
Power control in cognitive radios, Internet-of 
Things (IoT)  for factories and industrial 

automation 
 

Ifiok E Etim, Jaswinder Lota, FHEA, SMIEEE    
School of Architecture, Computing & Engineering 

University of East London, London United Kingdom 
 

 
Abstract—Cognitive radio (CR) is fast emerging as a promising 
technology that can meet the machine-to machine (M2M) 
communication requirements for spectrum utilization and power 
control for large number of machines/devices expected to be 
connected to the Internet-of Things (IoT). Power control in CR as a 
secondary user can been modelled as a non-cooperative game cost 
function to quantify and reduce its effects of interference while 
occupying the same spectrum as primary user without adversely 
affecting the required quality of service (QoS) in the network. In this 
paper a power loss exponent that factors in diverse operating 
environments for IoT is employed in the non-cooperative game cost 
function to quantify the required power of transmission in the 
network. The approach would enable various CRs to transmit with 
lesser power thereby saving battery consumption or increasing the 
number of secondary users thereby optimizing the network resources 
efficiently.       

Keywords-Cognitive radio, M2M, IoT, non-cooperative game, cost 
function, power exponent 

 
I. Introduction 

Internet technology originally based on human-to human 
(H2H) communication is now seeing a paradigm shift with 
inclusion of objects as machines or devices that can sense and 
communicate with each other. With such devices expected to 
surpass 50 billion by 2020 [1], machine-to machine (M2M) 
communication is expected to be a key element in future 
networks. Internet-of Things (IoT) would be able to connect 
these different devices offering a whole range of new services. 
Therefore a future network has to cater for various M2M 
requirements such as spectrum, power and cost. With a huge 
volume of devices anticipated to be connected, spectrum 
scarcity is a constraint that will influence the quality-of service 
(QoS). Small cell design, interconnection of cellular network to 
other wireless networks and cognitive radio (CR) are some of 
the solutions that can address this problem [1]. Since CR offers 
a solution to increase the spectrum efficiency by allowing 
secondary users (SU) to access licensed spectrum as long it 
does not disadvantage or cause interference to degrade the 
required quality of service (QoS) of the primary user (PU) and 
can also be deployed across various spectral bands, it is 
increasingly seen as a viable solution for M2M in IoT [2]-[5]. 

However as such opportunistic spectral access by CRs is likely 
to introduce some level of interference to the PUs and lower the 
QoS, therefore one of the main functions of a CR network is to  
provide transmission opportunities for SUs, lowering 
interference to the PUs and simultaneously ensuring an optimal 
QoS for all users. Maintaining adequate power control is 
therefore crucial for realizing a   CR network.  

Game theory with its ability to solve complex and 
distributed problems is a novel approach wherein power control 
in CR network is modelled as a non-cooperative game [6]-[8]. 
In [1] a power control algorithm is proposed wherein the non-
cooperative game cost function is dependent on the distances of 
the PUs and SUs to the Cognitive Base Station (CBS). Another 
solution based on game theory is given in [10] which quantifies 
the signal-to-interference noise ratio (SINR) based on an 
iterative algorithm for 3G CDMA networks. In [11] the method 
is improved further for the Nash Equilibrium point i.e., when 
all the transmission power within the CR network reaches a 
steady equilibrium for fixed SINR, by incorporating an 
interference mitigation algorithm.  In [12] an improved iterative 
algorithm is proposed where addition of a chaos function leads 
to faster convergence for which comparisons with other 
iterative models is given.  Power control can be modelled as a 
non-cooperative game, to adaptively adjust the interference by 
increasing the penalty punishment in a cost function for the ith 
SU [13]. As the deployment of IoT would be across 
heterogeneous environments e.g. factories, inaccessible and 
confined areas such as for structural monitoring, free and urban 
spaces this opens up various challenges for CR deployment. 
Diverse operating environments affect the wireless signal 
propagation which vary power received due to the isotropic 
power loss, reflection, refraction, diffraction and scattering. The 
combined effects of which are quantified as the power loss 
exponent n. Presently to our best knowledge, no study has 
investigated power control in CR in these diverse environments 
and the power loss exponent is normally taken as a fixed value 
of 4 assuming as the worst case in the cost function [9]-[13]. 
This may lead to suboptimal solution as path losses in free space 
would be quite different as compared to factories and 
automation environments.  Path loss exponent is a measure of 
how fast the signal attenuates as a function of distance, is 
different for these environments in which the CR network 



would be deployed for which the values are given in Table 1
[14]. This paper investigates power control in CR within these 
different environments and focuses in the underlay scenario 
where the PUs and SUs transmit simultaneously in the network. 
The cost function in [13] is employed to analyze the power 
control of CR in these environments.  

 
Table 1. Path loss Exponents for different Environments [14]. 

 
The rest of this paper is organized as follows. In section II, the 
CR network model is presented. In section III, the power 
control in CR model based on non-cooperative game theory and 
its parameters are given. Section IV presents the numerical 
results followed by conclusions in section V. 

 
II. CR Network Model 

 
    The deployment of IoT across different environments require 
the use of adequate CBS with different ranges for transmission. 
These may include cognitive sensors [15] deployed within 
homes with range below 40m to central hubs in factories, 
sensors for automation or sensors on streets and traffic lamps 
where the range could be ~ 500m. In this research, we consider 
a single cell scenario where N SUs with CR terminals are 
operating in a network with a CBS together with one PU along 
with its Primary Base station (PBS). Such as in case of large 
factories wherein the CRs are positioned at different distances 
from the CBS to cover operational distances of these 
environments. It is assumed that there is no channel gain 
between the SUs and the PBS but there is a gain from the PU to 
the CBS denoted by as shown in the Figure 1. The link gains 
from SUs to CBS are given by hi, (i = 1……N) and the link 
gains  represents the gains from SU to PU since there is some 
level of interference from the SU to the PU. The same model is 
used to analyze the performance of the network across different 
operational environments based on Table 1. The link gains are 
related to the path distances from the CBS by [16]: 
                                        
                                                                     (1) 
 
where A is a constant gain factor and d is the distance from the 
CBS. If the power of the ith SU is given by  and the power of 
the PU is denoted by , then SINR of the ith SU is given by 
[13]: 

 
                                                       (2) 

 

 
 

Fig.1 Model of the CR network 
 
where  is an additive white Gaussian noise with zero mean 
and variance. To protect the SU and for a QoS, a SINR 
threshold is included such that:  
 
                                                       (3) 
 
In (3)  is the SINR threshold for a QoS. As long as equation 
(3) is not violated, the system will guarantee the required QoS. 
 

III. Non-cooperative Game Power Control  
 

   Game theory predicts the behaviors and choice of strategies 
of a group of players where every player has the goal of 
maximizing its own utilities. In a CR network the players are 
greedy and aim to increase power without consideration of 
other players so as to guarantee a QoS. This will increase the 
interference incurred by the PU thereby affecting its QoS. A 
non-cooperative game theory solves this problem by penalizing 
the contradicting CR thereby keeping them within acceptable 
limits. A non-cooperative game can be modelled in its basic 
form as [12]: 
 
                                                                     (4) 
 
where the cognitive user combination is I = {1,2……N}, the 
strategy space is given by P =    ×  × …… ×  and utility 
cost function of the ith SU is denoted as Ui (  ). If   is 
the power of all other SUs except the ith SU, the utility cost 
function is then given by [13]: 
 
        ) =           (5) 
 
In (5)  and  are are constant non-negative weighting factors 
used in the adaptive cost (penalty) control for the ith SU and 

 is the peak transmission power constraint of ith SU. The 
power and the power iteration are then given respectively as 
[13]:

 

Environment Path Loss Exponent, 
n 

Used path loss 
exponent 

In building, Line of 
sight (LOS) 

1.6-1.8 1.6 

Free Space 2 2 
Factory with 
obstructions, 
industrial automation 

2-3 3 

Shadowed Urban 
Cellular Radio 

3-5 4 



 

              =                 (6) 

 

                                                  (7) 

The iterative power algorithm in (7) will continue to update till 
every strategy in the game is maximized. At this point, no 
individual can increase its utility by changing its strategy on its 
own and this is the solution to the non- cooperative game which 
is known as the Nash equilibrium (NE) point. 
Definition 1: (NE): A power vector S= {    ×  × …… × } 
is the NE of a game G. For  if and only if  
 
                       ) ≥  ),                    (8) 
 
where  is the power of all SUs except SUi and is  the NE 
solution of SUi. 
 

IV. Simulation and Analysis 
 

         Simulations are taken in Matlab® R2015a for typical 
single cell network parameters. The IoT devices are placed with 
fixed distances of 20m, 60m, 90m, 130m, 190m, 220m, 290m 
and 350m from the CBS. This should effectively cover the 
operational distance of most CR deployed IoT devices such as 
wearable devices which should have range under 50m to hand 
held two way radios in factories. The noise power variance σ2 = 
5 x10-15 W. The PU transmission power po = 0.07 W and the 
SUs have an initial transmission power of pi = 5 x 10-10 W. The 
maximum allowable transmission power of the ith CR is pi

max = 
0.5 W. The SINR threshold is specified as γtar = 7dB and 2ai/bi 
= 3 x 10-4 as the initial value for iterations. The channel gains 
are given by (1), where A= 7.5 x10-3 and n = [1.6, 2, 3, 4] where 
each of the values represents the power exponents for various 
environments in Table 1. The transmit power of CR enabled IoT 
devices will be important for the success of such technology. 
This is because CR devices will seek to improve its own 
performance to optimal levels by increasing the transmitted 
power without which may interfere with other users.  The 
average transmitted power of a CR is crucial to the QoS for both 
the PU and SU.  If the average power is too high, it introduces 
interference into the network which in turn causes a degradation 
to the QoS of the PU, if the CR transmits low power, its own 
QoS may be affected if the signals have a lower signal-to-noise 
ratio (SNR) for the required bit-error rate (BER) resulting in 
dropped calls and or failed data transmission. As battery life for 
IoT devices is limited there is a need to ensure optimal 
transmission while preserving battery life in such devices. 
Figure 2 shows the average transmit power of the ith SU as it 
varies with the environment within which the CR network is 
based.  
     The simulations shows different powers levels required for 
effective transmissions while operating in different 
environments. This is because power degradation due to 
propagation losses are accounted for in the power loss 
exponents which the transmitted power has to overcome.  It can 

be deduced from the plots that the proper selection of the power 
loss exponent is crucial for adequate power transmission and 
effective battery life in IoT devices. The IoT device operating 
in line of sight (LOS) doesn’t need to transmit with the power 
loss exponent for an urban cellular radio as this will result in 
higher transmitted than what is required thereby reducing 
battery life. IoT devices should be able to adaptively select the 
power loss exponent based on its operational environment 
during sensing or initial link-up.  Within the right environment, 
the CR transmit power may be reduced without affecting the 
QoS or the available power may be used to accommodate more 
SUs without causing disruptive interference to the PUs. 

 
Fig. 2 Average Power required by the ith cognitive Radio 

 
     There is a risk that reducing transmit power may result in 
failed transmission as the IoT devices may not have sufficient 
power to reach the required SINR for effective transmission.  In 
Figure 3, the average SINR of the SUs in the different 
environments are plotted. The plot shows that based on the 
fixed distance of the IoT devices in the network and for the 
correct path loss exponent, the performance of all the radios 
where all above the target SINR required to guarantee the QoS 
for both the PU and SU. This means that if the correct path loss 
exponent for the IoT device is selected, the non-cooperative 
game cost function via the iterative algorithm ensures the 
required QoS is met.  
 

 
Fig. 3 Average SINR of the ith CR 



 
Normally otherwise a single value of n as 4 is chosen 
irrespective of the operating environment of the IoT devices. 
This does not always guarantee an improved performance of the 
CR IoT network. IoT devices will be deployed over different 
environments therefore the PU can be within any distance from 
the CBS.  The effect of varying the PU distances over a range 
of 10m-150m on SINR is investigated for different 
environments and its variation is plotted in Figure 4.  It is 
observed that the target SINR is achieved at distances of almost 
30 m, 45 m, 70 m and 65 m for n = 1.6,  2, 3 and 4 respectively.  
As the distance increases between the CBS and the PU, the user 
case of n values crosses the target SINR to ensure acceptable 
QoS as seen on Figure 4. The increase in PU and CBS distances 
is because the IoT devices with higher n transmit at higher 
powers as compared to lower values of n as shown earlier in 
Figure 2 thereby increasing the PU distances for the target 
SINR. After the crossover the SINR increases at the fastest rate 
for n = 4 than for others. In CR-IoT devices the PU distance 
affects the SINR and is crucial to selecting the correct path loss 
exponent specific to the environment. It gives an idea of the 
performance of the CR devices at various points and will help 
the device in the decision making of what environment in which 
it is deployed thereby always guaranteeing optimal SINR. 

 

 
Fig. 4 Average SINR vs PU distances with fixed IoT device distances 

 
 
In Figure 5, the variation in power required for optimal 
transmission by the ith IoT device at various distances is given.  
This shows the rate at which the transmit power of the ith CR 
increases with respect to the distance of the ith SU for each 
environment. It can be seen that the power required to transmit 
a signal increases at a faster rate as n increases. This is to ensure 
that the signal reaches the CBS without failure to overcome the 
effects of higher propagation losses. If the SU continues to 
transmit assuming a path loss exponent of n = 4 while being in 
the environment for n = 1.6, though the QoS may be met for 
both PU and SU, it would transmitting at much higher power 
levels than required leading to excessive power usage and 
battery power drain. 
 
 
 

 
 

Fig. 5 Average Power of the ith CU against Distance for each environment 
 

V. Conclusion 
 

      Optimal power control in M2M for CR deployment is 
critical to realize the anticipated services in IoT.  For IoT the 
environment where the CR operates is important as different 
power levels are required to achieve effective transmission. A 
CR should therefore be able to detect the best channel properties 
so as to ensure optimal performance at all times thereby 
improving the use of the spectrum. Environments with higher 
propagation losses will require higher transmit power to ensure 
the required QoS than those with lower losses. These diverse 
environments that affect wireless propagation can be modelled 
into the non-cooperative game cost function with an accurate 
power loss exponent relevant for IoT deployment, which will 
reduce battery usage, and is critical for IoT services as these are 
likely to be deployed on low/ultra-low power sensor networks. 
Alternatively the CR network can accommodate more 
secondary users without lowering the QoS due to reduced 
interference. These results are based on Matlab simulations and 
the exact analysis for reduced power and increase in number of 
users is underway, the results of which would be reported in a 
future publication.  
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