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Abstract – Lithium ion batteries are a common choice for many 
use cases, ranging from medical devices to automotive and 

airborne applications. Despite their widespread application, 
lithium ion batteries still remain an expensive, yet sensitive 
component within these systems. In order to maintain the 

operability of the battery system over its designated service life 
an appropriate battery management system (BMS) is required. 
The development of such a BMS is a challenging task, as various 

technological, environmental and application-specific aspects 
have to be considered. Especially safe and reliable operation of 
the battery system is an important and critical issue in this 

context. Besides these safety critical aspects, the BMS also 
includes extensive non safety related components and functions. 
Therefore, in order to fulfill safety-critical requirements, it is 

mandatory to keep the respective hardware and software 
components isolated. Redundancy, partitioning and the 
implementation of diagnostic functions at several software layers 

and different hardware partitions are the mechanisms for 
ensuring the integrity of the system. For performance and 
economical reasons, these techniques have to be tailored to the 

application. Based on a real-time operation system, a flexible 
and extensible strategy for a software framework with minimal 
code size, lean interfaces and few dependencies is introduced. 

The use of a dedicated BMS-Engine with a partitioned database 
enables the implementation of a stringent safety concept, which 
is discussed and demonstrated to be feasible. 

 

I. INTRODUCTION 

A battery management system (BMS) serves a multitude of 

purposes for which it is comprised of various functions and 

sub-modules. While some of these objectives such as 

extending the lifetime of the battery pack or the improvement 

of the overall system performance are not related to safety 

[1], many others are directly targeting the safe operation of 

battery cells and must be classified as safety-relevant. 

Moreover, the determination of cell parameters, the 

prediction of the battery behavior as well as the 

implementation of the according algorithms on an embedded 

system still pose quite a challenge. However, the required 

accuracy, rate and reliability of measured and estimated 

signals have to comply with the safety goals. Furthermore, 

the development of battery chemistries is rapidly proceeding. 

Consequently, not only the cell characterization and 

parameter identification are still in the focus of research, also 

their evaluation methods for the battery state are subject to 

constant change. On the hardware side, the available 

integrated electric circuits for cell monitoring and balancing 

are also proceeding and especially advances in the data 

communication interface require adaptions on BMS hardware 

and software. Consequently, the development of battery 

management systems goes with a continuous change of 

requirements or, at least, reappraisal of safety-relevant 

aspects. 

All of these issues hinder the predetermination of generic 

battery management system architectures and currently a 

change in the application requirements often causes 

considerable effort for system adaption or even redesign. 

Proprietary commercial-of-the-shelf BMS hardware and 

software sytems are mostly complex and large systems that 

often can not be adapted to meet the individual requirements. 

For developing, testing, evaluation and benchmarking of 

battery system components, an easy-to-use, adaptable and 

extensible platform facilitates the revelation of critical issues 

in a timely manner and so helps to reduce costs.  

The Fraunhofer IISB has developed a free, open and 

flexible research and development platform, foxBMS, for 

battery management systems. The general features of 

foxBMS are introduced in [2]. It includes all hardware and 

software components that are required for mobile and 

stationary applications using modern rechargeable 

electrochemical energy storage systems (e.g., lithium-ion 

batteries, redox-flow batteries, super capacitors). The 

foxBMS comprises two microcontrollers and duplicated 

peripheral hardware for the adaption of redundant 

components. The hardware and software architecture 

simplifies the development of BMS components in a live 

environment. This paper focuses on the safety aspects and 

features provided by foxBMS. It demonstrates the flexibility 

and extensibility of the platform in adapting error handling 

and safety-critical components to different hardware and 

software concepts. 

 

II. SAFETY-RELATED SYSTEM DESIGN 

 

A. Safety Features and Goals of the BMS 

 

Keeping the battery cells in the safe operating area (SOA) 

is a safety goal of the BMS. Absolute maximum limits for the 

specific battery chemistry are usually stated in the datasheet 

by the battery manufacturer. To prevent the use of the battery 



beyond these limits, the BMS will rigorously open the 

contactors in the case of harsh limit violations. This measure 

has to be regarded as the last line of defense to enforce the 

SOA. In normal operation an unexpected load drop to the 

attached power electronics is avoided by an additional 

software functionality called “state of function” (SOF), which 

provides a metric for the current capability of the battery 

pack. For example, to prevent an accelerated degeneration of 

the battery materials (aging) through operation near the limits 

given by their electrochemical properties the SOF is reduced. 

Especially fast charging at low temperatures leads to 

accelerated aging [3]. To attenuate these conditions, the 

lowered current capability, i.e. the state of function (SOF), is 

calculated and communicated to other control units. The 

operator or the supervisory control unit is encouraged to 

respect these suggested limits, but violation of the current 

ranges is not immediately resulting in an opening of the 

contactors, unless it is configured to do so. The measurement 

of cell voltages, cell temperatures and the battery current, as 

well as the detection and handling of SOA-violations within a 

given time are safety-critical tasks. In an airborne application, 

where in extreme cases the full availability of the system 

must be ensured, the operating area has to be widened at the 

expense of batteries health state. A typical automotive 

application would rather prefer to enter a limp-home mode 

with reduced system performance. Instead, a stationary 

application would use more sensitive settings for the safe 

operating area, as the long-term availability of the battery 

packs is of major importance. While the SOA definitely is a 

safety goal of the battery system, derating functions (SOF) 

have to be evaluated for possible relevance to safety of the 

overall system. Safety measures for failure cases have to be 

implemented in all related tasks (i.e. measurement tasks, 

estimation algorithms and regulation tasks). However, system 

dynamics, noisy measurements and presence of uncertainties 

in the model-based algorithms prevent a reliable diagnosis. 

Thus, additional measures for cross checking and verification 

are implemented to increase the reliability and robustness of 

the battery state monitoring. For example, an imprecise cell 

voltage measurement can be supplemented by a coulomb 

counter to estimate the SOC. Another example is the use of 

software diversity based on different kinds of cell models for 

state estimations, like electrical-circuit models, physics-based 

statespace models or electrochemical models as described in 

[1,4]. 

 

B. General Safety Methods 

 

Like in any safety-critical embedded system, the 

monitoring of critical signals is the key issue to complying 

with system requirements and to prevent potential hazards. 

All involved components for data acquisition, data processing 

and system control have to be designed accordingly. 

Redundancy, partitioning and failure detection are among the 

main techniques to improve availability, robustness and 

reliability of the system. However, the development and 

certification of safety-critical applications is very expensive. 

To reduce the costs, safety-critical components are 

encapsulated, and safety measures can hence be restricted to 

the respective parts. Nevertheless, freedom from interference 

have to be ensured between the replicated or partitioned 

components. An example is the use of multi-core controllers. 

Safety-critical software is replicated and partitioned on 

multiple cores. This concept improves the system integrity, 

but still cannot provide the required isolation at the point of 

shared resources in the microcontroller (e.g., memory access, 

clock system and power supply). When the safety-related 

system requirements impose a design with strict separation of 

the computational system, downsizing the main controller to 

a single core and outsourcing of integrated features pose a 

possible solution. However, this measure is also directly 

related to costs and system complexity. Moreover, safety-

critical functions and diagnostics have to be implemented in 

different abstraction layers and hardware partitions. 

 

C. Safety-Related Methods of foxBMS 

 

While the open system architecture of foxBMS is readily 

applicable to a wide range of BMS applications, its flexibility 

and extensibility allow for a straightforward integration of 

different safety strategies, for example, to investigate their 

behavior or impact on the system performance. This is 

supported by inter-controller communication and 

synchronization functions. Furthermore, the framework 

supports the integration of newly developed, potentially 

immature software modules and algorithms. As part of this 

framework, safety-critical functions and diagnostics are 

implemented at different layers and hardware partitions (Fig. 

1). In addition, defined interfaces allow easy integration of 

application-specific extensions and relocation of functions to 

other partitions. This allows the integration of diagnostic 

functions and the described methods of redundancy and 

partitioning of hardware and software components in 

different ways. 

 

III. HARDWARE ARCHITECTURE 

 

The hardware topology of a BMS for lithium-ion batteries 

comprises the following components [5]: 

 cell monitoring (e.g., temperature, voltage monitoring) 

 passive or active cell balancing 

 current measurement 

 contactor and interlock control and monitoring 

 isolation monitoring 

 communication interfaces to peripherals and the 

environment, e.g. user or a superior control unit 

 

A. Peripheral Hardware Components 

 

The hardware of foxBMS consists of the BMS-Master, 

which is the main control and computation unit, and the 



BMS-Slaves mounted on each battery module to monitor the 

battery cell voltages and temperatures. 

As shown in Fig. 1 and Fig. 2, the BMS-Master follows a 

redundant topology. It uses two independent microcontroller 

units (MCU) based on an ARM Cortex-M4F core. Both 

MCUs are supplied independently and have their own 

physical interface to the battery monitoring. The BMS-

Slaves, each of which is based on two state-of-the-art 

LTC6804-1 monitoring ICs, read each battery cell 

redundantly. This monitoring topology allows the 
 

 
Fig. 1: foxBMS hardware topology and software partitions 

 

 

primary MCU to perform data acquisition and further 

computations, whereas the secondary MCU is able to check 

for the safe operation area of the battery cells independently. 

In the case of any violation of the safe operating area, each 

MCU is able to control and read the feedback of the common 

interlock line. Opening the interlock line is designed to 

immediately open the main contactors of the battery system 

to prevent the battery from any damage. In addition, an 

isolated interface between the two MCU exists for diagnostics 

and data distribution. The acquired data of primary and 

secondary cell monitoring lines from the BMS-Slaves are 

provided to both the primary and secondary MCU 

respectively. In case of a device failure in one of the 

monitoring lines, both MCUs are able to process the acquired 

data of one monitoring line. Alternatively or additionally, the 

second MCU can operate the associated monitoring ICs in a 

different operation mode. While the digital filters of the 

primary monitoring ICs are configured for higher noise 

reduction and lower data acquisition rates of all cell voltages, 

e.g. 50 Samples/s, the secondary MCU can measure the 

voltage of a specific cell in fast mode up to a rate of 

2 kSample/s. This allows the verification and online tracking 

of cell parameters. For example, if the frequency spectrum of 

the current contains adequate components, the drift of the 

internal cell resistance can be detected to estimate the state of 

health (SOH). 
 

 
Fig. 2: PCB of foxBMS BMS-Master board 

 

 

B. Cell Monitoring 

 

Every battery cell is monitored by a BMS-Slave unit on the 

battery module level. The circuit of the BMS-Slaves is 

designed for battery modules consisting of 12 cells. The 

BMS-Slaves use a dual monitoring IC concept, where the 

voltage of every cell is read by two ICs redundantly. In 

addition, temperature sensors, installed inside the battery 

module, are read by these monitoring ICs. To increase safety, 

each IC is connected to its own temperature sensors. The 

proper operation of the monitoring ICs and the 

communication interfaces are verified by built-in diagnostics 

and cyclic redundancy checks (CRC). Optionally a single 

monitoring concept can be applied to both MCUs by using 

separate SPI buses (Fig. 1).  
 

 
Fig. 3: Dual MCU controlled balancing circuit in the BMS-Slaves 

 

 

C. Balancing Control  

 

To prevent the balancing circuit from deep discharging any 

battery cell in the case of a single failure of a balancing 

MOSFET, an XOR control topology is implemented (Fig. 3). 

To enable cell balancing of a specific battery cell, the control 

pins of the balancing circuit must not be equal. This enables 

any of the BMS-Master MCU to stop the balancing process in 



the event of a device failure (e.g., if the balancing MOSFET 

is shorted) or a dropout of the primary MCU. Therefore, this 

control technique is also suitable for fail operational systems. 

 

D. Dual Microcontroller System 

 

The STM32F429 microcontroller supports several 

advantageous features for a safety-related system design [6]. 

Listing the important ones: 

 one window watchdog and one independently clocked 

watchdog 

 memory protection unit (MPU) 

 hardfault exception (detection of systematic software 

faults, random and transient hardware faults) 

 port locking mechanism 

 hardware based CRC unit 

 2 priority-based DMA controller 

 DMA-based SPI communication with automatic CRC 

error checking 

 

E. Watchdog Concept and Synchronization 

 

Each MCU integrates a window watchdog and an 

independent watchdog. The window watchdog is clocked by 

the main clock of the MCU and can be adjusted with high 

time resolution. It primarily addresses the detection of 

software runtime faults. Failure modes of the clock system 

are detected by the independent watchdog, which is clocked 

by a dedicated clock with less accuracy. However, an external 

watchdog is mandatory for further reducing common failure 

modes (e.g., common power supply). For this purpose, both 

MCUs are connected by an isolated SPI-bus for data 

exchange and an isolated pulse-width modulation (PWM) 

signal for system synchronization. 

 

IV. SOFTWARE ARCHITECTURE 

 

A. foxBMS Software 

 

The layered model and the core components of the 

foxBMS software are described in detail in [2]. In this paper a 

short summary is given.  

The real-time operating system is one of the core software 

components. In foxBMS, FreeRTOS is used, which offers 

scheduling with tasks (preemptive multitasking), queues and 

synchronization techniques like mutual exclusions (mutexes) 

and semaphores. The hardware abstraction layer on the 

lowest level implements interfaces to hardware peripherals, 

e.g., CAN bus, SPI bus and digital inputs and outputs. A 

second layer of abstraction relates to external circuitry like 

integrated circuits for battery monitoring and isolation 

monitoring devices. The respective sensor data is stored in a 

database that handles access to these data with queueing and 

locking mechanisms. The application-specific functionalities, 

like SOC and balancing algorithms, battery lifetime 

predictions and similar routines are located in a third top-

level layer. This layer is subdivided in the BMS-Engine, i.e. 

the safety-relevant components, and user-specific 

components. The BMS-Engine includes all safety-relevant 

modules, a centralized database and those components that 

are to be invariant and unaffected by application-specific 

implementations. The benefit of a centralized database is the 

reduced complexity of the interfaces, since all components 

store and load their relevant data in this component (Fig. 4). 

Furthermore, the temporal interference between data 

producers and data consumers is minimized with the help of 

the queuing and locking mechanisms accompanied with the 

double buffer storage. This also facilitates an independent 

diagnostic functionality described later in this paper.  

 

B. Diagnostics and Safety-Related Software Strategy 

 

Like for the hardware, redundancy and partitioning are best 

practice for safety-critical software. There, the goal is to 

increase system availability, reliability and robustness. 

Software modules can also be replicated (diversity or 

homogeneous redundancy) and partitioned on both MCUs 

when input and output signals are interfaced (Fig. 6). For 

instance, replicas of battery state algorithms can be computed 

on both MCUs and compared at the same rate as both are 

equally performant. Due to replication of peripheral hardware 

and microcontrollers, the verification of software drivers is 

provided for the cell monitoring, current sensor and the 

interlock monitoring. The overall system consistency and 

timing constraints are verified by both controllers. The 

primary MCU serves as a test platform and is meant to 

operate as the actual battery management with diagnostics. 

The secondary MCU cross-checks the limits of the safe 

operating area of the battery cells. It also executes diagnostic 

functions that require the highest grade of isolation and 

integrates redundant software modules (cell monitoring, 

balancing control and interlock states). The centralized 

database in the BMS-Engine provides an asynchronous 

interface for data exchange. It supports three different levels 

of safety-related software modules and diagnostic services 

with different isolation characteristics. 

 

 BMS Diagnostics: 

High-priority task in the context of operating system 

 
Fig. 4: data-provider and data consumer tasks and database 

 



on the primary MCU, e.g. SOA diagnostics (optional 

implementation on the second MCU for redundancy 

purposes) 

 System Diagnostics: 

System monitoring and diagnostic functions integrated 

in the primary MCU with a higher grade of isolation to 

the context of the operating system (optional 

implementation on the second MCU for redundancy 

purposes) 

 System Consistency Check:  

Overall system monitoring and diagnostic functions 

integrated in both MCUs 

 

C. Diagnostics and Safety-Related Software Architecture 

 

The foxBMS software architecture adopts the described 

safety mechanisms in combination with the specific features 

of the real-time operating system FreeRTOS and the 

architecture of the ARM Cortex M4 controller to establish a 

flexible and extensible safe system with different topologies. 

The key aspects are: 

 Temporal partitioning with real-time interrupts (RT-

interrupts) 

 Spatial partitioning of tasks 

 Memory and peripheral access restrictions of 

FreeRTOS and tasks [7,8] 
 

 
Fig. 5: Dataflow and priority assignment of tasks, BMS Engine with 
database and RT-Interrupts 

 

 

One property of FreeRTOS is that global interrupts are 

never disabled. Synchronization methods increase the 

interrupt threshold to a certain adjustable level. Interrupts 

above this level (real-time interrupts) can bypass FreeRTOS 

which reduces timing dependencies. This allows for the 

integration of software modules with temporal isolation.  

Another responsive feature of FreeRTOS with enabled 

memory protection unit (MPU) mode is that it provides 

spatial partitioning of the kernel and tasks. STM32F429 

supports two privilege levels (privileged and non-privileged 

mode) and eight MPU regions with eight sub-regions each. 

The FreeRTOS kernel permanently occupies the first four 

region registers and the remaining four registers are dedicated 

to the task to set up their own stack usage, access modes and 

restrictions to other memory regions and peripherals [9]. 

When different regions in the MPU configuration overlap, a 

higher region register overwrites the access rights of a lower 

one. This means, that by configuration the access rights of 

tasks can be restricted or extended above the barriers of 

FreeRTOS kernel. Additionally, in the context of a RT-

interrupts, software modules can be implemented which are 

isolated from the FreeRTOS kernel. 

 

D. Implementation Details of BMS-Engine and Database 

 

As shown in Fig. 5, the database task in the BMS-Engine is 

assigned to a priority greater than the highest application task 

priority and is periodically called at the highest frequency 

(e.g., 1 ms). Its main purpose is to wait for a transfer request 

(message queue) from a task and stay in blocked state in the 

meantime. Tasks are representing data consumers and data 

providers with appropriate access to lower level software 

drivers. After receiving a request, the database enters the 

running state, verifies the requesting task, checks the data 

consistency and transfers the data. Tasks accessing the 

database are instantly blocked after filling the message queue 

with the required data (task-ID and signature, pointer to data-

buffer) and continue after transfer of data is completed. This 

blocking procedure is the same for data providers and 

consumers. To assign the priority of the database task above 

all consumer and provider tasks has the advantage that the 

database task is never suspended by them. The transfer of 

data is very efficient as there are no timing delays, which 

would be the case if a task were to send and wait for a reply 

[7]. In addition, the data is copied directly (pass by reference) 

from the provider task to the database task or from the 

 
Fig. 6: Data isolation of tasks, database and real-time interrupts 

 



database task to the consumer task without a buffering in the 

message queue as the tasks accessing the database are 

blocked and unable to corrupt the data in the meantime. 

Furthermore, the number of system calls and the required 

context switching times are reduced. As an example, 

acquisition of all cell voltages of 14 serially connected battery 

modules with 12 cells per module at a rate of 50 Samples/s, 

results in a transmission rate of 17.5 kByte/s (350 Bytes per 

transfer). To store the data in the database, 50 data transfers 

and 100 task switches per second between provider and 

database task are required. The same applies to all further 

read accesses (e.g., from communication or diagnostic tasks). 

Every data transfer takes about 60 µs. 

The database task is prepared for interfacing custom 

functions in a separate partition (Fig. 6). This facilitates the 

implementation of additional diagnostic and monitoring 

features above all application task priorities within the 

context of FreeRTOS. At this point, the first level of 

diagnostics (BMS-Diagnostics) is implemented. The MPU 

configuration of application tasks prohibits accessing the 

memory area of the database. In contrast, the MPU of the 

database task is configured with read and write access rights 

to private data of application tasks. Furthermore, database and 

FreeRTOS are restricted to access the data region of a 

separate software module which is triggered by a real-time 

interrupt. In this context the second level of diagnostics 

(System Diagnostics) is integrated with additional access 

rights. Due to double-buffering of the data-blocks the 

subroutine of a real-time interrupt is able to gain access to 

consistent data at any time. System Diagnostics, System 

Consistency Checks and software modules (and replicas) in 

this context are protected against faulty application tasks and 

maintain a higher level of isolation. All required input and 

output signals are interfaced by the centralized database. 

 

E. System Consistency Check 

 The watchdog system of a single MCU is not able to 

detect all possible failure modes on its own especially due to 

the common power supply. To overcome this problem, the 

watchdog of each MCU serves as an external watchdog of the 

other MCU. This functionality is implemented on both MCUs 

as a part of the System Consistency Check in the third 

diagnostics level. Moreover, the BMS-Engine transfers data 

blocks via an SPI interface between both MCUs. Safety-

critical data blocks replicate the following information: 

 Measured values of the cell voltages, cell 

temperatures, battery current, balancing control and 

monitoring  

 Estimated values of battery states(SOC, SOF) 

 BMS diagnostics (SOA-violations) 

 System monitoring (task states and notifications with 

timestamps, interrupt counter, etc.) 

According to the adapted peripheral hardware (for 

redundancy and diversity purpose) and the required safety 

measures, this allows the distribution and replication of 

diagnostic functions and software modules on both 

microcontrollers.  

 

V. CONCLUSION 

 

Redundancy, partitioning and the implementation of 

diagnostic functions is suggested as a technique to improve 

the safety integrity of a BMS. To address this, we have 

introduced various solutions in adapting error handling and 

safety-critical components to different hardware and software 

concepts of a BMS. Based on the flexible and extensible 

hardware architecture, and a centralized database, different 

kind of designs for redundancy and partitioning are feasible. 

As the hardware design and all software components are 

open-source and freely available, investigations in different 

safety strategies, the comparision of different model-based 

algorithms and their effects on both the system performance 

and the safety goals can easily be evaluated. 
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