

II. SAFETY-RELATED SYSTEM DESIGN

A. Safety Features and Goals of the BMS

Keeping the battery cells in the safe operating area (SOA)

is a safety goal of the BMS. Absolute maximum limits for the

specific battery chemistry are usually stated in the datasheet

by the battery manufacturer. To prevent the use of the battery

beyond these limits, the BMS will rigorously open the

contactors in the case of harsh limit violations. This measure

has to be regarded as the last line of defense to enforce the

SOA. In normal operation an unexpected load drop to the

attached power electronics is avoided by an additional

software functionality called “state of function” (SOF), which

provides a metric for the current capability of the battery

pack. For example, to prevent an accelerated degeneration of

the battery materials (aging) through operation near the limits

given by their electrochemical properties the SOF is reduced.

Especially fast charging at low temperatures leads to

accelerated aging [3]. To attenuate these conditions, the

lowered current capability, i.e. the state of function (SOF), is

calculated and communicated to other control units. The

operator or the supervisory control unit is encouraged to

respect these suggested limits, but violation of the current

ranges is not immediately resulting in an opening of the

contactors, unless it is configured to do so. The measurement

of cell voltages, cell temperatures and the battery current, as

well as the detection and handling of SOA-violations within a

given time are safety-critical tasks. In an airborne application,

where in extreme cases the full availability of the system

must be ensured, the operating area has to be widened at the

expense of batteries health state. A typical automotive

application would rather prefer to enter a limp-home mode

with reduced system performance. Instead, a stationary

application would use more sensitive settings for the safe

operating area, as the long-term availability of the battery

packs is of major importance. While the SOA definitely is a

safety goal of the battery system, derating functions (SOF)

have to be evaluated for possible relevance to safety of the

overall system. Safety measures for failure cases have to be

implemented in all related tasks (i.e. measurement tasks,

estimation algorithms and regulation tasks). However, system

dynamics, noisy measurements and presence of uncertainties

in the model-based algorithms prevent a reliable diagnosis.

Thus, additional measures for cross checking and verification

are implemented to increase the reliability and robustness of

the battery state monitoring. For example, an imprecise cell

voltage measurement can be supplemented by a coulomb

counter to estimate the SOC. Another example is the use of

software diversity based on different kinds of cell models for

state estimations, like electrical-circuit models, physics-based

statespace models or electrochemical models as described in

[1,4].

B. General Safety Methods

Like in any safety-critical embedded system, the

monitoring of critical signals is the key issue to complying

with system requirements and to prevent potential hazards.

All involved components for data acquisition, data processing

and system control have to be designed accordingly.

Redundancy, partitioning and failure detection are among the

main techniques to improve availability, robustness and

reliability of the system. However, the development and

certification of safety-critical applications is very expensive.

To reduce the costs, safety-critical components are

encapsulated, and safety measures can hence be restricted to

the respective parts. Nevertheless, freedom from interference

have to be ensured between the replicated or partitioned

components. An example is the use of multi-core controllers.

Safety-critical software is replicated and partitioned on

multiple cores. This concept improves the system integrity,

but still cannot provide the required isolation at the point of

shared resources in the microcontroller (e.g., memory access,

clock system and power supply). When the safety-related

system requirements impose a design with strict separation of

the computational system, downsizing the main controller to

a single core and outsourcing of integrated features pose a

possible solution. However, this measure is also directly

related to costs and system complexity. Moreover, safety-

critical functions and diagnostics have to be implemented in

different abstraction layers and hardware partitions.

C. Safety-Related Methods of foxBMS

While the open system architecture of foxBMS is readily

applicable to a wide range of BMS applications, its flexibility

and extensibility allow for a straightforward integration of

different safety strategies, for example, to investigate their

behavior or impact on the system performance. This is

supported by inter-controller communication and

synchronization functions. Furthermore, the framework

supports the integration of newly developed, potentially

immature software modules and algorithms. As part of this

framework, safety-critical functions and diagnostics are

implemented at different layers and hardware partitions (Fig.

1). In addition, defined interfaces allow easy integration of

application-specific extensions and relocation of functions to

other partitions. This allows the integration of diagnostic

functions and the described methods of redundancy and

partitioning of hardware and software components in

different ways.

III. HARDWARE ARCHITECTURE

The hardware topology of a BMS for lithium-ion batteries

comprises the following components [5]:

 cell monitoring (e.g., temperature, voltage monitoring)

 passive or active cell balancing

 current measurement

 contactor and interlock control and monitoring

 isolation monitoring

 communication interfaces to peripherals and the

environment, e.g. user or a superior control unit

A. Peripheral Hardware Components

The hardware of foxBMS consists of the BMS-Master,

which is the main control and computation unit, and the

BMS-Slaves mounted on each battery module to monitor the

battery cell voltages and temperatures.

As shown in Fig. 1 and Fig. 2, the BMS-Master follows a

redundant topology. It uses two independent microcontroller

units (MCU) based on an ARM Cortex-M4F core. Both

MCUs are supplied independently and have their own

physical interface to the battery monitoring. The BMS-

Slaves, each of which is based on two state-of-the-art

LTC6804-1 monitoring ICs, read each battery cell

redundantly. This monitoring topology allows the

Fig. 1: foxBMS hardware topology and software partitions

primary MCU to perform data acquisition and further

computations, whereas the secondary MCU is able to check

for the safe operation area of the battery cells independently.

In the case of any violation of the safe operating area, each

MCU is able to control and read the feedback of the common

interlock line. Opening the interlock line is designed to

immediately open the main contactors of the battery system

to prevent the battery from any damage. In addition, an

isolated interface between the two MCU exists for diagnostics

and data distribution. The acquired data of primary and

secondary cell monitoring lines from the BMS-Slaves are

provided to both the primary and secondary MCU

respectively. In case of a device failure in one of the

monitoring lines, both MCUs are able to process the acquired

data of one monitoring line. Alternatively or additionally, the

second MCU can operate the associated monitoring ICs in a

different operation mode. While the digital filters of the

primary monitoring ICs are configured for higher noise

reduction and lower data acquisition rates of all cell voltages,

e.g. 50 Samples/s, the secondary MCU can measure the

voltage of a specific cell in fast mode up to a rate of

2 kSample/s. This allows the verification and online tracking

of cell parameters. For example, if the frequency spectrum of

the current contains adequate components, the drift of the

internal cell resistance can be detected to estimate the state of

health (SOH).

Fig. 2: PCB of foxBMS BMS-Master board

B. Cell Monitoring

Every battery cell is monitored by a BMS-Slave unit on the

battery module level. The circuit of the BMS-Slaves is

designed for battery modules consisting of 12 cells. The

BMS-Slaves use a dual monitoring IC concept, where the

voltage of every cell is read by two ICs redundantly. In

addition, temperature sensors, installed inside the battery

module, are read by these monitoring ICs. To increase safety,

each IC is connected to its own temperature sensors. The

proper operation of the monitoring ICs and the

communication interfaces are verified by built-in diagnostics

and cyclic redundancy checks (CRC). Optionally a single

monitoring concept can be applied to both MCUs by using

separate SPI buses (Fig. 1).

Fig. 3: Dual MCU controlled balancing circuit in the BMS-Slaves

C. Balancing Control

To prevent the balancing circuit from deep discharging any

battery cell in the case of a single failure of a balancing

MOSFET, an XOR control topology is implemented (Fig. 3).

To enable cell balancing of a specific battery cell, the control

pins of the balancing circuit must not be equal. This enables

any of the BMS-Master MCU to stop the balancing process in

the event of a device failure (e.g., if the balancing MOSFET

is shorted) or a dropout of the primary MCU. Therefore, this

control technique is also suitable for fail operational systems.

D. Dual Microcontroller System

The STM32F429 microcontroller supports several

advantageous features for a safety-related system design [6].

Listing the important ones:

 one window watchdog and one independently clocked

watchdog

 memory protection unit (MPU)

 hardfault exception (detection of systematic software

faults, random and transient hardware faults)

 port locking mechanism

 hardware based CRC unit

 2 priority-based DMA controller

 DMA-based SPI communication with automatic CRC

error checking

E. Watchdog Concept and Synchronization

Each MCU integrates a window watchdog and an

independent watchdog. The window watchdog is clocked by

the main clock of the MCU and can be adjusted with high

time resolution. It primarily addresses the detection of

software runtime faults. Failure modes of the clock system

are detected by the independent watchdog, which is clocked

by a dedicated clock with less accuracy. However, an external

watchdog is mandatory for further reducing common failure

modes (e.g., common power supply). For this purpose, both

MCUs are connected by an isolated SPI-bus for data

exchange and an isolated pulse-width modulation (PWM)

signal for system synchronization.

IV. SOFTWARE ARCHITECTURE

A. foxBMS Software

The layered model and the core components of the

foxBMS software are described in detail in [2]. In this paper a

short summary is given.

The real-time operating system is one of the core software

components. In foxBMS, FreeRTOS is used, which offers

scheduling with tasks (preemptive multitasking), queues and

synchronization techniques like mutual exclusions (mutexes)

and semaphores. The hardware abstraction layer on the

lowest level implements interfaces to hardware peripherals,

e.g., CAN bus, SPI bus and digital inputs and outputs. A

second layer of abstraction relates to external circuitry like

integrated circuits for battery monitoring and isolation

monitoring devices. The respective sensor data is stored in a

database that handles access to these data with queueing and

locking mechanisms. The application-specific functionalities,

like SOC and balancing algorithms, battery lifetime

predictions and similar routines are located in a third top-

level layer. This layer is subdivided in the BMS-Engine, i.e.

the safety-relevant components, and user-specific

components. The BMS-Engine includes all safety-relevant

modules, a centralized database and those components that

are to be invariant and unaffected by application-specific

implementations. The benefit of a centralized database is the

reduced complexity of the interfaces, since all components

store and load their relevant data in this component (Fig. 4).

Furthermore, the temporal interference between data

producers and data consumers is minimized with the help of

the queuing and locking mechanisms accompanied with the

double buffer storage. This also facilitates an independent

diagnostic functionality described later in this paper.

B. Diagnostics and Safety-Related Software Strategy

Like for the hardware, redundancy and partitioning are best

practice for safety-critical software. There, the goal is to

increase system availability, reliability and robustness.

Software modules can also be replicated (diversity or

homogeneous redundancy) and partitioned on both MCUs

when input and output signals are interfaced (Fig. 6). For

instance, replicas of battery state algorithms can be computed

on both MCUs and compared at the same rate as both are

equally performant. Due to replication of peripheral hardware

and microcontrollers, the verification of software drivers is

provided for the cell monitoring, current sensor and the

interlock monitoring. The overall system consistency and

timing constraints are verified by both controllers. The

primary MCU serves as a test platform and is meant to

operate as the actual battery management with diagnostics.

The secondary MCU cross-checks the limits of the safe

operating area of the battery cells. It also executes diagnostic

functions that require the highest grade of isolation and

integrates redundant software modules (cell monitoring,

balancing control and interlock states). The centralized

database in the BMS-Engine provides an asynchronous

interface for data exchange. It supports three different levels

of safety-related software modules and diagnostic services

with different isolation characteristics.

 BMS Diagnostics:

High-priority task in the context of operating system

Fig. 4: data-provider and data consumer tasks and database

on the primary MCU, e.g. SOA diagnostics (optional

implementation on the second MCU for redundancy

purposes)

 System Diagnostics:

System monitoring and diagnostic functions integrated

in the primary MCU with a higher grade of isolation to

the context of the operating system (optional

implementation on the second MCU for redundancy

purposes)

 System Consistency Check:

Overall system monitoring and diagnostic functions

integrated in both MCUs

C. Diagnostics and Safety-Related Software Architecture

The foxBMS software architecture adopts the described

safety mechanisms in combination with the specific features

of the real-time operating system FreeRTOS and the

architecture of the ARM Cortex M4 controller to establish a

flexible and extensible safe system with different topologies.

The key aspects are:

 Temporal partitioning with real-time interrupts (RT-

interrupts)

 Spatial partitioning of tasks

 Memory and peripheral access restrictions of

FreeRTOS and tasks [7,8]

Fig. 5: Dataflow and priority assignment of tasks, BMS Engine with
database and RT-Interrupts

One property of FreeRTOS is that global interrupts are

never disabled. Synchronization methods increase the

interrupt threshold to a certain adjustable level. Interrupts

above this level (real-time interrupts) can bypass FreeRTOS

which reduces timing dependencies. This allows for the

integration of software modules with temporal isolation.

Another responsive feature of FreeRTOS with enabled

memory protection unit (MPU) mode is that it provides

spatial partitioning of the kernel and tasks. STM32F429

supports two privilege levels (privileged and non-privileged

mode) and eight MPU regions with eight sub-regions each.

The FreeRTOS kernel permanently occupies the first four

region registers and the remaining four registers are dedicated

to the task to set up their own stack usage, access modes and

restrictions to other memory regions and peripherals [9].

When different regions in the MPU configuration overlap, a

higher region register overwrites the access rights of a lower

one. This means, that by configuration the access rights of

tasks can be restricted or extended above the barriers of

FreeRTOS kernel. Additionally, in the context of a RT-

interrupts, software modules can be implemented which are

isolated from the FreeRTOS kernel.

D. Implementation Details of BMS-Engine and Database

As shown in Fig. 5, the database task in the BMS-Engine is

assigned to a priority greater than the highest application task

priority and is periodically called at the highest frequency

(e.g., 1 ms). Its main purpose is to wait for a transfer request

(message queue) from a task and stay in blocked state in the

meantime. Tasks are representing data consumers and data

providers with appropriate access to lower level software

drivers. After receiving a request, the database enters the

running state, verifies the requesting task, checks the data

consistency and transfers the data. Tasks accessing the

database are instantly blocked after filling the message queue

with the required data (task-ID and signature, pointer to data-

buffer) and continue after transfer of data is completed. This

blocking procedure is the same for data providers and

consumers. To assign the priority of the database task above

all consumer and provider tasks has the advantage that the

database task is never suspended by them. The transfer of

data is very efficient as there are no timing delays, which

would be the case if a task were to send and wait for a reply

[7]. In addition, the data is copied directly (pass by reference)

from the provider task to the database task or from the

Fig. 6: Data isolation of tasks, database and real-time interrupts

database task to the consumer task without a buffering in the

message queue as the tasks accessing the database are

blocked and unable to corrupt the data in the meantime.

Furthermore, the number of system calls and the required

context switching times are reduced. As an example,

acquisition of all cell voltages of 14 serially connected battery

modules with 12 cells per module at a rate of 50 Samples/s,

results in a transmission rate of 17.5 kByte/s (350 Bytes per

transfer). To store the data in the database, 50 data transfers

and 100 task switches per second between provider and

database task are required. The same applies to all further

read accesses (e.g., from communication or diagnostic tasks).

Every data transfer takes about 60 µs.

The database task is prepared for interfacing custom

functions in a separate partition (Fig. 6). This facilitates the

implementation of additional diagnostic and monitoring

features above all application task priorities within the

context of FreeRTOS. At this point, the first level of

diagnostics (BMS-Diagnostics) is implemented. The MPU

configuration of application tasks prohibits accessing the

memory area of the database. In contrast, the MPU of the

database task is configured with read and write access rights

to private data of application tasks. Furthermore, database and

FreeRTOS are restricted to access the data region of a

separate software module which is triggered by a real-time

interrupt. In this context the second level of diagnostics

(System Diagnostics) is integrated with additional access

rights. Due to double-buffering of the data-blocks the

subroutine of a real-time interrupt is able to gain access to

consistent data at any time. System Diagnostics, System

Consistency Checks and software modules (and replicas) in

this context are protected against faulty application tasks and

maintain a higher level of isolation. All required input and

output signals are interfaced by the centralized database.

E. System Consistency Check

 The watchdog system of a single MCU is not able to

detect all possible failure modes on its own especially due to

the common power supply. To overcome this problem, the

watchdog of each MCU serves as an external watchdog of the

other MCU. This functionality is implemented on both MCUs

as a part of the System Consistency Check in the third

diagnostics level. Moreover, the BMS-Engine transfers data

blocks via an SPI interface between both MCUs. Safety-

critical data blocks replicate the following information:

 Measured values of the cell voltages, cell

temperatures, battery current, balancing control and

monitoring

 Estimated values of battery states(SOC, SOF)

 BMS diagnostics (SOA-violations)

 System monitoring (task states and notifications with

timestamps, interrupt counter, etc.)

According to the adapted peripheral hardware (for

redundancy and diversity purpose) and the required safety

measures, this allows the distribution and replication of

diagnostic functions and software modules on both

microcontrollers.

V. CONCLUSION

Redundancy, partitioning and the implementation of

diagnostic functions is suggested as a technique to improve

the safety integrity of a BMS. To address this, we have

introduced various solutions in adapting error handling and

safety-critical components to different hardware and software

concepts of a BMS. Based on the flexible and extensible

hardware architecture, and a centralized database, different

kind of designs for redundancy and partitioning are feasible.

As the hardware design and all software components are

open-source and freely available, investigations in different

safety strategies, the comparision of different model-based

algorithms and their effects on both the system performance

and the safety goals can easily be evaluated.

ACKNOWLEDGMENT

The research leading to these results has received

funding as part of the Energie Campus Nürnberg (“EnCN”)

which is financed by the State of Bavaria as part of the

program Bavaria on the move, and the SEEDs project which

is funded by the Bavarian State Ministry of Economic

Affairs, Infrastructure, Transport and Technology in the

framework of the Bavarian initiative for research and

development of technology in the energy sector.

REFERENCES

[1] Gregory L. Plett, “Battery Management Systems, Volume 1, Battery
Modeling”, 2015

[2] M. Giegerich, M. Akdere, C. Freund, T. Fühner, J.L. Grosch, S. Koffel,
R. Schwarz, S. Waldhör, M. Wenger, V.R.H. Lorentz, M. März,
“Open, Flexible and Extensible Battery Management System for
Lithium-Ion Batteries in Mobile and Stationary Applications”, IEEE
IES ISIE, June 2016

[3] B. Lunz, Z. Yan, J. B. Gerschler, D. Sauer, “Influence of plug-in hybrid
electric vehicle charging strategies on charging and battery degradation
costs”, Energy Policy, Volume 46, July 2012

[4] Waldhoer, S. “Development and Implementation of an Electrochemical
Battery Model,” Master’s Thesis, University of Erlangen-Nuremberg,
2015

[5] M. Brandl, H. Gall, M. Wenger, V. Lorentz, M. Giegerich, F. Baronti,
G. Fantechi, L. Fanucci, R. Roncella, R. Saletti, S. Saponara, A. Thaler,
M. Cifrain, W. Prochazka, “Batteries and battery management systems
for electric vehicles", Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2012 , vol., no., pp.971,976, 12-16,
March 2012

[6] “Managing memory protection unit (MPU) in STM32 MCUs”,
Application Node AN4838, http://www.st.com/st-web-ui/
static/active/en/resource/technical/document/application_note/DM0027
2912.pdf

[7] F. Bruns, D. Kuschnerus, A. Showk, A. Bilgic, “An Extensible
Partitioning Framework for Safety-Critical Systems”, ERTS2 2012
Embedded Realtime Software and Systems, February 2012
(http://web1.see.asso.fr/erts2012/...)

[8] B. Shah, B. Krishnamurthy, “Implementation of MPU for a Safe
FreeRTOS Frame-work”, International Journal on Recent and
Innovation Trends in Computing and Communication, IJRITCC, May
2015

[9] “FreeRTOS homepage.” [Online]. Available: http://www.freertos.org/

http://www.st.com/st-web-ui/
http://web1.see.asso.fr/erts2012/

