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Abstract—A control strategy for a conventional Lundell altern-
ator and an active-rectifier using different modulation schemes
was proposed in previous work. The modulation techniques
examined indicated that the system could operate more efficiently
than a passive rectifier over a certain speed and power range.
This paper extends the modulation scheme analysis using a
SVM scheme with six commutations per switching cycle, giving
better electrical and overall efficiency. Furthermore, a power
loss breakdown is performed for the active-rectifier with the
assistance of experimental and simulation results of double pulse
tests. Switching loss estimation curves are produced allowing the
loss examination of the active-rectifier. Switching losses account
only for a minor portion of the total rectifier losses in comparison
to conduction losses. Finally, a higher dc-link voltage of 14.5 V
was introduced using SVM scheme, giving better efficiency, in
order to exploit further the rectifier loss distribution.

f
Index Terms—Lundell alternator, active-rectifier, automotive,

switching losses, conduction losses.

I. INTRODUCTION

Although fully electric and other low emission vehicles are
already been rolled out, future trends indicate that even at
the best case scenario, gasoline and diesel will still play an
important role in the light duty vehicles sector, which is greater
than 50% by 2050 [1]. As a result, conventional vehicles are
expected to be produced in the short and mid term future
utilising Lundell alternators that will be used in the majority
of the automotive fleet for a number of reasons, such as cost,
robustness and speed-range [2].

There is limited literature on combining an active-rectifier
with a Lundell alternator instead of the conventional PN
Zener diode passive rectifier [3]–[7]. The majority of these
studies consider synchronous rectification schemes [3]–[6].
The active-rectifier strategy used in [7] is not described, while
the use of IGBTs as the rectifier topology for this low dc
voltage application and its subsequent high-forward voltage
drop compromises the rectifier efficiency.

This work was financially supported by JaguarLandRover Ltd.

The efficiency improvement of the electric power generation
system of a conventional vehicle was investigated by connect-
ing a Lundell alternator to an active-rectifier [8]. The control
references were calculated using a cost-function and a control
scheme was implemented in order to control the dq current
values of the alternator’s phase current. So, the alternator
can be operated at its optimum operating points. There is a
number of challenges to be resolved in the implementation
of an active-rectifier control scheme in a Lundell alternator
constructed for use with a passive rectifier. First, its high stator
inductance value in conjunction with the high number of pole
pairs (12 to 18) and speed range (up to 18,000 rpm) results in a
high inductive reactance [2]. Furthermore, the low voltage bus
requires a significant amount of dc current to supply the loads
(up to 100 A). This will result in a significant voltage drop
at the stator winding, alongside the need of a reactive current
component to keep the dc bus voltage within limits. Therefore,
the ratio between the active and reactive current components
will ultimately set the compromise on the system efficiency.
Third, the existence of the field winding suggests the existence
of one additional degree of freedom, which complicates the
implementation of the control strategy of the alternator/active-
rectifier system. Sarafianos et al. presented in [9] a control
strategy that addresses the challenges of active rectification.
In this present paper a new Space Vector Modulation (SVM)
is introduced with six commutations per switching cycle and
the results are compared to the modulated schemes found in
[9].

Few papers have focused on 14 V conventional vehicle
power system using active rectification and associated losses.
Similarly, most of the literature on losses and efficiency in
power conversion is concentrated on applications with medium
and high voltage (> 50 V) where the share between switching
and conduction losses is fairly equal [10]–[12]. The aim of
this work is also to investigate the active-rectifier losses and
to quantify them into switching and conduction losses in a low
voltage, high current application. The comparison of different
active-rectifier modulation schemes allowed the identification



of the best performing scheme in terms of its electrical
efficiency. This efficiency reflects the power losses between the
ac generated power and the dc output power of every scheme.
These losses include the conduction and switching losses of
the active-rectifier and they depend on a number of electrical
parameters, for example those arising from the PCB design. As
a result, device characterisation information from manufacturer
datasheets alone cannot be used. For this reason, a method
for estimating the switching losses during turn-on and turn-
off transients for the MOSFETs in their PCB was explored.
Switching power losses and power measurements allowed the
extraction of rectifier conduction losses. A double pulse test
simulation study was carried out to estimate the switching
losses based on an ideal case with no parasitic inductances
and a second case where the estimated stray inductance was
included in the simulation. The switching losses prediction
curves are produced. These curves together with the power
measurements assisted in extracting the rectifier conduction
losses. Finally, the study has been extended to investigate the
benefits of a 14.5 V dc-link. The higher dc-link voltage per-
mitted significantly better efficiencies but its maximum value
is limited by automotive industry standards and regulations.

II. ACTIVE-RECTIFIER FOR AUTOMOTIVE APPLICATIONS

A. Experimental setup

The experimental setup used to measure the efficiency of
the Lundell alternator/ active-rectifier system is presented in
Fig. 1. The alternator is the Bosch LiX 180 A, 2.4 kW with
a three-phase delta-connected stator winding.
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Figure 1: Experimental setup diagram

The measuring system has the connection between the
current shunts, that measure the line current, and the active-
rectifier’s PCB, which consists of a number of connectors and
16 mm2 tri-rated cables in order to handle the high current
values of the application. As a result, an additional resistance
(Rline) is present, as depicted at the schematic in Fig. 1. This
resistance (Rline) compromises the power capability of the
alternator by acting as an additional output impedance as well
as introducing conduction losses. The resistance of the cables

and connectors was measured for all three phases using a
four-wire terminal ohmmeter and the average value was found
to be 3.5 mΩ. This unavoidable parasitic resistance value is
significant, considering that is of the same magnitude than
the on-resistance (RDSon = 2.8 mΩ) of a single rectifier’s
MOSFET and the resistance of the PCB tracks.

B. Efficiency measurements

An SVM scheme featuring six commutations per switching
cycle is introduced in this paper and is compared against the
modulation schemes presented by Sarafianos et al. in [9] in an
effort to improve the overall system efficiency by decreasing
the switching losses. The SVM scheme has six commutations
per switching cycle, which are reduced by 50% compared
to the 12 commutations in the third harmonic modulation
scheme and 25% compared to the 8 commutations in the
DSVM scheme. Fig. 11 in Appendix illustrates the efficiency
compared to the results in [9] at different speed points. The
passive rectifier results and the sinusoidal PWM (sPWM)
are given only as a reference. The use of the SVM scheme
improves both the electrical (Pdc

Pac
) and the overall system

( Pdc

Pmech
) efficiency.

C. Current waveforms and harmonics distortion

The smaller number of commutations in the SVM modula-
tion increases the ripple of the current waveform. Fig. 2 depicts
the current waveforms for the three different modulation
schemes and their corresponding THD. It can be seen that
in all cases the current is essentially sinusoidal with low
THD, which is mainly due to the large filtering effect of the
alternator’s line inductance, especially at higher speeds.
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Figure 2: Current waveforms for different modulation schemes
at 2000 rpm and 180 W. 3rd harmonic (THD=6.4%), DSVM
(THD=6.7%) and SVM (THD=6.8%)

III. DOUBLE PULSE TEST

The results in the previous section showed the effect of
changing the number of commutations in the electrical effi-
ciency of the rectifier but there is still a need to quantify the
actual switching losses, establish their share on the total losses
figure and explore opportunities for further loss reduction.
The double pulse test allows the estimation of switching
losses, which depend on the voltage, the current, the switching



frequency, the semiconductor device turn-on and turn-off times
and the PCB layout [13]. The design of the PCB is of crucial
importance to switching losses because it might introduce stray
inductance that increases these losses [13]. The results of the
double pulse test give the switching energy loss during the
turn-on and turn-off transient of a single MOSFET including
the aforementioned dependencies in this practical experiment.

A. Circuit setup and inductance measurement

The scheme of one leg of the active-rectifier is illustrated in
Fig. 3, where the driver circuit (AUIR2113S) and the low-side
MOSFET switch (IPP120N08S4-03) are included. Instead of a
high-side switch, a SiC diode was placed (SiCdiode) in parallel
to an inductor (L). A SiC diode (STPSC20H065C-Y) is used
because it has no reverse recovery, thus no additional losses
are added [13]. The resulted circuit was connected to ceramic
capacitors (Ccer), which were mounted very close to minimise
stray inductance and absorb transients, and to bulk electrolytic
capacitors (Celect) to store the required energy, during the
off-time, and keep the dc-link voltage (Vdc) at the required
level. Finally, the dc-link voltage was set to 14 V by a dc
power supply. The stray inductance of the PCB under test was
measured with an impedance meter (BK891 LCR Meter). Test
conditions were chosen so that the measurements are within
5% accuracy according to the equipment specifications. The
source to ground inductance was measured to be around 5.4
nH and the load to drain inductance was 8.5 nH giving a total
stray inductance of about 14 nH. It should be noted that the
inductance related to the MOSFET package itself (TO-220) is
around 5 nH [14].
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Figure 3: Double pulse circuitry

B. Switching losses curves

LTSpice simulations of the double pulse test were carried
out to estimate the switching losses in two different scenarios.
The first set of simulations considered an ideal circuit and
PCB without any parasitic inductances. The second set of
simulations included the measured inductances to mimic the
actual PCB as realistically as possible. The simulation file was
based on the scheme shown in Fig. 3 and the Spice models
provided by the manufacturers of the diodes, MOSFET and
gate driver. Fig. 4 displays the double pulse waveforms for 50
A current. The effects of the dc-link stray inductance can be
clearly seen in the Vds waveform.
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Figure 4: Double pulse waveforms

The double pulse test estimates the turn-on (EON
losses) and

turn-off (EOFF
losses) energy losses. The power losses in one

complete switching event (turn-on and off) are calculated as:

P switch
losses =

(
EON

losses + EOFF
losses

)
× fswitching (1)

Fig. 5 shows the power losses for the ideal circuit and the
circuit with parasitics at a switching frequency (fswitching)
of 20 kHz. The stray inductance in the circuit significantly
increases the losses.
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Figure 5: Device switching losses at 20 kHz

IV. ELECTRICAL POWER LOSS BREAKDOWN

Only the SVM modulation is considered for further study
as it has the best performance, but the process in this section
could be extended to other modulation schemes. Having
already measured the ac generated power (Pac) and the dc
output power (Pdc) for the different modulation schemes at
different speed and power levels (Fig. 11), the power losses
between these two points are divided into the following
components:

P losses
AC = Pline + P rect

cond + P rect
switc (2)

where P losses
AC are the losses between the power meter

current shunts and the dc-link, Pline are the losses at the
cables/connectors between the current shunts and the con-
nectors to the active-rectifier (A, B and C points in Fig. 1),
P rect
cond are the conduction losses of the active-rectifier and

P rect
switc are the switching losses of the active-rectifier. The



ac current waveform of the active-rectifier has low THD as
already presented in subsection II-C, with the highest value
of 7% at light load and at the lowest speed. Therefore, the
current can be considered sinusoidal and the line resistance
power loss is calculated from Pline = I2lineRline, where Iline
is the ac rms line current. The result of the calculation is then
subtracted from the values of the ac power reported in II-B.
The remaining losses comprise the conduction and switching
losses of the active-rectifier.

A. Rectifier loss breakdown for the SVM scheme

The rectifier loss breakdown using the switching losses
estimated in section III for both, the ideal model and the actual
circuit with parasitic inductances is depicted in Fig. 6. It is
evident that conduction losses are significantly higher than the
switching losses.
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Figure 6: Rectifier loss breakdown for 2000 rpm

The conduction losses were estimated for different speeds
and power points (currents) as shown in Fig. 7. There is a clear
quadratic trend regardless of the operating speed, but these
losses are higher than the values calculated with I2RDSon,
where RDSon is the MOSFET on-resistance, 2.8 mΩ.
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Figure 7: Rectifier conduction losses at different speeds

B. Conduction losses - analytical approach

The rectifier conduction losses are divided into MOSFET
and diode conduction losses. The following equations can be
used for the calculation of these losses once all the parameters
are known [15]:

P cond
MOSFET = RDSonI

2
0

(
1

8
+
ma cosϕ

3π

)
(3)

P cond
DIODE = RDI

2
0

(
1

8
−
ma cosϕ

3π

)
+ uDI0

(
1

2π
−
ma cosϕ

8

)
(4)

where, P cond
MOSFET are MOSFET conduction losses,

P cond
DIODE are diode conduction losses. RDSon is the MOSFET

on-resistance, I0 is the peak value of the ac line current,
ma is the modulation index (set to 0.925 in the controller),
ϕ the angle between the line current and voltage, RD is
the equivalent diode resistance extracted from the MOSFET
datasheet and uD is the diode’s forward voltage drop. The
overall equation of the rectifier conduction losses is:

Ptotal = I20

[
RDSon

(
1

8
+
ma cosϕ

3π

)
+RD

(
1

8
−
ma cosϕ

3π

)]

−I0
[
uD

(
1

2π
− ma cosϕ

8

)]
(5)

The rectifier conduction losses depend on a number of
non-constant factors as seen in Eq. (5) [15], [16]. However,
the calculation becomes more complicated considering the
dependency on temperature, because of the on-resistance of
the MOSFET, the forward voltage drop, and the equivalent
resistance of the diode as well as the amount of ac current
flowing through each component with respect to the ac voltage
(power factor, stray inductance, inductive load). Fig. 8 illus-
trates the schematic of one leg of the converter considering
rectifier operation and assists in the selection of adequate signs
for Eq. (5).
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Figure 8: Conduction losses - Single leg diagram

C. Discussion of results

The loss breakdown shows that the switching losses account
for less than 12.5% of the total rectifier losses in applications
with low dc-link voltage (14 V) and high current. This
distribution of losses is significantly different from the one
observed in applications with a higher dc-link voltage, where
the switching losses are around 50% of the total rectifier
losses [17]. Therefore, any effort on reducing the switching
losses by means such as a better PCB layout or lead-less
packages for the MOSFETs (package inductance lower than 1
nH [14]) is valuable, but it will not have a significant impact



on the rectifier and overall efficiency. On the other hand,
the conduction losses depend on the current going through
the MOSFET and the device parameters. The latter values
are difficult to measure or estimate from datasheets as they
change with operating conditions and temperature. In this
context, there is no obvious way to improve the efficiency
of the rectifier without increasing the number of devices, as
the line currents are set by the power demand at the dc side
and the device parameters cannot be changed or controlled.
Two potential solutions are: utilising a higher dc-link voltage
[8], which is limited in automotive applications due to the 14
V battery power system and the presence of sensitive loads.
Another option is using a multiphase alternator where the same
power can be achieved with lower phase currents.

V. HIGH DC-LINK VOLTAGE

The efficiency measurements for the SVM modulation with
a higher dc-link voltage are depicted in Fig. 9 [8].
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Figure 9: Electrical efficiency (top) and overall efficiency
(bottom) at 14.5 V and 2000 rpm

The performance is notably better at high power levels,
where the currents are higher. Similarly, Fig. 10 shows the
loss breakdown of the active-rectifier. It can be seen that the
same power can be achieved with significant lower currents
and losses, which in turn allows the operating region of the
Lundell alternator/ active-rectifier system to be extended. The
efficiency improvement obtained with a 0.5 V higher dc-link
voltage is more significant than the one achievable even with
an ideal circuitry with no parasitics and is acceptable for a 12
V automotive battery.

VI. CONCLUSIONS

This paper has studied in detail the power losses in a
Lundell alternator/ active-rectifier system intended for auto-
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Figure 10: Rectifier breakdown loss comparison

motive applications. Different modulation schemes were tested
in an effort to reduce the switching losses. SVM modulation
had the best performance as it uses only six commutations
per cycle, half of the commutations for a standard PWM
modulation, but the overall efficiency was not improved as
expected. Then, the double pulse test was simulated to quantify
the switching losses in this application using an ideal circuit
and also a more realistic scenario with parasitic inductances.
Later on, the breakdown of losses in the active-rectifier was
carried out with the assistance of the double pulse test results.
This breakdown showed that the switching losses have only a
marginal share of the total losses, being the conduction losses
the most significant component in this application with low
dc-link voltage (14 V) and high current. Finally, the dc-link
voltage was increased to 14.5 V showing that the same power
can be delivered with considerably higher efficiency, allowing
the use of a Lundell alternator/ active-rectifier system in a
larger range of operation. The authors will extend this control
strategy and analysis to a multiphase alternator. Also, a new
PCB with lead-less MOSFETs will be designed in an effort to
reduce not only the switching losses but also the conduction
losses as this package technology has a lower RDSon.
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