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Abstract—This paper explores the possible application of the
complex bandpass filter in Coriolis mass flow meter signal
processing. The method shows high robustness for frequency,
amplitude and phase tracking under noisy conditions, such as
those generated by two-phase (gas/liquid) flow. Simulations of the
new technique are compared with existing academic and
industrial signal processing solutions to evaluate their relative
performance.
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I. INTRODUCTION

Coriolis Mass Flow Meter (CFM) is the most widely used
metering technology which can directly measure the mass of
the fluid flow [1]. A CFM consists of a mechanical, vibrating
flowtube, and an electronic transmitter which generates
measurement data and controls the flowtube vibration by
generating an in-phase drive signal. Signal processing of CFM
is thus challenging [2]: the amplitude, frequency, phase and
phase difference of two sinusoidal sensor signals must be
tracked to high precision, and with minimum delay, to ensure
good flowtube control and accurate measurement. For
example, Fig. 1 (from [3]) shows a timing diagram of the
response of a transmitter to flow tube data. Here, the delays
induced by ADC and DAC operations, filtering, data
processing and phase synchronization combine to create a lag
of three flowtube resonant cycles between the raw data and the
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Fig. 1. Timing diagram of Coriolis signal processing (from [3]).

drive signal response. Under normal operating conditions, such
a delay rarely causes any difficulty. However, increasingly
Coriolis meters are being applied to more difficult fluids, in
particular liquid/gas mixtures [1]. In these conditions the
frequency and amplitude of the sensor signals vary much more
rapidly, and the ability of tracking algorithms to follow these
changes with high accuracy and minimum delay becomes
increasingly important. While the system described in [3] can
indeed maintain flowtube vibration and generate useful
measurement data in the presence of two-phase flow, there is
significant scope for improving performance by finding fast
sinusoid tracking algorithms which are robust to noise and
rapid parameter variation.

A range of CMF signal processing techniques have been
developed in academia and industry ([4]-[7]). Techniques
include Adaptive Notch Filters (ANF), Hilbert Transforms, the
Discrete-Time Fourier Transform (DTFT), and Digital Phase
Locked Loops (DPLL). However, previous work has mostly
excluded an analysis of dynamic response and performance
under noisy conditions. In this paper a new approach,
employing the Complex Bandpass Filter (CBP), is used to track
frequency, amplitude and phase simultaneously. The CBP
performance is compared with ANF and Hilbert transform
methods in simulations of noisy and rapidly-varying sensor
signal data.

II. COMPLEX BANDPASS FILTER

The Complex Bandpass Filter is used in a wide range of
communication systems ([8], [9]) and also in the biomedical
area [10]. Conventionally, a digital CBP can be simply derived
from a low-pass filter by multiplying a ‘shift’ complex factor

e’% to the real coefficients of the low-pass filter. This is
equivalent to applying the substitution [11]:

2z =z"'(cos@ + jsin @) (1)
so that the transfer function becomes:

Hreal (Z)
=Hg(2)+ jH,(2)

2=t (cosO+jsin0)
chmplex ()C) (2)

The bandwidth of the CBF is twice that of the original filter,
but other properties of the filter remain the same. The CBP’s



central frequency is shifted to the desired value of 6. Fig. 2
shows a pole-zero plot illustrating the change of poles when a
CBF is created from a first-order real low-pass filter [11]:

Fig. 2. Pole rotation of a first-order real transfer function to complex filter
(from [11])

Passing a (real) input signal through the newly formed CBP
generates Hilbert pair (i.e. orthogonal) outputs. The Hilbert pair
form an analytic signal so that amplitude, frequency and phase
can be readily calculated. Our design begins with an elliptic
low-pass filter since it can achieve a fast cutoff using a lower
order than other conventional filters. The range of resonant
frequencies for the intended CMF flowtube is 80 — 100 Hz.
Accordingly, the original low pass filter was designed as a 5
order elliptic filter with a 2 kHz sampling frequency, 0.1 dB
maximum passband ripple, and a 50 Hz passband edge
frequency. Having created this filter, the coefficients are
multiplied by the complex 90Hz ‘shift’ factor, resulting in a
new, complex bandpass filter, as shown in Fig. 3:
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Fig. 3. Original low-pass filter and CBP filter frequency response.

Having created the CBP, the amplitude, frequency, phase
and phase difference of the two Coriolis sensor signals are
calculated as follows. Note that as parameters values are
calculated from the CBP generated analytic form, the equations
are similar to those used with the Hilbert transform approach
[5]. We assume the input sensor signals are:

X, =4, sin(wt +¢/2)

. )
x, = A, sin(et — ¢/ 2)

where 4; and A, are the amplitudes of the two sensor signals, @
is their common frequency, and ¢ is the phase difference

between them. Passing the signals through CBP we obtain
complex analytic signals as follows:

X1, = A[cos(@t + ¢/ 2) +isin(ot + ¢/ 2)] = 4’ @ W
X, = Ay[cos(@t — ¢/ 2) +isin(ot — ¢/ 2)] = Aye’ @D
Then taking the conjugate terms we get:
X, XEZAIQJ((OHWZ) XAze—j(wt—WZ) — 4 XAzej¢ 5)

Assuming here for brevity that the two input signals amplitude
are the same (4; = A>), equation (5) is simplified to:

Xi, X Xy, = A% (cos ¢+ j sin ) (©)
The phase difference is then calculated using:
¢ = arg(x, xxy,) ™

Also the amplitude can be obtained using:
4 = 4y = abs(x,,) = abs(x,,) ®)

The frequency is derived from the change of phase between
adjacent samples from the first sensor signal:

m X x,, () = ae /@92 gl (O +912) ©)
— 2ol @t )
followed by:
ot, ~ot, | =arg(x, (1-1)xx, 1) (10)
Converting into Hz:
f:(a)tn—a)tn_l)sz an

2

where Fs is the sampling frequency.

In order to evaluate the performance of the algorithm under
difficult conditions, criteria have been selected for simulating
realistic parameter changes. Two difficult conditions are
considered in this paper: empty-to-full, and continuous two-
phase flow (which is discussed later in the paper).

The disturbance caused when a flowtube, initially empty, is
rapidly filled with liquid, for example in a batching application,
has been a significant Coriolis problem. This transition results
in rapid changes in all parameters simultaneously. Here in
simulation the frequency is changed from 100Hz down to 85Hz
(reflecting an increase in density from air to liquid), the
amplitude is changed from 0.3V down to 0.05V (reflecting an
increase in flowtube damping) and the phase difference
between the two sensors is changed from 0° up to 4° (reflecting
a change from no flow up to a high flow rate). All of these
changes occur simultaneously over a period of only 0.5s,
reflecting a typical ‘fast fill’ of a real flowtube. To assist
analysis, these parameter values changes are applied linearly
throughout the 0.5s, although in reality the changes would be
non-linear and accompanied by significant additional noise.

In our simulation, the sensors signals are passed through
the CBP and the calculations given above are used to track
amplitude, frequency and phase difference. Fig. 4, Fig. 5 and
Fig. 6 show the performance of each parameter:
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Fig. 4. Frequency tracking performance of CBP
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Fig. 5. Phase difference tracking performance of CBP
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Fig. 6. Amplitude tracking performance of CBP

As is clear from the figures, the CBP generates little noise
when subject to rapidly varying input signals. The main error
feature is the time delay between the true and tracked values,
which is roughly 15 ms for each parameter, and is caused by
the group delay of the filter.

III. SIMULATION OF TWO-PHASE FLOW CONDITIONS

Of the techniques discussed in section I, ANF combined
with DTFT, and the Hilbert transform method have been found
to perform best [4]. Accordingly, here we compare CBP with
these two methods under simulated two-phase flow conditions.

A. Modified Random Walk Model for two-phase flow

In [18], the authors used a Random Walk Model (RWM) to
generate time-varying input sensor signal as follows:

v (n) = A(m)sin[2znf (n)/ f, +$(n)/ 2]+ 0, -¢(n)
Vo (n) = A(n)sin[2znf (n)/ f, —d(n)/ 2]+ o,, -e,(n)
An)y=An-)+o,-e (n) (12)

fm)y=fn=-D+o,-e(n
¢(n)=¢(n=1)+c,-e;(n)

where y; and y, are the simulated sensor signals, with common
but time varying amplitude A4, frequency f, and phase
difference ¢ , and where f; is the sample rate for simulation.
e(n), e;(n), ey(n), es(n) and e4(n) are uncorrelated white

noise processes. o, , o,, are the gains for the noise on each

el»
input signal, ando ,, o, and o, T4 are the noise gains for

each sine wave parameter. Together, these parameters
determine the evolution of the simulated signal over time.

However, this model has the disadvantage that there are no
limits on the instantaneous rate of change of the parameter
values, as the random sequences are unfiltered. In any real
CMF there are physical limitations on the rate of change of
parameter values due to mechanical inertia, limited fluid
velocities and so on. To provide a more realistic simulation, we
use a Modified Random Work Model (MRWM) by defining
boundaries as follows:

(1) = Ay (m)sin2znfy(n) ] f, +¢(n)/ 2]+ 0,y -, (n)
Y2(n) = 4 (m)sin[27nf; ()| £, ~ ¢y (1)1 2]+ 6, &5 (n)
A(n) = H ,(n)* A(n)

fi(w)=H ;(n)* £ (n)

¢y (n) = Hy(n)* $(n)

(13)
A(n) = (Amax ;A'min) + (Amax ;Amin) -eA(n)
f(l’l) _ (f;nax ;fmin) + (fmax ;fmin) e (l’l)
d(n) = (¢max +¢min) + (¢max _¢min) e (n)

2 2



where e (n), e,(n), e (n),

correlated white noise sequences, o, ando,, are gain factors

es(n) and e;(n) remain un-

for the input noise, while H ,(n), H,(n) and H,(n) are low-
pass filters to limit the rate of change of parameter values.
Apax > Amin are maximum and minimum limits of amplitude,
where f ... fmins> Pmin and @, are the same for frequency
and phase difference.

The boundary limited amplitude, frequency and phase
difference are generated via white noise process and then
passed through a low-pass filter to constraint the rate of
change. Then based on the filtered parameters, the two sensor
signals are generated. Fig. 7 compares the output of MRWM
with that of RWM using the following constraints: f,;, = 85
Hz, f, . =100Hz, 4, =005V, 4., =035V, ¢. =0°
and ¢ .. =4°
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Fig. 7. Comparison between RWM and MRWM

From the figure, both the RWM and MRWM range over
the desired parameter values in a random fashion. However
MRWM excludes high frequency variations in parameter
values which are physically unrealistic, but which will
influence the error statistics and hence the performance
evaluation of each of the measurement techniques.

B. Comparing CBP with Hilbert transform and ANF

Based on signals generated using MRWM, simulations of
CBP have been carried out alongside the ANF and Hilbert
transform techniques. Fig. 8 shows the corresponding sensor
data supplied to the tracking algorithms.

Results are presented for the following methods:
e ANF, Hilbert, CBP for frequency tracking;

e DTFT (ANF based frequency), Hilbert, CBP for phase
difference tracking; and

e DTFT (ANF based frequency), Hilbert, CBP for
amplitude tracking.

The DTFT (ANF based frequency) and Hilbert
implementations are the same as those described in an earlier
paper [4]. Figs. 9 —14 show the tracking performance of
amplitude, frequency and phase difference for each of the
methods, for both noise free and for 20dB Signal-to-Noise
Ratio (SNR) simulations. In each case the tracked values are
shown in the upper graph, with the residual errors below.

The frequency tracking error has high bandwidth for the
Hilbert method, especially when input noise is added (Fig. 13);
the error has low bandwidth for the ANF method, while CBP
can accurately track frequency even with high noise.

For phase difference, the Hilbert method shows good
tracking with some time delay in the noise free case, but it
suffers from increasing error in noisy conditions. The DTFT
results are dominated by the frequency errors of the ANF upon
which it relies. CBP performs well for phase difference
tracking both in noise free and noisy condition.

Similarly, for amplitude, the DTFT method shows large
errors while the Hilbert method tracks relatively well with
some time delay in noise free condition and shows reduced
performance in noisy conditions. CBP again performs well
both in noise free and noisy conditions.

Normally the Hilbert method is used in conjunction with a
sharp bandpass filter to improve the noise performance. But
this introduces extra delay which worsens the dynamic
performance. So here only the pure Hilbert method is adopted
in order to compare performance.
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\\ ; \ I HM
So H U\u “’wﬂu\ﬂ“ Iy ‘ (Ul H mu
P ( »H I e“u”\m \m ﬁ
g \
o ‘\ ‘Mn \ \ MM ”N“M M\M “H‘U I ““\W ‘n
0.1 0.4 0.5 0.6 0.7 0‘8 0.9 _1
Time(s)
Sensor 2 Signal Generated by MISWM for ‘ZOdB SNB (0.035 Yrms)
\\ e ”\U
o H U\H MH\ \ m‘ Mg, H{ ‘ m
H‘H u M
£ ”‘ \MWM \HHMU” “W Uh“““““ i ‘H\ Ui
w \ ! ‘U

04 0.5 0.6 0.7 0.8 0.8 1
Time(s)

Fig. 8. Sensor 1 and sensor 2 signal generated by MRWM
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Fig. 9. Frequency tracking performance — no noise
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Fig. 10. Phase difference tracking performance — no noise
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Fig. 11. Amplitude tracking performance — no noise
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Fig. 13. Phase difference tracking performance with 20dB SNR (0.035 Vrms)
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C. Quantified Error Performance

To evaluate each method’s performance numerically, Table
I shows the Root Mean Squared Error (RMSE), calculated by:

RMSE = %,an“&(n) ~Y(n))* (14)

A

where Y(n) and Y(n) are the true and estimated values. The

results are shown in Table 1 for the noise free and 20dB SNR
experiments.

TABLE L QUANTIFIED TRACKING PERFORMANCE
RMSE in Noise Free Experiment
Method and DTFT (ANF) Hilbert CBP
Parameter
Frequency RMSE 2.3650 1.3799 0.9292
(Hz)
Phase Difference
RMSE ) 2.9230 0.3254 0.2247
Amplitude RMSE 0.08847 0.03161 0.02167
(\4)
RMSE in 20dB SNR Experiment
Method and DTFT (ANF) Hilbert CBP
Parameter
Frequency RMSE 23664 56.6221 17516
(Hz)
Phase Difference
RMSE ) 3.5563 0.4548 0.2502
g,‘;‘p"t“de RMSE 0.08848 0.03745 0.02280

IV. CONCLUSION

This paper has described the Complex Bandpass Filter
algorithm and has applied it to CMF signal processing. The
CBP can be derived from a simple low-pass filter with a
selectable central frequency and bandwidth. The calculation is
simple and computational cost is small. Due to the nature of
bandpass filter, the CBP can not only track amplitude,
frequency and phase difference at the same time, but it also
applies strong noise suppression, which is increasingly
important in CMF applications. Finally, its tracking
performance is generally superior to that of the DTFT (ANF
based) and Hilbert transform techniques.

For future work, further performance improvements
(particularly reduced time delay) will be sought by using a
Monte-Carlo search algorithm to design the low-pass filter for
minimum group delay. The authors’ research group is currently
developing a next-generation Coriolis transmitter architecture,
which will provide a real-time test bed for the new algorithms.
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