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Abstract—Because of the low power losses and moderate cost, 

the magnetic powder cores are popular in producing the filtering 
inductors for the high efficient and cost-effective power converters. 
However, the soft magnetic property of the powder cores leads to 
the wide variation of inductance along with the changing of the 
inductor current in one cycle of the grid, which challenges the 
system stability and power quality. In this paper, the current-
dependent small-signal model of a three-phase LCL-filtered 
inverter is derived for designing the corresponding controller. 
Based on the developed small-signal model, a capacitor current 
feedback based active damping loop and a fractional order 
repetitive control based compound current control loop are 
designed to stabilize the system and enhance the control accuracy 
in steady-state, respectively. The controller design procedure is 
given in detail. Finally, all-digital simulation has been conducted 
on a 3.7 kVA inverter system to verify the theoretical expectations.  

Keywords—LCL filter; active damping; inductor nonlinearity; 
magnetic permeability; fracational order repetitive control.  

I.  INTRODUCTION 
Driven by the economic and environmental issues, 

distributed power generation systems (DPGS) based on 
renewable sources, such as wind, photovoltaic, etc., are 
attracting more and more attentions[1], [2]. As an interface 
between DPGS and the power gird, the grid-connected inverter 
plays a vital role in converting the generated power into high 
quality ac power and injecting it into the grid. The major 
concerns of an inverter design include component selection, 
control scheme, electromagnetic interference, etc.  

In order to reduce the harmonics of the inverter output 
current, output filters are often required. The LCL-type filter is 
increasingly adopted due to its better attenuation of the 
switching harmonics and much reduced inductance requirement. 
However, the LCL-type filter suffers from stability issue, various 
active damping methods have been studied to address this issue, 
such as converter side current feedback[3], grid side current 
feedback[4], capacitor current feedback[5] and voltage 
feedback[6], etc. The effect of sampling and PWM transport 
delays on the effectiveness of active damping methods has been 
investigated in [7], three distinct regions of LCL filter resonance 
have been identified. Compensating the delay in active damping 
loop can improve the system robustness, which can be achieved 
by shifting the capacitor current sampling instant towards the 
PWM reference update instant [8] or using the lead-lag 
compensator[9]. The optimal range of time delay and 

compensation method with single grid current feedback to 
improve the system performance has also been carefully studied 
[10]. The inductors of the LCL filter exhibit nonlinear and time-
varying characteristic, which compromise the stability of the 
current controlled system, was explored in [11]. The repetitive 
control and resonant control have been used to improve the 
output current quality of the single L-filtered grid inverter under 
25% inductance variation[11]. A single phase high power 
density inverter is designed in [12] by using the magnetic 
powder core based inductor with wide inductance variation and 
the corresponding division-summation digital control was 
proposed in [13]. Nevertheless, all existing discussions were 
limited to the simple L or LC filters. Its effect on the grid-tied 
inverters with LCL filters has not been discussed.  

In this paper, a three-phase LCL-filtered grid-tied inverter 
system with more than 40% inductance variation is studied. 
Firstly, the current-dependent small-signal model of a three-
phase LCL-filtered inverter is developed. Then, on the basis of 
the current-dependent model, a capacitor current feedback based 
active damping loop and a fractional order repetitive control 
based compound current control loop are designed. The rest of 
the paper is organized as follows: Section II will briefly 
introduce the system to be studied, the inductor parameter design 
and the mathematic model development. The system control 
strategy design procedure is given in detail in Section III. The 
waveforms are analyzed and discussed in Section IV. Finally, 
Section V concludes the paper.  

II. MODELLING OF INVERTER WITH WIDE INDUCTANCE 
VARIATION 

Fig. 1 shows the circuit topology of a LCL-filtered three-
phase grid-connected inverter. L1, L2 and Cf denote the converter 
side inductor, grid side inductor and filter capacitor, respectively. 
C is the dc-side capacitor. R1 and R2 are the equivalent parasitic 
resistance of the inductors. The equivalent parasitic resistance of  

 
Fig. 1. Three-phase inverter connected to the grid through a LCL-filter.  
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capacitors are relatively small and, thus, are neglected here. vgk 
(k = a, b, c) denotes the grid voltages, which are measured for 
the purpose of synchronizing the control. i1k and i2k (k =a, b, c) 
are the inverter-side and grid-side current, respectively. The 
nominal value of main circuit parameters are listed in Table I.   

A. Design of Inductors with Magnetic Powder Cores 
Sendust core as one kind of magnetic power cores is well 

known for the moderate cost and lower losses and relatively high 
saturation level, which make it popular in designing high 
efficiency and high power density converters. The sendust core 
based inductor is chosen as an example for studying. Fig. 2 
shows the curves of permeability for sendust cores with different 
initial permeability. It can been seen that the core with higher 
initial permeability has larger drop under the same magnetizing 
force. Obviously, if the small inductance tolerance is required, 
the core with small initial permeability should be used. However, 
it will lead to big core size and weight, and more turns. If a larger 
initial permeability core is selected, the same inductance can be 
achieved with relative smaller size and weight and less turns.  

The nominal value of the inductor used in this study is set to 
2 mH at 8 A. Two inductors are designed by using two sendust 
cores with different initial permeability. The parameters of the 
magnetic powder core and designed inductors are illustrated in 
Table II. It can been seen that the winding factors of the two 
inductors are 7.4% and 15%, respectively, which indicates that 
the inductors are achievable. It also can be seen that both the size 
and weight of the type one inductor’s core are two times bigger 
than that of type two inductor. The inductor turns can be reduced 
by applying higher initial permeability core. The calculated 
inductance of the two designed inductors corresponding to 
inductor currents 0 to 10A are depicted in Fig. 3. Although the 
type two inductor has smaller size and weight, the inductance 

TABLE I.  NOMINAL VALUE OF MAIN CIRCUIT PARAMETERS 

Symbol Quantity Value 
L1,nom Converter side inductor 2mH 
R1,nom parasitic resistance of L1 0.2Ω 
L2,nom Grid side inductor 2mH 
R2,nom parasitic resistance of L1 0.2Ω 
Cf,om Capacitor of LCL-filter 10 uF 

 

 
Fig. 2. Curves of permeability versus DC bias for different sendust cores[14]. 

TABLE II.  THE PARAMETERS OF THE MAGNETIC POWDER CORE AND  
DESIGNED INDUCTORS  

 Type one Type two 

Core 
parameters

Initial Permeability 26μ 60μ 
Outer Diameter 134.0 mm 62.91 mm 
Inner Diameter 77.19 mm 31.69 mm 

Height 26.8 mm 25.91 mm 
Weight 1.2 kg 0.34 kg 

Inductance factor 68 nH/T2 189 nH/T2 

Inductor 
parameters

Turns 181 128 
Wire area 1.84 mm2 1.84 mm2 

Winding factor 7.4% 15% 

 

 

Fig. 3. Calculated inductance of the two designed inductors versus the current 
variations.  

varying widely when inductor current varies from 0 to rated 
value. This may challenge the design of control strategy.  

B. Modeling of the Inverter with Wide Inductance Variation 
Since the inductance is dependent on inductor current value, 

it is expressed as a function of current as follow: 

 )()( ifiL = .    (1) 

Neglecting the parasitic resistor of inductor, the capacitor is 
assumed to be constant while the inductor value is time variant, 
the averaged state-space model for LCL-filter in the abc-frame 
can be obtained as following by applying the state-space 
averaging technique [15].  

BUAXX +=     (2) 

where X, U, A, B are listed at the bottom of next page.  

Assuming that the inductance are constant at any steady-state 
operation point (i1a, i1b, i1c, i2a, i2b, i2c, vca, vcb, vcc, vma, vmb, vmc,vga, 
vgb, vgc), where the small signal model can be obtained by 
applying the small-signal linearization technique to (2). Then 
applying the Laplace transform to small-signal state-space 
model, the s-domain transfer function can be achieved.  

Gm2(s) is the transfer function from inverter output vm(s) to 
the grid current i2(s), which can be derived as follows: 
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where ωr is the resonance angular frequency, which can be 
expressed as 
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Gmc(s) is the transfer function from inverter output vm(s) to 
the capacitor current ic(s) in d-axis as shown 
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Since the control algorithms are implemented in discrete 
time domain. Eq. (3) and (4) are transformed into z-domain via 
zero order hold (ZOH) transformation as follows.  
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where Ts represents the sampling period.  

III. CONTROL STRATEGY DESIGN 
The control of the system is composed of a capacitor-current 

feedback active damping loop and a fractional order repetitive 
controller based compound current control loop.  

A. Active Damping Compensator 
Fig. 4 shows the block diagram of the capacitor-current 

feedback active damping loop with a lead-lag compensator, 
where z-1 element represents the computation delay, L(z) 
represents lead-lag compensator. The open loop transfer 
function of the active damping loop Tmc(z) can expressed as 
follow: 

)()()( 1 zLzGzKzT mcadmc
−= .        (7) 

where Kad represent the active damping loop gain. The lead-lag 
compensator L(z) can be expressed as 

5.0
1)(

−
−=

z
zzL .   (8) 

According to (7), two arrays of root loci of the active 
damping loop with inductance variation are drawn in Fig. 5. It 
can been seen that the root loci of the active damping loop 
without phase compensation almost always outside the unit 
circle, thus it’s difficult to stabilize the system. By providing the 
lead-lag compensator to the active damping loop, the root loci 
moves towards inside of the unit circle, the stability can be 
improved.  It also can be seen that the root loci are more inside 

 
Fig. 4. Block diagram of capacitor-current feedback active damping loop with 

lead-lag compensator.  
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of the unit circle when the current is small and the inductance is 
larger, on contrast,  the root loci is more approaching to the unit 
circle when current is large and the inductance becomes small. 
For better damped, the active damping loop gain Kad is set to 5.  

 
Fig. 5. Root loci of active damping loop with/withtou lead-lag compensation. 

B. Inner PI Control Loop  
Fig. 6 shows the block diagram of the inner PI control loop 

in z-domain. The open loop and closed loop transfer functions 
can be derived as: 
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According to (9), an array of root loci for inner PI control 
loop considering inductance variation are drawn in Fig. 7. It can 
be seen that the root loci are always inside the unit circle for 0 < 
Kp <11. Finally, the proportional gain Kp is set to 5 to achieve 
smooth magnitude characteristics of closed-loop, which is 
depicted in Fig. 8. It also can been seen from Fig. 8 that the 
harmonic control capability of the inner PI control loop is very 
limited due to the large phase lag in the Bode plot of the closed-
loop. To improve the steady-state control precision for 
harmonics, the fractional order repetitive controller is added.  

C. External Fractional Order Repetitive Control Loop 
Fig. 9 shows the block diagram of plug-in fractional order 

repetitive control loop. The transfer function of the FORC can 
be expressed as  [16]: 
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where Ni is the integral part of the ratio N, N = fs / f with fs being 
the sampling frequency and f being the fundamental frequency 
of the grid. S(z) is a compensator consists of a pure leading 
element, and Q(z) = a1z + a0 + a1z-1 with 2a1 + a0 = 1 is a low-
pass filter (LPF) to improve the robustness of the system[16]. 

 
Fig. 6. Block diagram of inner PI control loop in z-domain.  

 

Fig. 7. Root loci of inner PI control loop.  

 

Fig. 8. Bode plots of open/closed transfer function for inner PI control loop. 

 
Fig. 9. Block diagram of plug-in fractional order repetitive control loop.  
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 H(z) is a Lagrange interpolation polynomial FIR filter, which 
can be expressed as follow: 
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where n is the order of FIR filter, F is the fractional part of the 
ratio N. 

According to Fig. 9, the error transfer function of the overall 
system can be derived as  
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The closed-loop FORC system is asymptotically stable if the 
following two conditions are held [16].  

1) The roots of 1+Tm2(z)=0 are inside the unit circle.  

2) The following inequality equation holds.  

1)]()(1)[()( 2 <− zTzSzQzH .             (14) 

Assuming T(z)=Q(z)[1-S(z)T2(z)], the magnitude of H(z) is 
always no larger than 1, thus, a more conservative stability 
condition can be derived as: 

1)( <zT .                 (15) 

Fig. 10 shows the phase-frequency characteristic curves of 
T2(z),1/S(z) and S(z)T2(z). It can be seen that the phase lag of 
delay z-5 agrees well with that of T2(z), thus, S(z) is set to z5 to 
compensate the delay of T2(z).  

Fig. 11 illustrates an array of Nyquist curves of T(z) with 
wide inductance variations. The Nyquist curves are all inside the 
unit circle, thus the system stability condition are always held.  

IV. SIMULATION RESULTS  
To validate feasibility of the designed control strategy for the 

three-phase LCL-filtered grid-tied inverter shown in Fig. 1, 
simulation has been carried out in MATLAB/Simulink 
emulating as close as possible the discrete behavior of the DSP 
and the analog hardware components of a real setup. 

 

Fig. 10. Phase-frequency characteristic curves of T2(z),1/S(z) and S(z)T2(z).  

 

Fig. 11. Nyquist curves of T(z) with wide inductance variations.  

A.  Steady State Performance 
The inverter has been tested under the distorted grid with 

total harmonic distortion (THD) equals to 4.6%. As shown in 
Fig. 12(a), with only PI control the inverter output current is 
distorted with THD equals to 12.5%. When FORC has been 
activated, the THD of the inverter output current is reduced to 
2.1%, as shown in Fig. 12(b) and (c).  

The variation of inductance for both grid side and current 
side inductors are also shown in Fig. 12(a) and (b). It can been 
seen that the inductance varies between 2 mH and 3.2 mH along 
with the changing of inductor current. 

 
(a)  

 
(b) 



 
(c)  

Fig. 12. Steady-state waveforms and spectra of inverter output current with (a) 
Only PI control and (b) fractional order repetitive control.  

B. Dynamic Response Performance  
The dynamic response performance of the inverter also has 

been tested by changing of the current reference in d-axis 
(corresponding to the active power current component). The test 
result is shown in Fig. 13, where from up to bottom are reference 
and inverter output currents in d-axis and q-axis, respectively. It 
can been seen that the dynamic response time is about 0.05s, 
which is mainly caused by the FORC.  

V. CONCLUSITONS 
Applying the high permeability magnetic power core can 

obtain more compact, lighter and cost-effective inductors for 
inverters. However, it will result in wide inductance variation. 
Aiming to stably operate the LCL-filtered grid-tied inverter with 
wide inductance variation, the control strategy has been 
carefully designed.  

Firstly, the current-dependent small-signal model of the 
LCL-filtered three-phase inverter with inductance variation is 
derived. To stabilize the LCL-filter, a capacitor current feedback 
based active damping method is adopted and a lead-lag 
compensator is added to enhance stability margin. Meanwhile, a 
fractional order repetitive control has also been used to improve 
the harmonic control capability.  

Simulation results validate the feasibility and effectiveness 
of proposed control strategy. Laboratory experimental 
verification will be conducted in the future.  
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